文档库 最新最全的文档下载
当前位置:文档库 › 第42讲-三角比化简求值证明-提高

第42讲-三角比化简求值证明-提高

第42讲-三角比化简求值证明-提高
第42讲-三角比化简求值证明-提高

三角比化简求值证明

教学目标

掌握同角三角比的关系、两角和与差的三角比公式、二倍角公式(正弦、余弦、正切),能运用它们进行简单的三角比式的化简,求值及恒等式证明

【三角比式的化简和求值是三角比的重点内容之一,通过本节的学习使学生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍】

知识梳理

1、三角比求值主要有三种类型,即

(1)“给角求值”,一般给出的角都是非特殊角,从表面看较难,但仔细观察这类问题中的角与特殊角都有着一定的关系,如和或差为特殊角,当然还有可能需要运用诱导公式.

(2)“给值求值”,即给出某些角的三角比式的值,求另外一些三角比的值,这类求值问题关键在于结合条件和结论中的角,合理拆、配角.当然在这个过程中要注意角的范围的变化.

(3)“给值求角”,本质上还是“给值求值”,只不过往往求出的是特殊角的值,在求出角之前还需结合函数的单调性确定角,必要时还要讨论角的范围.

2、三角比化简:

三角比的化简,对三角的和式,基本思路是降幂、消项和逆用公式;对三角的分式,基本思路是分子与分母的约分或逆用公式,最终变成整式或数值;对二次根式,则需要运用倍角公式的变换.在具体过程中体现的则是化归的思想,这是一个“化异为同”的过程,涉及到切弦互化,即“函数名”的“化同”;角的变换,即“单角化倍角”、“单角化复角”、“复角化复角”等具体手段.

典例精讲

例1.已知α=tan 2,求下列各式的值:

(1)αααα--2sin 3cos 4sin 9cos ; (2)αααα

--22222sin 3cos 4sin 9cos ;(3)αααα--224sin 3sin cos 5cos .

解:(1)2tan 3==-14tan 9αα--原式(2)222tan 35=4tan 97αα-=-原式(3)22224sin 3sin cos 5cos =1sin cos αααααα

--=+原式 【当分式上下为齐次的三角形式时,可以上下同时除以一个式子,将变量减少】

巩固练习

1.已知tan()24

πα+=,则ααα2cos cos sin 21

+的值为 . 解:

23

2. 设α为第四象限的角,若

513sin 3sin =αα,则____2tan =α. 解:32,2αααααα=+=- ∴sin3sin(2)sin 2cos cos2sin 13tan 291,,tan sin sin(2)sin 2cos cos2sin 5tan 43

ααααααααααααααααα++===∴==---, 则tan 2α=43

-

例2.设αα+=1sin cos 2,求下列各式的值: ⑴ αα?sin cos ; ⑵ αα+33sin cos ; ⑶ αα+44sin cos ; ⑷ αα+tan cot .

解:(1)38-(2)1116(3)2332

(4)83- 【在一个题中同时出现sin cos αα?与sin cos αα±,可以考虑通过将后一个式子平方,借助平方和为1,找到它们的联系】

巩固练习

1.已知2cos 23θ=

,则44sin cos θθ+的值为 ( ) A 1813 B 1811 C 9

7 D 1-

解:B 442222221sin cos (sin cos )2sin cos 1sin 22

θθθθθθθ+=+-=- 21111(1cos 2)218

θ=-

-= 2.已知()0,απ∈,且1sin cos 5

αα+=,则tan α的值为 ( ) A 43- B 4334--或 C 34- D 4334

-或 解:A

例3.化简222cos 1

2tan()sin ()

44απ

π

αα-=-+ . 【分析:对三角比式化简结果的一般要求:①函数种类最少;②项数最少;③函数次数最低;④能求值的求出值;⑤尽量使分母不含三角比;⑥尽量使分母不含根式 】

解:原式=222cos 1

2sin()4cos ()4cos()4απαπαπα--?--=22cos 1

2sin()cos()44αππαα--?- =22cos 1cos 21cos 2cos 2αααα

-== 【在三角式的化简方向一般为降次,消项】

巩固练习

1. 22sin 2cos 1cos 2cos 2αααα

?+= ( ) A tan α B tan 2α C 1 D 12

解:B 2222222sin 2cos 22sin cos cos 2tan tan 21cos2cos212cos 1cos sin 1tan ααααααααααααα

??=?==++---

2. 求证: 22

24tan 2(1tan 2)2sin 23sin4sin8(1+tan 2)αααααα-+-=2sin 430α-?() 证明:左边=222sin 23sin4-sin 4cos 4sin8ααααα

+=2(2sin 21)3sin4αα-+

=3sin 4cos4αα- =312(

sin 4cos422αα-)=2sin 430α-?()=右边

例4.已知113cos ,cos(),714

ααβ=-=且02πβα<<<, (1)求α2tan 的值.(2)求β.

【分析:由同角关系求出tan α再求tan 2α;又()βααβ=--结合角β的范围定角】

解:(1)由1cos ,072παα=<<,得22143sin 1cos 177αα??=-=-= ???

∴sin 437tan 43cos 71ααα==?=,于是()

222tan 24383tan 21tan 47143ααα?===---

(2)由02π

αβ<<<,得02π

αβ<-<

又∵()13cos 14αβ-=,∴()()221333sin 1cos 11414αβαβ??-=--=-= ???

