文档库 最新最全的文档下载
当前位置:文档库 › 制动能量回馈系统协调控制--张俊智

制动能量回馈系统协调控制--张俊智

制动能量回馈系统协调控制--张俊智
制动能量回馈系统协调控制--张俊智

制动能量回馈系统协调控制

张俊智,张鹏君,陆欣,陈鑫

清华大学汽车安全与节能国家重点实验室,北京,100084

【摘要】本文为混合动力电动汽车设计了分层控制的制动能量回馈系统,该分层结构主要包括驾驶员意图识别、能量管理和元件协调控制三个部分。分层控制结构的采用,将复杂的制动能量回馈系统简化为若干部分,降低了控制难度,为研究提供了便利。所设计的系统已在一款串联混合动力客车上实现,并根据中国城市公交循环工况进行了道路测试。

【关键词】混合动力电动汽车,制动能量回馈系统,分层控制结构,协调控制

Coordinated Control for Regenerative

Braking System

Zhang Junzhi, Zhang Pengjun, Luxin, Chen Xin

State Key Lab. of Automotive Energy and Safety, Tsinghua University, Beijing, China, 100084

Abstract: This paper presents a design of regenerative braking system(RBS) for hybrid electric vehicles using hierarchical control structure and method. The hierarchical model is mainly composed of three modules for driver intent identification, energy management and coordinated control based on components control. As a consequence, RBS, a complicated hybrid dynamic system, is successfully decomposed by several simple modules. The control system and strategies are carried out on a typical serial HEV bus, and tested on road based china typical urban cycle..

Key words: hybrid electric vehicles, regenerative braking system, hierarchical control structure, coordinated control

1 介绍

车辆的动能通过制动能量回馈系统可转化为其它形式能量储存起来,并进一步用于车辆驱动。研究显示,在城市驾驶循环中,发动机发出能量的大约1/3至1/2被制动过程所消耗[1,2]。因此,回馈制动是车辆提高燃油经济性并降低排放的有效方法,有助于缓解能源危机和环境污染。

然而,回馈制动受到动力系统结构、电池电机特性等的限制,控制较为复杂。很多学者对此问题进行了研究和讨论。针对不同类型车辆,已经有多种控制策略与硬件结构被设计出来[3,4],为进一步的研究提供了基础,同时也增加了深入研究此问题的难度。

由汽车理论可知,制动能量回馈系统的控制问题可归结为三个目标:

(1)辨识驾驶员的制动强度需求;

(2)在车辆部件承受范围内以提高燃油经济性为目标分配制动功率,满足驾驶员制动需求;

(3)根据制动功率分配命令协调控制制动系统元件,实现良好的驾驶感觉并施加合适的制动力。

本文采用分层控制结构研究制动能量回馈系统,以清晰的层次满足上述三个目标。所设计的控制系统,包括驾驶员意图识别、能量管理和制动元件控制等功能,制动能量回馈系统被分解为若干功能单一的子模块。其中,在驾驶员意图识别、基线式能量管理策略方面相对以往有了新的发展。制动力切换过程控制算法及其他算法与策略已在一款串联混合动力电动客车上被调试、分析、优化和验证。

控制系统与控制策略在该串联混合动力电动客车上的测试,基于中国城市公交循环工况。测试结果表明,分层协调是回馈制动控制的有效方法,可有效回收能量、实现较好制动感觉并保证制动安全。所提出的结构、方法与策略,经过细微修改就可适用于其他结构的混合动力电动汽车。

2 动力系统结构

制动能量回馈系统研究的目标车型,其动力系统结构如图1所示。动力系统主要包括燃料转化器、电池、电机和整车控制器等。

图1 串联式混合动力电动汽车动力系统结构

制动时,原制动系统与动力系统共同组成制动能量回馈系统。这时,电机处于发电状态,将车辆动能转化为电能储存于电池中或直接被车载用电器,如空调等消耗。合理的能量分配策略应在满足制动力需求的同时保护电池、电机等电力和机械部件。

而最根本的意图,还是在保证上述条件的情况下回收尽可能多的制动能量。因此,能量的分配与流动不仅需要在制动过程中调整,还要在整个驾驶循环中调整。例如,燃料转化器,通常为燃料电池或内燃机,在制动时应控制在一定输出功率之内,并使电池保持在较高充电效率的SOC下,以增强能量回馈效果。

3 分层控制结构

为清晰地研究制动能量回馈系统结构,系统选用了分层控制结构。系统各部分的功能与结构各不相同,每个部分的复杂程度较低,便于调试与改进,并有利于保证程序的可靠性与安全性。如上所述,系统的控制策略包括驾驶员意图识别、能量管理和制动元件控制三个部分。每一部分有各自的控制目标并根据驾驶员、车辆等的反馈进行控制。输入、输出信号都经过信号处理系统的处理。图2展示了制动能量回馈系统的控制系统结构。

图2 制动能量回馈系统分层结构

3.1 驾驶员意图识别

这一部分通过驾驶模式、加速踏板位置及变化速度、制动踏板位置及变化速度识别驾驶员的驱动或制动需求。对制动能量回馈系统而言,驾驶员意图识别的逻辑如图3所示。为了保证安全,在逻辑之中加入了判断程序,例如在档位为空档或加速、制动踏板同时踩下时,不进行回馈制动而只进行摩擦制动。

图3 驾驶员意图识别

在这一部分中,根据加速踏板与制动踏板的位置,制动过程被分为两类,正常制动与紧急制动,ABS的状态也被用于判断制动过程的类型。当进行紧急制动时,电机的回馈制动被禁止,避免摩擦制动系统及其防抱死制动功能受到干扰。