由()βααβ=--得:()cos cos βααβ=--????

()()cos cos sin sin ααβααβ=-+-113433317147142

=?+?=,所以3πβ= 【本题考察三角恒等变形的主要基本公式、三角比值的符号,已知三角比值求角以及计算能力】

巩固练习

1. 已知8cos(2)5cos 0αββ++=,求tan()tan αβα+?的值.

解:∵2()αβαβα+=++,()βαβα=+-,

∴8cos[()]5cos[()]0a αβααβ++++-=,

得13cos()cos 3sin()sin αβααβα+=+,

若cos()cos 0αβα+≠,则13tan()tan 3

αβα+?=, 若cos()cos 0αβα+=,tan()tan αβα+?无意义

2.已知11tan(),tan 27

αββ-=

=-,且α、(0,)βπ∈,求 2αβ-的值 解:由1tan()2αβ-= 得 tan(2)tan[2()]αβαββ-=-+

tan 2()tan 1tan 2()tan αββαββ-+=--41371411()37

-==-?- tan()tan tan tan[()]1tan()tan αββααββαββ-+=-+=--11127113

1()27

-==-?- 又1tan ,,(0,)7βαβπ=-∈且(0,),(,),2(,0)42

ππαβπαβπ∴∈∈-∈- tan(2)1αβ-=

324

παβ∴-=- 3.已知tan α、tan β是关于x 的方程2430()x px p R --=∈的两个实数根,且

()2k k Z π

αβπ+≠+∈,求2cos ()sin()cos()p αβαβαβ++++的值.

解: tan α、tan β是方程2430()x px p R --=∈的两个实数根

tan tan 4tan tan 3p αβαβ+=?∴??=-?

tan tan 4tan()1tan tan 4

p p αβαβαβ+∴+===-? 2cos ()sin()cos()p αβαβαβ∴++++ 222cos ()sin()cos()sin ()cos ()p αβαβαβαβαβ++++=+++2

221tan()111tan ()1p p p

αβαβ+++===+++

回顾总结 三角比化简求值证明技巧与方法 :

(1)要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式;

(2)注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用;

(3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可

利用分析法.

三角形全等的证明教案

三角形全等的证明 【知识梳理】 (一)三角形概述: 1.定义(包括内、外角) 2.性质:三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n 边形外角和。 ⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。 ⑶角与边:在同一三角形中 3.三角形的主要线段 (1)定义:高线、中线、角平分线、中垂线 (2)××线的交点—-- 三角形的×心及性质 4.特殊三角形(等腰三角形、等边三角形)的判定与性质 等腰三角形: 定理:等腰三角形的两个底角相等,(简称:“等边对等角”) 定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”) 等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等,(简称“等角对等边”)。 等边三角形的性质及判定: 有一个角是60°的等腰三角形是等边三角形 5.全等三角形 全等三角形的的性质:全等三角形的对应边相等,对应角相等; 全等的判定:SAS 、ASA 、AAS 、SSS : 注意问题: (1)在判定两个三角形全等时,至少有一边对应相等; (2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA ;b :有两边和其中一角对应相等,即SSA 。 记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 寻找对应元素的方法: (1)根据对应顶点找 如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。 (2)根据已知的对应元素寻找 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (3)通过观察,想象图形的运动变化状况,确定对应关系。 通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。 翻折 如图(1),?BOC ≌?EOD ,?BOC 可以看成是由?EOD 沿直线AO 翻折180?得到的; 等边 等角 大边 大角 小边 小角

g3.1049 三角函数的化简、求值与证明

g3.1049 三角函数的化简、求值与证明 一、知识回顾 1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。 3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。 二、基本训练 1、已知θ是第三象限角,且445 9 sin cos θθ+=,那么2sin θ等于 ( ) A 、223 B 、223- C 、23 D 、23 - 2、函数23 232 y sin x cos x =--+的最小正周期 ( ) A 、2π B 、π C 、3π D 、4π 3、tan 70cos10(3tan 201)- 等于 ( ) A 、1 B 、2 C 、-1 D 、-2 4、已知46 sin 3cos (4)4m m m αα--=≠-,则实数m 的取值范围是______。 5、设1 0,sin cos 2 απαα<<+=,则cos2α=_____。 三、例题分析 例1、化简: 4221 2cos 2cos 2.2tan()sin () 44 x x x x ππ -+ -+ 例2、设3177cos(),45124 x x π ππ +=<< ,求2sin 22sin 1tan x x x +-的值。 例3、求证:sin(2)sin 2cos().sin sin αββ αβαα +-+=

【北师大版初三数学】第1讲:三角形的证明-教案

知识讲解: 1.通过探索、猜测、计算、证明得到的定理: (1)与等腰三角形、等边三角形有关的结论: 性质:等腰三角形的两个底角相等,即等边对等角; 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合; 等腰三角形两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等. 等边三角形的三条边都相等,三个角都相等,并且每个角都等于60°; 等边三角形的三条角平分线、三条中线、三条高互相相等. 判定:有两个角相等的三角形是等腰三角形; 有一个角是60°的等腰三角形是等边三角形; 三个角都相等的三角形是等边三角形. (2)与直角三角形有关的结论: 勾股定理的逆定理; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 斜边和一直角边对应相等的两个直角三角形全等.(HL) (3)与一般三角形有关的结论:

在一个三角形中,两个角不相等,它们所对的边也不相等(用反证法证明). 2.命题的逆命题及其真假: 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为另一个命题的逆命题. 一个命题是真命题,它的逆命题不一定是真命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.其中一个定理称为另一个定理的逆定理.例如勾股定理及其逆定理. 3.尺规作图 线段垂直平分线的性质定理和判定定理;用尺规作线段的垂直平分线;已知底边和底边上的高,用尺规作等腰三角形 角平分线的性质定理和判定定理;用尺规作已知角的平分线. 课堂练习: 考点一:等腰三角形 【例题】 1、【14外国语期中】等腰三角形的一边为5另一边为9,这这个三角形的周长为()A.19 B.23 C .14 D.19或23 2、【14外国语月考】等腰三角形补充下列条件后,仍不一定成为等边三角形的是() A.有一个内角是600 B.有一个外角是1200 C.有两个角相等 D.腰与底边相等 3、【经开一中月考】将两个全等的有一个角为300的直角三角形拼成如图所示,其中两条直角边在同一直线上,则图中等腰三角形的个数是() A.4B.3C.2D.1 4、【14外国语月考】腰长为5,一条高为4的等腰三角形的底边长为。 5、【经开一中月考】一个等腰三角形有一角是700,则其余两角分别为。 6、【经开一中月考】等腰直角三角形一条边长是1cm,那么它斜边上的高是 cm. 7、【经开一中月考】已知:如图AB=AC,DE∥AC求证:△DBE是等腰三角形。 8、【14外国语月考】如图,等边△ABC中,AO是BC边上的中线,D为AO上一点,以CD为一边且在CD 下方作等边△CDE,连结BE。 (1)求证:AD=BE

二倍角的三角函数的化简与证明

课题:二倍角的三角函数 本节考试要求为B 级 一、知识梳理 1、二倍角公式 =α2sin ;=α2cos ;=α2tan . 2、公式变形 =α2sin ;=α2cos ;=-αcos 1 ; =+αcos 1 ;=-α2sin 1 ;=+α2sin 1 . 3、技巧:(1)巧变角;(2)切化弦;(3)变逆用;(4)幂升降;(5)变结构;(6)1代换;(7)三兄妹. 二、三基能力强化 1、已知5 3 )4sin( = -x π ,则=x 2sin . 2、已知θ是第三象限角,且9 5cos sin 4 4=+θθ,那么θ2sin = . 3、在ABC ?中,6cos 4sin 3=+B A ,1cos 3sin 4=+A B ,则C sin 的值为 . 4、教材习题改编)已知1tan 2tan 1=+-θθ,则=++)4 tan(42tan π θθ . 5、已知βα,均为锐角,且α αα αβsin cos sin cos tan +-=,则=+)tan(βα . 三、典例互动 三角函数式的化简:化简的要求 例1:(1)化简)4 cos(6)4sin( 2x x -+-π π ; (2)α αααα2sin ) 1cos )(sin 1sin (cos +--+ 规律总结: 三角函数式的求值:求值的方法 例2:求值:0 01000 1cos 20sin10(tan 5tan 5)2sin 20-+-- 又如:ο ο ο ο 78sin 66sin 42sin 6sin =

例3:已知),43(ππα∈,3 10 tan 1tan =+αα,求 ) 2 sin(28 2 cos 112 cos 2 sin 82 sin 52 2 π αα α α α --++的 值。 变题:本题条件不变,求 ) 3 sin(cos 22sin 2π ααα- -的值。 例4:已知ββαsin 3)2sin(=+,设x =αtan ,y =βtan ,记)(x f y = (1)求)(x f 的解析式;(2)若角α是一个三角形的最小内角,试求函数)(x f 的值域 四、课堂反馈 1.已知cos2α=1 4 ,则sin 2α=________. 2.2sin2α1+cos2α·cos 2αcos2α 等于________. 3.已知α,β,γ∈(0,π 2),且sin α+sin γ=sin β,cos β+cos γ=cos α,则α-β的值等于________. 4.定义运算a b =ab 2+a 2b ,则sin15°cos15°的值是________. 5.(原创题)已知sin θ=4 5 ,且cos θ-sin θ+1<0,则sin2θ=________. 6.化简:2cos 4x -2cos 2x + 1 2 2tan(π4-x )·sin 2(π 4+x ) .