3.2 能量管理策略

在确定驾驶员意图之后,应采用合理的能量管理策略,在保证不损坏车辆元件的基础上实现最佳的燃油消耗。在制动时,电机工作在发电状态,将车辆动能转化为电能储存于电池或用于车载附件。能量转化器,如内燃机、燃料电池的功率应该受到限制,且电池SOC应被维持在充电效率较高的范围内。

在本文所述的设计中,控制系统考虑车速、电池SOC、总线电压与电流、电机状态等对回馈制动与摩擦制动进行协调控制。其目的是在不损失制动性能的前提下尽可能回收制动能量。在后面的实验中,电池SOC分别调整到不同水平(30%和60%)进行对比,以寻找更好的燃油利用效率。燃料转化器在制动时也受到功率的限制,使电池能够更多地吸收制动能量。一种基线式能量管理策略被建立起来,如图4。

β APU power Maximum energy absorbed by battery and electric equipments Maximum RBS power according motor

Vehicle speed O A P U a n d m o t o r b r a k i n g P o w e r time

图4 制动过程中的能量分配 图4中的阴影部分是制动过程中辅助功率单元(APU ,由燃料转化器和发电机组成)的目标功率。不同的SOC 水平会导致制动过程中不同的APU 目标功率。若APU 目池最大充电功率的限制。

能量管理策略中,总线电流、电压等因素也被考虑,以实现燃油经济性和元件安全。

3.3 元件控制策略

在控制策略中,电机、调节阀(用于调节摩擦制动)、辅助功率单元和防抱死制动系统之间都应进行协调。

基本的逻辑是将总的制动力根据能量管理的目标进行分配。其关键技术是利用响应较快的电机补偿摩擦制动力。前、后轮制动力之间的分配也应合理,避免后轮先于前轮抱死的情况。当车轮有抱死趋势时,防抱死制动系统可有效控制摩擦制动力,防止危险发生。当电池SOC 低于最佳充电效率区时,辅助功率单元也可通过为电池充电升高SOC 。

在制动力分配方面有三种策略,本文采用基于策略的规则进行描述。图5展示了这种策略在一款后轮电机驱动车辆上的实现。两种主要的回馈制动策略,串联策略和并联策略[6,7],在本文中被详细设计以研究前述的控制系统。

图5 制动力分配

在串联策略中,制动力分配曲线跟随图5中的粗实线。在OA段,减速度很小,电机回馈制动力足以满足制动需求。这时仅有后轮施加了制动力。在AB段,电机回馈制动力无法满足制动需求,需要前轮恢复摩擦制动力。在B点,前、后轮的制动力分配关系恢复到原摩擦制动系统的状态,故B点以后前后轮摩擦制动力随制动强度需求的增加而同时增加。另外一种串联策略,则完全按照理想的前后制动力分配曲线调节前后轮摩擦制动力和后轮回馈制动力。

并联回馈策略,则如图5中的O-P曲线。回馈制动力直接施加在原摩擦制动力之上,不对摩擦制动力进行调节。回馈制动强度随着摩擦制动强度一起增长。

4 道路实验

采用上述方法,为目标车型设计了控制策略。车辆在不同控制策略下根据中国城市公交循环工况进行了测试。

中国城市公交循环工况用于测试实验车的燃料消耗,其目标车速如图6所示。其主要参数见表1。图6同时还展示了一组测试结果,目标车速与实际车速的差在3%以内。

表1中国城市公交循环工况参数

持续时间(s) 1314

距离(km) 5.8

平均车速(km/h) 15.9

最高车速(km/h) 60

最大加速度(m/s2) 0.914

最大减速度(m/s2) -1.543

停止时间(s) 381

图6 中国城市公交循环工况及测试结果

表2中的结果表明,串联回馈制动策略在这类车上有更好的表现。在制动阶段,串联策略相比并联策略使用了更多的回馈制动。相比较而言,较低的电池SOC可使回馈效率提高,因为较低的SOC将使电池可充电的容积更大。

表2中国城市公交循环工况测试结果

SOC 电机回馈能量/KJ 能量回馈效率

串联回馈制动策略30% 6354 65.4%

串联回馈制动策略60% 5948 61.3%

并联回馈制动策略30% 2100 22.6%

串联回馈制动策略的驾驶感觉也较好。如图7所示,车辆减速度根据制动踏板位置而变化。制动踏板力随着踏板位置变化而没有明显冲击,减速过程中车速(驱动电机转速)平稳下降。

图7 串联回馈制动策略下的测试结果

5 结论

本文将制动能量回馈系统按照分层控制结构分解成若干部分,简化了研究的难度。提出的回馈制动策略与方法可在保证安全的前提下尽可能地回收制动能量,并有较好的制动感觉。下一步的研究之中,可以考虑全驾驶循环下的驱动与制动一体化策略,并研究制动能量回馈系统与防抱死制动系统、电子稳定程序的结合。

参考文献

1 Yinmin Gao, Liping Chen, Mehrdad Ehsani. Investigation of the Effectiveness of Regenerative Braking for EV and HEV. SAE International SP-1466. 1999-01-2910. 1999.

2 Mehrdad Ehsani, Yimin Gao, Karen L Butler. Application of Electrically Peaking Hybrid (ELPH) Propulsion System To A Full Size Passenger Car With Simulated Design Verification. IEEE Transaction On Vehicular Technology. Vol.48, No.6, Nov. 1999.

3 Jie Yao; Zaimin Zhong; Sun Zechang. A Fuzzy Logic Based Regenerative Braking Regulation For a Fuel Cell BusVehicular Electronics and Safety, 2006. ICVES 2006. IEEE International Conference on13-15 Dec. 2006 Page(s):22 - 25

4 Yee-Pien Yang; Tsung-Hsien Hu. A New Energy Management System of Directly-Driven Electric Vehicle with Electronic Gearshift and Regenerative Braking. American Control Conference, 2007. ACC '07 9-13 July 2007 Page(s):4419 - 4424

5 Rongjun Zhang, Yaobin Chen. Control of Hybrid Dynamical Systems for Electric Vehicles. Proceedings of the American Control Conference Anchorage, VA June 25-27, 2001. 2884~2889

6 Yimin Gao and Mehrdad Ehsani. Electronic Braking System of EV And HEV—Integration of Regenerative Braking, Automatic Braking Force Control and ABS. SAE paper 2001-01-2478.

7 John https://www.wendangku.net/doc/6917273363.html,ler. Propulsion systems for hybrid vehicles. IEEE power and energy series 45, London 2004

制动能量回馈系统协调控制

制动能量回馈系统协调控制 张俊智,张鹏君,陆欣,陈鑫 清华大学汽车安全与节能国家重点实验室,北京,100084 【摘要】本文为混合动力电动汽车设计了分层控制的制动能量回馈系统,该分层结构主要包括驾驶员意图识别、能量管理和元件协调控制三个部分。分层控制结构的采用,将复杂的制动能量回馈系统简化为若干部分,降低了控制难度,为研究提供了便利。所设计的系统已在一款串联混合动力客车上实现,并根据中国城市公交循环工况进行了道路测试。 【关键词】混合动力电动汽车,制动能量回馈系统,分层控制结构,协调控制 Coordinated Control for Regenerative Braking System Zhang Junzhi, Zhang Pengjun, Luxin, Chen Xin State Key Lab. of Automotive Energy and Safety, Tsinghua University, Beijing, China, 100084 Abstract: This paper presents a design of regenerative braking system(RBS) for hybrid electric vehicles using hierarchical control structure and method. The hierarchical model is mainly composed of three modules for driver intent identification, energy management and coordinated control based on components control. As a consequence, RBS, a complicated hybrid dynamic system, is successfully decomposed by several simple modules. The control system and strategies are carried out on a typical serial HEV bus, and tested on road based china typical urban cycle.. Key words: hybrid electric vehicles, regenerative braking system, hierarchical control structure, coordinated control 1 介绍 车辆的动能通过制动能量回馈系统可转化为其它形式能量储存起来,并进一步用于车辆驱动。研究显示,在城市驾驶循环中,发动机发出能量的大约1/3至1/2被制动过程所消耗[1,2]。因此,回馈制动是车辆提高燃油经济性并降低排放的有效方法,有助于缓解能源危机和环境污染。

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

城轨车辆制动控制系统

第六章制动控制系统 制动控制系统是空气制动系统的核心,它接受司机或自动驾驶系统(ATO)的指令,并采集车上各种与制动有关的信号,将指令与各种信号进行计算,得出列车所需的制动力,再向动力制动系统和空气制动系统发出制动信号。动力制动系统进行制动时将实际制动力的等值信号反馈给制动控制系统,制动控制系统通过运算协调动力制动和空气制动的制动量。空气制动系统将制动系统发来的制动力信号经流量放大后使执行部件产生相应的制动力。这就是制动控制系统的主要功能。 6.1 制动控制系统的组成 如图6.1制动控制系统主要由电子制动控制单元(EBCU)、空气制动单元(BCU)和电气指令单元等组成。 图6.1制动控制系统的组成 6.1.1 电子制动控制单元 在电子技术和微机技术的迅猛发展下,列车的制动控制由微机综合列车运行中的所有参数,经过判断和运算,给制动系统发出精确的指令。以微机为中心的电子控制装置被称为电子制动控制单元(EBCU)、微机制动控制单元(MBCU)

或制动控制电子装置(BCE)等。 它有一下主要功能: (1)接受司机控制器或ATO的指令,与牵引控制系统协调列车的制动和缓解。 (2)将接收到的动力制动实际值经 EP转换,将电信号转换成气动信号发送给空气制动控制单元。 (3)控制供气系统中空气压缩机组的工作周期,监控主风缸输出压力等参数。 (4)在列车制动过程中始终收集列车所有轮对速度传感器发来的速度参数,对轮对在制动过程中出现的滑行进行监视。 (5)对列车制动时的各种参数和故障进行监视与记录。 6.1.2空气制动控制单元 空气制动控制单元是制动系统中电气制动和空气制动的联系点,也是电子、电子信号与气动信号的转换点。在过去论述中称为中继阀或EP。 (一)EP 由电磁线圈、铁芯、顶杆和活塞等组成。当它的电磁线圈没有励磁时,铁芯和连杆落在阀底,通路阻断或通路与大气连通。当线圈励磁,铁芯被吸引上移,推动顶杆和活塞上移,通路与储风缸压力空气连通。 (二)中继阀 它上部是给排阀,下部是腔室。腔室中是活塞和膜板,活塞和膜板带动有空心通路的顶杆上下移动。 中继阀也是一个将电信号转换成压力空气的电磁阀,只是电信号的变化不是励磁电流的变化,而是通过电磁阀励磁线圈和消磁状态的不同组合,将多个电信号输入转换成对应空气压力输出。 (三)空重车调整阀 空重车调整阀的作用是根据车辆载重的变化,即根据乘客的多少,输出一个空气压力信号,并通过中继阀使单元制动机风缸保持一个恒定的制动力。 空重车调整阀的输入是车辆二系弹簧的空气压力信号。考虑到车辆载重的不平衡,一般采取前后转向架对角的两个空气弹簧压力为输入信号,这样就能比较准确地使空重车调整阀的输出压力信号与乘客负载成一定比例关系。

制动能量回收技术现状及发展趋势

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:汽车技术现状及发展趋势教师:贺岩松姓名:赵金龙学号:20110702218 专业:车辆工程类别:学术 上课时间:2011年11月至2011年11月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