八年级数学下册第一章三角形的证明回顾与思考教案1新版北师大版

《回顾与思考》 教学目标 1、在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思 路和方法,尺规作图等。 2、发展学生的初步的演绎推理能力,进一步掌握综合法的证明方法,提高学生用规 范的数学语言表达论证过程的能力。 教学重点 通过例题的讲解和课堂练习对所学知识进行复习巩固 教学难点 本章知识的综合性应用。 教学过程 知识回顾 1、等腰三角形的性质:(边)_______________ ;(角)_______________ ;“三线合一”的 内容____________________________________ 。 2、等边三角形的性质:(边)_______________ ;(角)__________________ 。 3、判定等腰三角形的方法有:(边)_______________ ;(角)________________________ 。 4、判定等边三角形的方法有:(边)_______________ ;(角)________________________ 。 5、_________________________________________________ 线段垂直平分线的性质定理:。 逆定理:____________________________________________________________________ 。 三角形的垂直平分线性质:___________________________________________________ 。 6、_____________________________________________________________ 角的性质定理:。 逆定理:____________________________________________________________________ 。 三角形的角平分线性质:_____________________________________________________ 。 7、___________________________________________________ 三角形全等的判定方法有:。 8 30°锐角的直角三角形的性质: ______________________________________________ 。 9、方法总结: (1)证明线段相等的方法:1)可证明它们所在的两个三角形全等;2)角平分线的性质定理:角平分线上的点到角两边的距离相等;3)等角对等边;4)等腰三角形三线合一的性 质;5)中垂线的性质定理:线段垂直平分线上的点到线段两端点的距离相等。 (2)证明两角相等的方法:1)同角的余角相等;2)平行线性质;3)对顶角相等;4)全等三角形对应角相等;5)等边对等角;6)角平分线的性质定理和逆定理。

(完整版)三角函数化简求值证明技巧

第三讲 一、三角函数的化简、计算、证明的恒等变形的应用技巧 1、网络

2、三角函数变换的方法总结 (1)变换函数名 对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。 【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。 练习:已知sin(α+β)=,cos(α-β)=,求的值。 2)变换角的形式 对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。 【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。练习已知,求的值

【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α +β)= 提示:sin[(α+β)-β]=Asin (α+β) (3)以式代值 利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。这其中以“1”的变换为最常见且最灵活。“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。 【例4】化简: (4)和积互化 积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。这往往用到倍、半角公式。 【例5】解三角方程:sin2x+sin22x=sin23x

北师版八年级数学下册教案第一章三角形的证明

第一章三角形的证明 1等腰三角形 第1课时全等三角形及等腰三角形的性质 1.理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理. 2.经历“探索-发现-猜想-证明”的过程,让学生进一步掌握证明的基本步骤和书写格式. 3.掌握等腰三角形性质定理的推论. 重点 掌握等腰三角形的性质定理及推论. 难点 证明等腰三角形的相关性质. 一、复习导入 1.请学生回忆并整理已经学过的8条基本事实中的5条: (1)两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; (2)两条平行线被第三条直线所截,同位角相等; (3)两边及其夹角对应相等的两个三角形全等(SAS); (4)两角及其夹边对应相等的两个三角形全等(ASA); (5)三边对应相等的两个三角形全等(SSS). 2.在此基础上回忆全等三角形的判定定理:(推论)两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明. 3.回忆全等三角形的性质. 二、探究新知 1.等腰三角形的性质定理 问题1:什么是等腰三角形? 问题2:你会画一个等腰三角形吗?并把你画的等腰三角形裁剪下来. 问题3 :试用折纸的方法回忆等腰三角形有哪些性质. 引导学生得出等腰三角形的性质: 等腰三角形的两底角相等.(简称为“等边对等角”) 问题4:你能利用已有的基本事实和定理证明这些结论吗? 已知:如图,在△ABC中,AB=AC. 求证:∠B=∠C. 分析:方法一:作∠BAC的平分线,交BC边于点D;方法二:过点A作AD ⊥BC于点D;方法三:取BC的中点D. 证法一:取BC的中点D,连接AD. ?? ? ?? AB=AC BD=CD AD=AD ?△ABD≌△ACD?∠B=∠C.

三角函数化简题

4三角函数得化简、求值与证明日期:2009年月日星期 ,能正确地运用三角公式进行三角函数式得化简与恒等式得证明、 用、 (1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式得逆用等。(2)化简要求:①能求出值得应求出值; ②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数 2、三角函数得求值类型有三类:(1)给角求值:一般所给出得角都就就是非特殊角,要观察所给角与特殊角间得关系,利用三角变换消去非特殊角,转化为求特殊角得三角函数值问题;(2)给值求值:给出某些角得三角函数式得值,求另外一些角得三角函数值,解题得关键在于“变角”,如等,把所求角用含已知角得式子表示,求解时要注意角得范围得讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得得所求角得函数值结合所求角得范围及函数得单调性求得角。 3、三角等式得证明:(1)三角恒等式得证题思路就就是根据等式两端得特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端得化“异”为“同”;(2)三角条件等式得证题思路就就是通过观察,发现已知条件与待证等式间得关系,采用代入法、消参法或 、三角函数得求值: ,化非特殊角为特殊角; ?2、正确灵活地运用公式,通过三角变换消去或约去一些非特殊角得三角函数值; ?3、一些常规技巧:“1”得代换、切割化弦、与积互化、异角化同角等、 1、三角函数式得化简: 三角函数式得化简常用方法就就是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角得三角函数互化、 ?2、三角恒等式得证明: 三角恒等式包括有条件得恒等式与无条件得恒等式、①无条件得等式证明得基本方法就就是化繁为简、左右归一、变更命题等,使等式两端得“异”化为“同”;②有条件得:代入法、消去法、综合法、分析法等、 ( A) A、B、C、D、 2、函数得最小正周期( B) A、B、C、D、 3、等于( D) A、1 B、2 C、-1 D、-2 4、已知,则实数得取值范围就就是__[-1,]___。 ____。 ,(),则?( ) ???或 略解:由得或(舍),∴,∴、 例2、已知,就就是第三象限角,求得值、 解:∵就就是第三象限角,∴(), ∵,∴就就是第四象限角,∴, ?∴原式 221 cos(15)sin(15)sin(75)cos(75) 3αααα + =---=+-+=-、 例3、已知,求得值、