再生制动技术现状及发展趋势 摘要 随着新能源危机的加剧,混合动力汽车和纯电动汽车已经成为新一代汽车的发展方向,而再生制动技术作为混合动力汽车和电动汽车的一向重要节能技术,已经得到越来越大的重视。再生制动技术使汽车在制动过程中将一部分动能转化为电能并储存在储能装置中,实现了制动减速时的能量再利用。本文对再生制动的工作原理、技术发展现状进行了详细的阐述,并提出日后的发展趋势。 关键词:制动能量;制动能量回收;发展现状 Regenerative Braking Technology Status and Development Trends ABSTRACT With the new energy crisis intensifies, hybrid vehicles and pure electric vehicles has become the new direction of next generation car, and regenerative brakingtechnology as an important energy-saving technology for hybrid vehicles and electric cars has been paid more and more attention.During braking, part of the kinetic energywill be turn into electrical energy by regenerative braking technology so that we can achieve the energy re-use when the car speed is brakingdeceleration .In this paper, regenerative braking technology works and research status has been elaborated in detail and proposed the future development trend. Key words:Braking energy; Energy regeneration and use; Research status

微电网能量管理系统概述

微电网能量管理系统概述 一、微电网能量组成 微电网是近年来出现的一种新型能源网络化供应与管理技术的简称,它能够利地将可再生能源和清洁能源系统的接入,实现需求侧管理以及现有能源的最大化利用。微电网将发电子系统、储能系统及负荷相结合,通过相关控制装置间的配合,可以同时向用户提供电能和热能,并能够适时有效地支撑大电网,起到消峰填谷的作用。所以微电网概念一经提出,就引起世界能源专家和电力工业界的广泛重视,世界很多国家都加强了相关基础科学研究的力度,对微电网的认识随着研究的进行在不断地具体化、深入化和系统化。而微电网对于解决我国现有大电网运行中凸显的问题,以及能源危机等相关问题,无疑是提供了一个好的解决途径。 1.1风能 风能是因空气流做功而提供给人类的一种可利用的能量。空气流具有的动能称风能。空气流速越高,动能越大。人们可以用风车把风的动能转化为旋转的动作去推动发电机,以产生电力,方法是透过传动轴,将转子(由以空气动力推动的扇叶组成)的旋转动力传送至发电机。到2008年为止,全世界以风力产生的电力约有94.1 百万千瓦,供应的电力已超过全世界用量的1%。风能虽然对大多数国家而言还不是主要的能源,但在1999年到2005年之间已经成长了四倍以上。 风能优点: 1.风能为洁净的能量来源。 2.风力发电是可再生能源,很环保。 3.风能设施多为不立体化设施,可保护陆地和生态。 4.风能设施日趋进步,大量生产降低成本,在适当地点,风力发电成本已 低于发电机。

1.风力发电需要大量土地兴建风力发电场,才可以生产比较多的能源。 2.进行风力发电时,风力发电机会发出庞大的噪音,所以要找一些空旷的 地方来兴建。 3.在一些地区、风力发电的经济性不足:许多地区的风力有间歇性,更糟 糕的情况是如台湾等地在电力需求较高的夏季及白日、是风力较少的时 间;必须等待压缩空气等储能技术发展。 1.2光伏 光伏是太阳能光伏发电系统的简称。是一种利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。 光伏能量的来源由光伏板组件,它是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。 光伏优点: 1.普遍:太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或 岛屿,都处处皆有,可直接开发和利用,且无须开采和运输。 2.无害:开发利用太阳能不会污染环境,它是最清洁能源之一,在环境污 染越来越严重的今天,这一点是极其宝贵的。 3.巨大:每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,其总 量属现今世界上可以开发的最大能源。 4.长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年, 而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是 用之不竭的。

电动汽车能量回馈的整车控制(1)

2005005 电动汽车能量回馈的整车控制 张 毅,杨 林,朱建新,冒晓建,卓 斌 (上海交通大学汽车电子研究所,上海 200030) [摘要] 以4种典型循环工况为例对电动汽车进行能量分析,设计了基于常规汽车制动系统的整车能量回馈控制方式,研究了控制策略,完成了车辆道路试验与标定优化。试验表明,整车能量回馈控制方式与控制策略安全、可靠,且柔顺性良好;利用能量回馈技术,蓄电池能量消耗可减少10%,能有效延长电动汽车的一次充电续驶里程。 关键词:电动汽车,能量回馈,控制策略 The Control Strategy of Energy Regeneration for Electric Vehicle Zhang Yi,Yang Lin,Zhu Jianxin,Mao Xiaojian&Zhuo Bin Instit ute of A utomotive Elect ronic Technology,S hanghai Jiaotong U niversity,S hanghai200030 [Abstract] The energy consumption in four typical vehicle testing cycles(FTP,HWEFT,ECE2EUDC and J P1015)is analyzed for EV.Based on the traditional vehicle braking system,a new regenerative braking scheme and its control strategy are designed.The road testing,calibration and optimization are performed.T est results show that the control scheme and strategy is safe,https://www.wendangku.net/doc/6917273363.html,ing the regenerating scheme,the energy consumption of battery can re2 duce by10percent and the driving range of EV in one charge can increase effectively. K eyw ords:Electric vehicle,E nergy regeneration,Control strategy 原稿收到日期为2003年12月29日,修改稿收到日期为2004年3月8日。 1 前言 电动汽车采用了新型的汽车动力,如何充分提 高车辆行驶能量效率,进而延长车辆续驶里程,是电 动汽车需要解决的一个关键问题。能量回馈是解决 该问题的主要技术措施。 能量回馈包括车辆制动能量回馈与车辆滑行能 量回馈两种。此时,驱动电机按发电机运行,将车辆 行驶动能转化为电能,可以起到3个作用:辅助制 动;回收能量给动力蓄电池充电,从而延长车辆续驶 里程;在车辆有供热需求时,直接利用这部分电能供 热取暖。 能量回馈制动与电动汽车其它电气制动方式 (主要有能耗制动、反接制动[1])比较,无须改变系 统硬件结构,回馈电流可柔性控制,可使制动效果与 能量回收效果综合最佳。因此,能量回馈是最适合 电动汽车的电气制动方式,其关键是能量回馈的过 程控制。电动汽车的能量回馈控制由整车控制与电 机控制交互作用而实现,作者在电动汽车制动能量 分析的基础上,设计一种能量回馈的整车控制方式, 并进行相应控制策略的研究。 2 制动能量分析 为了进行电动汽车能量回馈控制,需首先探明 其在各种用途中的制动能量回馈潜力。作者分别以 美国F TP工况、高速公路HFET工况、欧洲城市循 环ECE2EUDC工况和日本J P10154种循环工况为 例,进行制动能量的分析。 4种循环工况的驱动与制动能量如图1所示, 可见在这4种循环工况中,制动能量都占了不小的 比例,其中J P1015工况为2517%,ECE2EUDC工况 为18%,HFET工况为6%,F TP为25%。 回馈能量还与制动方式和回馈系统各环节的效 率因子有关[2]。电动汽车的制动方式包括:电气制2005年(第27卷)第1期 汽 车 工 程 Automotive Engineering 2005(Vol.27)No.1

笼型异步电动机能量回馈制动控制

收稿日期:1997205204 笼型异步电动机能量回馈制动控制 徐国忠 诸 静 (浙江大学,杭州 310027) 涂筱烈 (安徽医科大学) 徐惠国 (合肥第二十六中学) 【摘要】本文分析了变频器实现异步电动机回馈制动的原理,提出了一种新颖的能量回馈控制方法和能量回馈电路,该方法具有能量回馈效率高、控制简单且不易发生逆变失败等优点,有效地抑制电动机制动时直流侧泵升电压。实验结果验证了该方法的正确性和有效性。 【关键词】变频调速,异步电动机,回馈制动,泵升电压抑制,能量控制 1 引 言 近年来,国内外对变频器的研究和应用取得飞速的进步,尤其是通用变频器在工业生产中得到了广泛的应用。当变频器驱动异步电动机在制动或者下放位能性负载过程中,电动机处于再生制动状态,传动系统中的机械能通过电动机转换成电能,变频器中续流二极管将这种能量回馈到变频器直流侧电容C 中,使直流侧电压升高,产生泵升电压。特别是要求快速起、制动和频繁正、反转的调速系统,短时间内有很大的能量回馈,在电容上产生很高的泵升电压,若不及时释放这部分能量,则势必会引起变频器过压保护动作或造成主回路大功率器件的过压损坏。对这种泵升能量的处理方法基本上有两种:(1)耗散到直流侧与电容器并联的“制动电阻”中,(2)通过能量回馈电路使之回馈到交流电网中。前一种方式比较简单,但经过电阻耗散能量,不仅浪费了能源,有时也会产生某些副作用[2],后一种方式虽然结构较为复杂,但提高了能源的利用率,尤其是对频繁起制动或长期带位能性负载下放的系统,会产生显著的节电效果。本文提出了一种新颖的能量回馈 控制方案并设计了相应的电路,实验结果验证了该方法的正确性和有效性。 2 能量回馈控制策略和能量回 馈电路设计 211 能量回馈控制策略 带能量回馈电路的变频器主电路结构如 图1所示。能量回馈控制的工作原理是利用二只GTR T 7、T 8 和六只晶闸管等组成能量回 图1 带能量回馈电路变频器主电路结构图 馈电路,制动时,控制GTR T 1~T 6按一定下降频率给电机供电,使之工作在再生制动状态,驱动T 7、T 8和晶闸管逆变桥,如果满足逆变条件,则把直流侧泵升能量直接回馈给电网,确保在整个制动过程中,直流侧电压在安全范围内。 对于普通晶闸管逆变桥,如果依自然换

能量控制系统总论

人体能量控制总论 ——逻辑能量学节选 逻辑能量学的诞生,打破了中西医的争论,堪称医学界的相对论,较二者均有所提高,前所未有的解决了很多医学现象。本文是一个核心期刊的稿件,被所谓的专家和编辑社退回了,特在人民网首发,望能够认识本文价值的医疗机构和政府部门与我联系,盗版理论,违法必究! 马哲说矛盾是事物发展变化的根本动力,太高深,我搞不懂。在自然科学里“能量才是物质运动的根本动力”更为合适。阴阳学说与其十分吻合。“阴阳者,万物之纲纪,变化之父母,生杀之本始”,道出了事物变化的道理。阴阳理论的“阳”是富能量性的、活跃的、炙热的;“阴”是反之,并具有“物质化”倾向(积阴成形)。而相同观点的是古希腊哲学家赫拉克里特认为,世界是一团永恒的“活火”。而中医认为人是“热水”结构。 能量是物质运动的动力,与运动如影随形(能量的运动的魅影,包括物理变化和化学变化)。也可以说,任何的运动现象的产生,都有能量的推动,能量是运动的“幕后老板”,对于动植物来说,就是热能(温度)的推动。二者具有矛盾关系,身体体现为“能量强则身体瘦,身体胖则能量弱”,也就是中医所说“热盛伤阴”。 医学要发展需要突破“形而上”的思维。解剖能够看到骨骼肌肉,看不见肌肉里“热气”;显微镜能够看到细菌、元素、成分,看不见其中能量属性;而产生能量是人体最重要的意义,远大于物质形态