《三角形的证明》复习教案

第一章《三角形的证明》 1、性质和判定 2、尺规作图 垂直平分线的应用: (1)确定到两点(三点)距离相等的点的位置 (2)确定线段的中点 (3)过一点作已知直线或线段的垂线 角平分线的应用 (1)把一个角分成n2等份 (2)确定到角的两边或三角形三边距离相等的点 (3)与垂直平分线结合,解决实际问题 3、全等三角形的判定(AAS,SSS,SAS,ASA,HL) 双基训练: 1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是____________. 2.一个等腰三角形的顶角是40°,则它的底角是________________. 3.已知△ABC的三边长分别是6cm、8cm、10cm,则△ABC的面积是________________. 4.在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是 . 5.已知⊿ABC中,∠A = 090,角平分线BE、CF交于点O,则∠BOC = . 6.在△ABC中,∠A=40°,AB=AC ,AB的垂直平分线交AC与D,则∠DBC 的度数为. 7.Rt⊿ABC中,∠C=90o,∠B=30o,则AC与AB两边的关系

是 , 8.等腰三角形一腰上的高与另一腰的夹角为300 ,腰长为6,则其底边上的高是 。 9. 如图,在△ABC 和△DEF 中,已知AC=DF ,BC=EF , 要使△ABC ≌△DEF ,还需要的条件是( ) A.∠A=∠D B.∠ACB=∠F C.∠B=∠DEF D.∠ACB=∠D 10.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( ) A.30° B.36° C.45° D.70° 11.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( ) A.1个 B.2个 C.3个 D.4个 12. 如图, DC ⊥CA ,EA ⊥CA , CD=AB ,CB=AE .求证:△BCD ≌△EAB . 13.如图,∠A=∠D=90°,AC=BD.求证:OB=OC ; 14.如图,在△ABD 和△ACE 中,有下列四个等式: ①AB=AC ②AD=AE ③∠1=∠2 ④BD=CE .以其中..三个条件为已知,填入已知栏中,一个为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程。 已知: . 求证: . 证明: 提升练习 16.如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD. 求证:D 在∠BAC 的平分线上. D E C B A

第01讲-三角形的证明-教案

第01讲 三角形的证明 温故知新 三角形全等的条件 (1)三角形全等条件1:三条边分别相等的两个三角形全等,简写成“边边边”或“SSS”。 注意:①在运用“SSS”判定三角形全等,必须同时满足三边对应相等,只有一边或两边对应相等是不能得到全等的。②“SSS ”判定全等只适用于三角形,不能适用其他图形。 符号语言:已知△ABC 与△DEF 的三条边对应相等。 在△ABC 与△DEF 中,?? ? ??===DF AC EF BC DE AB ∴△ABC ≌△DEF (SSS ) (2)三角形全等条件2:两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”。 注意:①用“ASA”判定两个三角形全等时,一定要说明两个角及夹边对应相等 ②在书写两个三角形全等的条件“ASA”时,一般把夹边相等写在中间的位置。 符号语言:已知∠D=∠E ,AD =AE ,∠BAD =∠CAE .求证:△ABD ≌△ACE . 证明:在△ABD 和△ACE 中, ∠D=∠E AD=AE ∠BAD =∠CAE ∴△ABD ≌△ACE (ASA ) (3)三角形全等条件3: 两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“边边角”或“AAS”。 符号语言:如图:D 在AB 上,E 在AC 上,DC=EB,∠C=∠B .求证:△ACD ≌△ABE 证明:在△ACD 和△ABE 中. ∠C=∠B ∠A=∠A DC=EB ∴△ACD ≌△ABE (AAS ). 注意:“AAS”中的“S”是有限制条件的,必须是两组对应等角中一组等角的对边。 (4)三角形全等条件4:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”。 符号语言:在△ABC 与△DEF 中,

三角形内角和定理的证明教学设计

名师精编优秀教案 北师大八年级下册数学 6.5《三角形内角和定理的证明》教学设计 西乡三中蒲忠明 在学生掌握了平行线的性质及严格的证明等知识的基础教案背景:上展开的本节课教学。 北师大八年级下册数学6.5《三角形内角和定理的证明》教学课题:教材分析: (一)教材的地位和作用: 这节内容是在前面学生对“三角形内角和是180°”这个结论有了一定直观认识的基础上编排的,以往对这个结论也曾进行过简单的说理,这里则以严格的步骤演绎证明,旨在让学生从实践操作转移到理性思维上来,使学生初步掌握证明的要求和格式,促使学生养成严谨的数学思维方法,发展学生的证明素养。 三角形内角和定理从数量角度揭示三角形三内角之间的关系,是三角形的一个重要性质,既是今后几何推理的重要依据,又是计算角度的重要方法。教材从学生实践操作到证明过程的呈现训练了学生的抽象思维能力和逻辑推理能力;其中辅助线的作法学生第一次接触,它集中了条件、构造了新图形、形了成新关系,实现了未知与已知的转化,起到了解决问题的桥梁作用;课本议一议引导学生一题多思,体现运动变化的观点,读一读为学生认识定理的发现过程另劈蹊径,渗透极限的思想,是学生认识客观世

界、不断探求新知的一种重要途径。 因此本节内容不仅在知识上具有承前启后的地位,而且对今后学习和生活都将起到重要的指导作用。 教学目标:)二( 名师精编优秀教案 [知识与技能目标]:掌握三角形内角和定理的证明和简单应用,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。 [过程与方法目标]: 1、对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。 2、通过一题多证、一题多变体会思维的多向性。 3、引导学生应用运动变化的观点认识数学。 [情感与态度目标]:通过一题多证、一题多变激发学生勇于探索、合作交流的精神,体验成功的乐趣,引导学生的个性发展。感悟逻辑推理的价值。 (三)教学重难点: 本节课的重点是:探索证明三角形内角和定理的不同方法,利用三角形内角和定理进行简单的计算或证明。 本节课的难点是:应用运动变化的观点认识数学。从拼图过程中发现并正确引入辅助线是本节课的关键。 引导发现法、尝试探究法。教学方法:教学过程: 一、创设情景、提出问题:

三角形证明总复习教案

个性化教学辅导教案 学科:数学任课教师:黄老师授课时间:2014 年07 月21 日(星期一) 姓名郭海琪年级八年级性别女三角形的证明 教学目标知识点:等腰三角形、等边三角形的性质与判定、勾股定理及其逆定理、直角三角形全等的判定方法、含有30°的直角三角形的性质、线段的垂直平分线定理、角的平分线定理. 难点重点重点:一般三角形全等公理的回顾与运用,有关定理的探索和证明,其定理包括等腰三角形、等边三角形的性质与判定、勾股定理及其逆定理、直角三角形全等的判定方法、含有30°的直角三角形的性质、线段的垂直平分线定理、角的平分线定理. 课堂教学过程课前 检查作业完成情况:优□良□中□差□建议__________________________________________ 过 程 教学大纲: A、主要知识点: 一、公理 (1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。 (2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。 (3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。 (4)全等三角形的对应边相等、对应角相等。 推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。 二、等腰三角形 1、等腰三角形的性质 (1)等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。 等腰三角形的其他性质: ①等腰直角三角形的两个底角相等且等于45° ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角 (或直角)。 ③等腰三角形的三边关系:设腰长为a,底边长为b,则

三角函数式的化简和证明

简单的三角恒等变换——化简与证明 学习目标:能正确地运用三角函数的有关公式进行三角函数式的求值,化简与恒等式的证明. 学习重点:三角函数的有关公式的灵活应用和一些简单的变性技巧. 学习过程 一、知识清单 1.证明了cos()a b -= ?cos()a b += ?cos()2p a -= ,cos()2 p a += ?sin()a b += sin()a b -= ?tan()a b += ,tan()a b -= 2. cos (+)a b = ?cos 2a = = = sin()a b += ?sin 2a = tan()a b += ?tan 2a = 3.倍角的相对性 sin a = ,cos a = ,tan a = 4.要掌握这些公式的推导和联系,用时注意公式的“正用”,“逆用”和“变用”. 如:降幂扩角公式 2sin a = ;2 cos a = ; 1cos a += ;1cos a -= ; 1sin a += ;1sin a -= . 5. 划一公式:sin cos a x b x += (其中tan f = ,f 所在象限由 确定). 二、范例解析 题型一 三角函数式的化简和证明 1.三角函数式的化简要求:

通过对三角函数式的恒等变形使最后所得到的结果中: ①所含函数和角的名称或种类最少;②各项的次数尽可能地低;③出现的项数最少; ④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值. 2.三角变换的三项基本原则: (1)角的变换:划同角(角的拆分,配角和凑角,1的变换); (2)函数名称的变换:划同名(正切划弦); (3)幂指数的变换:划同次(升幂、降幂公式,同角公式). 例1化简下列各式 ; ②1sin 2cos 21sin 2cos 2a a a a +-=++ ; ③2sin 2cos 1cos 2a a a -=+ ; ④222cos 12tan()sin ()44 a p p a a -=-+ ; 例2 证明下列各式(从左到右或从右到左或左右开攻中间会师,一般化繁为简) ①22tan 2sin 1tan 2a a a =+ ②2 2 1tan 2cos 1tan 2a a a -=+ ③sin 1cos tan 21cos sin a a a a a -==+ ④[]1sin cos sin()sin()2a b a b a b =++- ⑤sin sin 2sin cos 22 q f q f q f +-+=. 三、课下练习: 课本142P 2 ; 143P A 组 1, 2, 3, 4;B 组 1; 146P 8;147P 5.

第一章-三角形的证明教案

第一讲等腰与等边三角形 【优秀学生必知的数学那点事】 等腰三角形 1、定义:有两条边相等的三角形称为等腰三角形。 2、等腰三角形是三角形家族中最为匀称、俏丽的成员,等腰三角形的基本性质有: ①等腰三角形的底角相等且必为锐角。即为“等边对等角”。 ②等腰三角形底边上的中线、高线与顶角的平分线重合。即有“三线合一”,且重心,外心,内心,垂心共线。 ③等腰三角形是轴对称图形,对称轴是底边上的高所在的直线,这条直线把等腰三角形分成两部分,以这条直线为轴,把其中一部分翻转,能使两部分重合,两个底角也重合在一起。 等边三角形 1、等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°. 2、等边三角形每条边上的中线、高线和所对的角平分互相重合。(三线合一) 3、等边三角形是轴对称图形,它有三条对称轴,分别是每条边上的中线、高线或角的平分线所在的直线。 4、等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。 5、等边三角形内任意一点到三边的距离之和为定值。(等于其高) 6、等边三角形拥有等腰三角形的一切性质。(等边三角形是特殊的等腰三角形) 【精选精讲】 例题1.如图所示,△ABC中,AB=AC,点D、E、F分别在三边上,且CE=BD,CD=BF,若∠A=40°,求∠EDF。