本身。体温的高低、血液脉搏的运动水平、水分含量、散热排汗、耐冷抗寒能力、生物化学等等无不包含能量信息,利用现象反推之,就能知道能量的变化、分布规律,这是一门科学,这点中医是走在前列的,脉诊、中药学、伤寒论和温病学都能为我们提供科学思路。 把神经传导仅仅看成一种信号是个错误的,是本末倒置,它本身就是一个能量调控系统,包括采用能量释放和能量传导方式。人体内能量有两种形式,一种是热能,一种是电能,电能存在于神经,卫气就是神经能。这毋容置疑。而黄帝内经邪客篇是最早阐述神经能的篇章,“卫气者,出其气之悍疾,而先行四末分肉之间而休者也,昼行于阳,夜行于阴”。这个描述应该是正确的,这只是一个初步的认识。卫气和营气对应着神经能和血热能的两个能量层次。神经能以一种不显见的方式迅速平衡着能量体系。 人体处于无时不刻都在运动之中,血液循环这是显性的。神经则是隐性的。休息时,神经系统积蓄能量,运动时神经系统释放能量。如果说循环系统是物质的流转(营气是附带血液热量的传导),沟通了物质新陈代谢的渠道;那么神经系统则是能量的流转,它沟通了能量生产和消耗的渠道。中医讲“卫气行”、“营卫生会”、“行经隧”都是讲的这个流转。十二正经则是能量生产和消耗的协调机制。 1)能量系统体系构成 西医的生理八大系统注定要遭到淘汰,它是常人思维的结论。如果按照物质属类控制按照组织衍生、功能关联将人体分为了“大五脏

能量管理系统

能量管理系统 能量管理系统(EMS)包括: 数据采集和监控系统(SCADA系统),自动发电控制(AGC)和经济调度控制(EDC),电力系统状态估计(State Estimator),安全分析(Security Analysis),调度员模拟培训系统(DTS)。 科技名词定义 中文名称:能量管理系统 英文名称:energy management system,EMS;energy management system 定义1:一种计算机系统,包括提供基本支持服务的软件平台,以及提供使发电和输电设备有效运行所需功能的一套应用,以便用最小成本保证适当的供电安全性。 所属学科:电力(一级学科);调度与通信、电力市场(二级学科) 定义2:用能量状态近似法作为飞行轨迹优化算法的性能管理系统。 所属学科:航空科技(一级学科);飞行控制、导航、显示、控制和记录系统(二级学科) 能量管理系统(EMS)包括: 数据采集和监控系统(SCADA系统),自动发电控制(AGC)和经济调度控制(EDC),电力系统状态估计(State Estimator),安全分析(Security Analysis),调度员模拟培训系统(DTS)。 配电网管理系统(DMS)包括: 配电自动化系统(DAS),地理信息系统(GIS),配电网重构,管理信息系统(MIS),需求侧管理(DSM)。 1、SCADA系统 SCADA(Supervisory Control And Data Acquisition)系统,即数据采集与监视控制系统。SCADA系统是以计算机为基础的DCS与电力自动化监控系统;它应用领域很广,可以应用于电力、冶金、石油、化工等领域的数据采集与监视控制以及过程控制等诸多领域。

制动系统设计开题报告

毕业设计(论文)开题报告

1 选题的背景和意义 1.1 选题的背景 在全球面临着能源和环境双重危机的严峻挑战下世界各国汽车企业都在寻求新的解决方案一一如开发新能源技术,发展新能源汽车等等然而. 新能源汽车在研发过程中已出现!群雄争霸的局面在能源领域. 有压缩天然气,液化石油气,煤炼乙醇,植物乙醇,生物乙醇,,生物柴油,甲醇,二甲醚,合成油等等新能源动力汽车在转换能源方面有燃料电池汽车氢燃料汽车纯电动汽车轮毅电机车等等。选择哪种新能源技术作为未来汽车产业发展的主要方向是摆在中国汽车行业面前的重要课题。据有关专家分析进入新世纪以来,以汽车动力电气化为主要特征的新能源电动汽车技术突飞猛进。其中油电混合动力技术逐步进入产业化锂动力电池技术取得重大突破。新能源电动汽车技术的变革为我国车用能源转型和汽车产业化振兴提供了历史机遇[1]。 作为 21 世纪最清洁的能源———电能,既是无污染又是可再生资源,因此电动汽车应运而生,随着人民生活水平和环保觉悟的提高电动汽车越来越受到广泛关注[2]。传统车辆的转向、驱动和制动都通过机械部件连接来操纵,而在电动汽车中,这些系统操纵机构中的机械部件(包括液压件)有被更紧凑、反应更敏捷的电子控制元件系统所取代的趋势。加上四轮能实现± 90°偏转的四轮转向技术,车辆可实现任意角度的平移,绕任意指定转向点转向以及进行原地旋转。线控和四轮转向的有机结合,是当今汽车新技术领域的一大亮点,其突出特点就是操纵灵活和行驶稳定[3]。轮毂电机驱动电动车以其节能环保高效的特点顺应了当今时代的潮流,全方位移动车辆是解决日益突出的城市停车难问题的重要技术途径,因此,全方位移动的线控转向轮毂电机驱动电动车是未来先进车辆发展的主流方向之一。全方位移动车辆可实现常规行驶、沿任意方向的平移、绕任意设定点、零半径原地转向等转向功能[4]。 1.2 国内外研究现状及发展趋势 电动汽车的出现得益于19世纪末电池技术和电机技术的发展较内燃机成熟,而此时石油的运用还没有普及,电动车辆最早出现在英国,1834年Thomas Davenport 在布兰顿演示了采用不可充电的玻璃封装蓄电池的蓄电池车,此车的出现比世界上第一部内燃机型的汽车(1885年)早了半个世纪。1873年英国人Robert Davidson制造的一辆三轮车,它由一块铁锌电池向电机提供电力,这被认为是电动汽车的诞生,这也比第一部内燃机型的汽车早出现了13年。到了1881年,法国人Gustave Trouve 使用铅酸电池制造了第一辆能反复充电的电动汽车。此后三四十年间,电动汽车在当时的汽车发展中占据着重要位置,据统计,到1890年在全世界4200辆汽车中,有