例题2、如图,△ABC 中,∠B=2∠C ,∠BAC 的平分线AD 交BC 于D ,求证:AB+BD=AC 例题3、如图,在△ABC 中,AB=3AC ,∠A 的平分线交BC 于点D ,过B 作BE ⊥AD , 垂足为E ,求证:AD=DE 。 【基础达标】 1、等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A 、30° B 、30°或150° C 、120°或150° D 、30°或120°或150° 2、等腰三角形的周长为a cm,一腰的中线将周长分成5:3,则三角形的底边长为( ) A 、6a B 、a 53 C 、a a 536或 D 、a 5 4 3、如图3,△ABC 中,AB=AC ,D 、E 、F 分别在BC 、AC 、AB 上,若BD=CE ,CD=BF ,则∠EDF 等于( ) A 、90°-2 1∠A B 、90°-∠A C 、180°-∠A D 、180°-2∠A

三角函数的求值、化简与证明(教案)

三角函数的求值、化简与证明 教学目标 1、 掌握两角和与差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式,能正 确运用三角公式进行三角函数的化简证明求值; 2、 培养学生分析问题解决问题的能力,培养热爱数学。 教学重点 掌握两角和与差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式。 教学难点 能正确运用三角公式进行三角函数的化简证明求值 教学过程 一、知识归纳 1、两角和与差公式: ()sin sin cos cos sin αβαβαβ±=± ()cos cos cos sin sin αβαβαβ±= , ()t a n t a n t a n 1t a n t a n αβαβαβ±±= 2、二倍角公式:sin 22sin cos ααα=, 22t a n t a n 21t a n αα α=- 22cos 2cos sin ααα=-22cos 1α=-212sin α=- 公式变形:1sin cos sin 22 ααα= 21cos 2sin 2αα-=,21cos 2cos 2αα+= 3、三角函数式化简的一般要求: ①函数名称尽可能少, ②项数尽可能少,③次数尽可能低,尽可能求出值 ④尽量使分母不含三角函数,⑤尽量使被开方数不含三角函数 4、求值问题的基本类型及方法: (1)“给角求值”一般所给的角都是非特殊角,解题时应注意观察非特殊角与特殊角之间的 关系。 (2)“给值求值”即给出某些角的的三角函数式的值,求另一些角的三角函数值,解题关键 在于变角,使其角相同。 (3)“给值求角”关键是变角,把所求的角用含已知角的式子表示。 5、证明三角恒等式的思路和方法: ①思路:利用三角公式进行化名,化角,使等式两端化“异”为“同”。 ②证明三角不等式的方法: 比较法、配方法、反证法、分析法,利用函数单调性,利用正余弦函数的有界性,利用 单位圆三角函数线及判别法等。 二、典例分析: 题型一:三角函数式的化简 例1:化简 : 22221sin sin cos cos cos 2cos 22 αβαβαβ?+?-? 分析:化简时使角尽量少,幂次尽量低,不含切割函数,时时要注意角之间的内在联系。

八年级数学下册三角形证明知识点教学内容

第一节. 等腰三角形 1. 性质:等腰三角形的两个底角相等(等边对等角). 2. 判定:有两个角相等的三角形是等腰三角形(等角对等边). 3. 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高线互相重合(即“三线合一”). 4. 等边三角形的性质及判定定理 性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴. 判定定理:(1)有一个角是60°的等腰三角形是等边三角形; (2)三个角都相等的三角形是等边三角形. 第二节.直角三角形 1. 勾股定理及其逆定理 定理:直角三角形的两条直角边的平方和等于斜边的平方. 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 2. 含30°的直角三角形的边的性质 定理:在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半. 3.直角三角形斜边上的中线等于斜边的一半。 要点诠释:勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”. 4.斜边和一条直角边分别相等的两个直角三角形全等。 第三节. 线段的垂直平分线 1. 线段垂直平分线的性质及判定 性质:线段垂直平分线上的点到这条线段两个端点的距离相等. 判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 2.三角形三边的垂直平分线的性质 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.该点就是三角形的外心。以此外心为圆心,可以将三角形的三个顶点组成一个圆。 3.如何用尺规作图法作线段的垂直平分线: 分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN就是线段AB 的垂直平分线。 第四节. 角平分线 1. 角平分线的性质及判定定理 性质:角平分线上的点到这个角的两边的距离相等; 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上. 2. 三角形三条角平分线的性质定理 性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.这个点叫内心 通用篇 1.真命题与假命题 真命题:真命题就是正确的命题,即如果命题的条件成立,那么结论一定成立。 假命题:条件和结果相矛盾的命题是假命题, 命题与逆命题 命题包括已知和结论两部分;逆命题是将原命题的已知和结论交换; 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题。其中一个命题称为另一个命题的逆命题。一个命题是真命题,它的逆命题不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理。这两个定理称为互逆定理。 2、证明命题的一般步骤: (1)理解题意:分清命题的条件(已知),结论(求证); (2)根据题意,画出图形; (3)结合图形,用数学语言写出“已知”和“求证”; (4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因“ (5)依据思路,运用数学语言条理清晰地写出证明过程; (6)检查表达过程是否正确,完整. 3、用反证法证明几何命题的步骤: (1)假设命题的结论不成立. (2)由假设作为条件,根据已知条件及学过的定义、定理、公理进行逐步的推导直至与假设或与某个己知条件或与学过的某个定义、定理、公理出现矛盾. (3)从而判断假设错误,原命题成立

三角函数化简求值专题复习

三角函数化简求值专题复习 高考要求 1、理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。 2、 掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式) 3、 能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。 热点分析 1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强. 2.对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题 3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化.解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解. 【例1】求值: ? +?? ??+?+?80cot 40csc 10sin 20tan 10cos 20sin 2. 解:原式的分子? ? ?+??+?=20cos 10sin 20sin 20cos 10cos 20sin 2 ??+?=20cos 10cos 20sin 2? ? +?= 20cos 10cos 40sin 320cos 20cos 60sin 220cos 80sin 40sin =? ? ?=??+?= , 原式的分母= ? ? +?= ??+?80sin 80cos 40cos 280sin 80cos 40sin 1 ()??+?+?=80sin 80cos 40cos 40cos ?? ?+?= 80sin 20cos 60cos 240cos 310cos 10cos 30cos 280sin 20cos 40cos =? ? ?=??+?= , 所以,原式=1. 【变式】1、求值 () ? +??+?+?10cos 110tan 60tan 110cos 40cos 2 解:()()2 5cos 25cos 45cos 225cos 250cos 40cos 25cos 21060cos 240cos 25cos 210sin 23 10cos 21240cos 25cos 210sin 310cos 40cos 2=? ??=??+?=??-?+?=? ?? ? ? ???+?+?=??+?+?=·原式 【变式】2、求0 020 210 sin 21 )140cos 1 140sin 3( ?- 。 分析:原式= 202020210sin 21140cos 140sin 140sin 140cos 3? -

三角函数的化简与证明

三角函数的化简与证明 一、知识点 1、化简 (1)化简目标:项数习量少,次数尽量低,尽量不含分母和根号 (2)化简三种基本类型: 1) 根式形式的三角函数式化简 2) 多项式形式的三角函数式化简 3) 分式形式的三角函数式化简 (3)化简基本方法:用公式;异角化同角;异名化同名;化切割为弦;特殊值与特殊角的三角函数值互化。 2、证明及其基本方法 (1)化繁为简法 (2)左右归一法 (3)变更命题法 (4)条件等式的证明关键在于分析已知条件与求证结论之间的区别与联系。 3、无论是化简还是证明都要注意: (1)角度的特点 (2)函数名的特点 (3)化切为弦是常用手段 (4)升降幂公式的灵活应用 二、范例解析 例1:(1)已知α为第四象限角,化简:α αααααcos 1cos 1sin sin 1sin 1cos +-++- (2)已知 360270<<α,化简 α2cos 2 1212121++ 解:(1)因为α为第四象限角 所以原式=α ααααα22 22cos 1)cos 1(sin sin 1)sin 1(cos --+-- ()ααααα ααααα sin cos cos 1sin 1sin cos 1sin cos sin 1cos -=---=--+-= (2) 360270<<α,02cos ,0cos <>∴α α

所以原式=2cos 2cos 2cos 1cos 212122cos 1212122ααααα-==+=+=++ 思路点拨:根式形式的三角函数式化简常采用有理化如(1)或升幂公式如(2) 例2、P(55 例1) 试求函数Y=sinx+cosx+2sinx cosx +2 的最大值,最小值. 若[0,]2 x π∈呢? 解: 练习:a,b 为何值时,函数()x b a x b a y 22cos 2 sin ++-=的值为2?(a=3,b=1) 思路点拨:注意角度α22-x 与α-x 关系,先化简整理。 例3 _sin(2)sin :2cos()sin sin αββαβαα +-+=求证 练习、求证:()x x x x 4cos 14cos 32cot tan 22-+=+ 思路点拨:要据角度x 与4x 的特点和函数名的特点,可采用化切为弦,并用倍角公式证明。 证:左边= ()x x x x x x x x x x x x x x x 2sin 2sin 242sin 41cos sin 2cos sin cos sin cos sin sin cos cos sin 222222 2222442222-=-+=+=+ 右边=()()() x x x x x x 2sin 22sin 242sin 22sin 2422sin 2112sin 2132222222-=-=---+ 所以左边=右边,即等式成立。 本题采用了左、右归法,从左到右或从右到左见书本。 例4、P 是以F 1, F 2 为焦点的椭圆上一点,且1221,2PF F PF F αα∠=∠= 求证:椭圆的离心率e=2cosa-1 预备:例5 在ΔABC 中,设tanA+tanC=2tanB,求证cos(B+C-A)= C C 2cos 452cos 54++. 证明:C C B A tan )tan()tan(-=-=+π C B A B A tan tan tan 1tan tan -=-+∴C B A C B A tan tan tan tan tan tan ??=++? 由条件得B C B A tan 3tan tan tan =++ ∴C B A B tan tan tan tan 3??=

相关文档