第七章 汽车制动防抱死系统

第七章汽车制动防抱死系统 制动防抱死系统功用、基本组成及控制方式 1、ABS功用 制动防抱死系统(简称ABS,Anti-lock Brake System),是汽车上的一种主动安全装臵。其作用就是防止汽车制动时车轮抱死拖滑,并把车轮的滑移率保持在Sp左右的一定范围内,以提高汽车制动过程中的方向稳定性、转向控制能力和缩短制动距离,使汽车制动更为安全有效。 ABS的优点: (1)制动时保持方向稳定性(图7-1)。控制车轮滑动率基本在20%附近,有效防止汽车侧滑、甩尾、调头等现象发生。 图7-1 保持方向稳定性 (2)制动时保持转向控制能力,如图7-2。不会出现汽车前轮抱死产生的方向失控事故。 图7-2 保持转向控制能力 (3)缩短制动距离(松散的沙土和积雪较深的路面除外)(图7-3)。保持制动力在最佳的范围内。 图7-3 缩短制动距离 (4)减少轮胎磨损。车轮保持在既滚又滑的状态,克服车轮抱死造成的轮胎杯型磨损和轮胎面磨损不均匀的缺点。 (5)减少驾驶员紧张情绪。传统制动系统进行制动时,驾驶员往往产生一种紧张情绪,缺乏安全感。

装备ABS 与未装备ABS 汽车相比,各项安全指标的下降百分比见图7-4。 图7-4 安全指标比较 2、ABS 基本组成及控制原理 制动防抱死系统是在常规制动装臵的基础上增加一电子控制系统,一般由传感器、电子控制器(ECU)和执行器(制动压力调节器)组成(图7-5)。 图7-5 ABS 基本组成及控制原理示意图 传感器感受系统控制所需的汽车行驶状态参数,并将运动物理量转换成为电信号。电子控制器根据传感器信号及其内部存储信号,经过计算、比较和判断后,向执行器发出控制指令,同时监控系统的工作状况。执行器则根据ECU 的指令,依靠由电磁阀及相应的液压控制阀组成的液压调节系统对制动系统实施增压、保压或减压的操作(图7-6),让车轮始终处于理想的运动状态。 a )增压

基于MATLAB的汽车制动系统设计与分析软件开发.

基于MAT LAB 的汽车制动系统 3 设计与分析软件开发 孙益民(上汽汽车工程研究院 【摘要】根据整车制动系统开发需要, 利用MAT LAB 平台开发了汽车制动系统的设计和性能仿真软件。 该软件用户界面和模块化设计方法可有效缩短开发时间, 提高设计效率。并以上汽赛宝车为例, 对该软件的可行性进行了验证。 【主题词】制动系汽车设计 统分成两个小闭环系统, 使设计人员更加容易把 1引言 制动性能是衡量汽车主动安全性的主要指标。如何在较短的开发周期内设计性能良好的制动系统一直是各汽车公司争相解决的课题。 本文拟根据公司产品开发工作需要, 利用现有MA T LAB 软件平台, 建立一套面向设计工程师, 易于调试的制动开发系统, 实现良好的人机互动, 以提高设计效率、缩短产品开发周期。 握各参数对整体性能的影响, 使调试更具针对性。 其具体实施过程如图1所示。 3软件开发

与图1所示的制动系统方案设计流程对应, 软件开发也按照整车参数输入、预演及主要参数确定, 其他参数确定和生成方案报告4个步骤实现。3. 1车辆参数输入 根据整车产品的定位、配置及总布置方案得出空载和满载两种条件下的整车质量、前后轴荷分配、质心高度, 轮胎规格及额定最高车速。以便获取理想的前后轴制动力分配及应急制动所需面临的极限工况。 3. 2预演及主要参数确定 在获取车辆参数后, 设计人员需根据整车参数进行制动系的设计, 软件利用MAT LAB 的G U I 工具箱建立如图2所示调试界面。左侧为各主要参数, 右侧为4组制动效能仿真曲线, 从曲线可以查看给定主要参数下的制动力分配、同步附着系数、管路压力分配、路面附着系数利用率随路况的变化曲线, 及利用附着系数与国标和法规的符合现制动器选型、性能尺寸调节, 查看液压比例阀、感载比例阀、射线阀等多种调压工况的制动效能, 并通过观察了 2汽车制动系统方案设计流程的优化 从整车开发角度, 制动系统的开发流程主要包括系统方案设计、产品开发和试验验证三大环节。制动系统的方案设计主要包含结构选型、参数选择、性能仿真与评估, 方案确定4个环节。以前, 制动系统设计软件都是在完成整个流程后, 根据仿真结果对初始设计参数修正。因此, 设计人员往往要反复多次方可获得良好的设计效果, 而且, 在调试过程中, 一些参数在特定情况下的相互影响不易在调试中发现, 调试的尺度很难把握。 本文将整车设计流程划分为两个阶段:主要参数的预演和确定、其他参数的预演和参数确定。即根据模块化设计思想, 将原来一个闭环设计系 收稿日期:2004-12-27 3本文为上海市汽车工程学会2004年(第11届学术年会优秀论文。

汽车电子感应制动控制系统简介

汽车制动系统经历了从传统机械制动到液压防抱死制动系统ABS,再到电子制动控制 系统EBS。如今又出现了一种全新的制动理念,它是集成了电子控制系统和电液制动 力增压器的一种新型汽车制动技术,即汽车电子感应制动控制系统(Sensotronic Brake Control),简称SBC。 电子感应制动控制系统SBC最早是由博世公司提出来的。在20世纪90年代,博世公司推出了一项名为“Brake 2000”的研究项目,该项目主要是让其最前沿的开发 部门,开始有关进一步改进汽车制动系统的研究,目标是研究一种反应速度更快、制 动效果更显著的制动系统,电子感应制动控制系统SBC就是因为这种要求而诞生的。 SBC电子感应控制系统是世界上第一套完全线控的制动系统(Brake-by-Wire),首 先装载于高档车奔驰SL500,在最新Maybach 62中也装备了SBC系统。 SBC系统的构成 传统制动器工作原理是:驾驶员踩下制动踏板,推动与制动调压器及制动主缸相 连的活塞连杆。制动主缸根据踏板力的大小,在制动管路上形成相应的制动压力,在 机械和液力相结合的作用下,通过制动缸推动制动钳压向制动盘。由于中间传递机构 复杂,制动的反应速度比较慢。 在电子感应制动控制系统中,电子元件将替代当前制动系统中大量使用的机械元件,把制动踏板和执行机构分离开来,由于大大减少了中间元件,因此反应速度就大 幅提高。右图所示为在奔驰车上应用的SBC系统,它由传感器、ECU(电子控制单元)与执行器(液压控制单元)等构成。传感器用来测量制动主缸内的压力以及制动踏板 运动的速度,如果监测到驾驶员开始制动,就发送信号给ECU。SBC系统的制动力是 由电子控制的电机来实现的。电机带动高压储能器,使制动液以很高的压力进入制动 系统,快速而准确地完成汽车制动。 为了让驾驶员能够有真实的制动感觉,SBC系统还带有一个踏板行程模拟器,它 连接在制动主缸上,用弹簧力和液压力来推动制动踏板运动。制动踏板感觉是可调节的,以满足不同的要求。

能量管理系统

微电网能量管理系统 1 微电网的典型结构 制器开关断路器敏感 负荷一般 负荷电力传输线信息流线 图1 微电网结构图 图1为微电网的结构图[1][2],它通过隔离变压器、静态开关和大电网相连接。微电网中绝大部分的微电源都采用电力电子变换器和负载相连接,使其控制灵活。微电网内部有三条馈线,其中馈线A 和B 上连接有敏感负荷和一般负荷,根据用电负荷的不同需求情况,微电源安装在馈线上的不同位置,而没有集中安装在公共馈线处,这种接入形式可以减少线路损耗和提供馈线末端电压支撑。馈线C 上接入一般负荷,没有安装专门的微电源,而直接由电网供电。每个微电源出口处都配有断路器,同时具备功率和电压控制器,在能量管理系统的控制下,调整各自功率输出以调节馈线潮流。当监测到大电网出现电压扰动等电能质量问题或供电中断时,隔离开关S 1动作,微电网转入孤岛运行模式,以保证微电网内重要敏感负荷的不间断供电,同时各微电源在能量管理系统的的控制下,调整功率输出,保证微电网正常运行。对于馈线A、B、C上的一般负荷,系统则会根据微电网功率平衡的需求,将其切除。 2 负荷分类、要求及接入设备功能 2.1 负荷分类与要求

根据负荷对电力需求的特性可将负荷分为基本两大类[3]: 敏感负荷:对这一级负荷断电,将造成人身事故、设备损坏,将生产废品,使生产秩序长期不能恢复,人民生活发生紊乱等。这是这是敏感负荷中的重要负荷。由于供电中断会造成大量减产、人民生活会受到较大影响的用户负荷,这是敏感负荷中的比较重要的负荷。 一般负荷(非敏感负荷):敏感负荷以外的属于一般负荷。可视为一个可控的负荷参与微电网的能量调度,并且在适当的时候(孤网模式时)可中断其供电,以此确保敏感负荷的正常供电。 要求:敏感负荷。保证不间断供电以及较高的供电质量。并由独立电源供电。 非敏感负荷对供电方式无特殊要求。 2.2负荷接入设备功能 (1)负荷通断控制 在正常情况下,敏感负荷与一般负荷均应正常供电,当微电网系统因事故出现功率缺额或运行在孤岛模式,应采取切断一般负荷,确保敏感负荷的正常供电。 (2)负荷保护 具有自动跳闸和电动合闸功能,可切断故障电流,发挥保护作用。 (3)微电网功率平衡控制-自动低频减载[4] 当微电网系统因事故出现功率缺额时,其频率将随之急剧下降,自动低频减载装置的任务是迅速断开相应数量的一般负荷,使系统频率在不低于某一允许值的情况下,达到有功功率的平衡,以确保微电网系统安全运行。 (4)负荷监测 提供微电网线路负荷的实时数据包括负荷功率,线路电流情况。对所有线路进行监控,对大负荷及超负荷提供预警和报警信号。 3微电源分类、特点、工作方式及接入设备功能 3.1微电源分类与特点[5] 光伏电池无废气排放、无化石燃料消耗,采用与建筑物集成在一起的模块可联合生产低温热能为房间供暖。但输出的功率由光能决定,因此是断续的,不能与负荷完全匹配,因此常常需要蓄电池或其他辅助系统。一般光伏电池发电模块拥有最大功率点跟踪(MPPT)功能、电池板监测和保护功能、逆变并网等功能,以保证光伏电池能够可靠、安全地运行。 微型燃气轮机,具有体积小、质量轻、发电效率高、污染小、运行维护简单可以统一调度。微型燃气轮机模块具有气体温度、压力、流量测量、燃料供给、燃料注入控制、热量处理、转速监控,气体污染物监测、功率调节及并网等功能。具有电力电子转换和控制接口的微型燃气轮机可跟随电网的电压和频率变化,主要起负荷跟踪和削峰填谷的作用。它的另一个作用是完成基本的有功功率控制的同时,可调节系统输出的无功功率,实现电压调节和功率因数的调整。因此是目前最成熟、最具有商业竞争力的分布式电源之一。 3.2微电源典型工作方式 (1)光伏电池具有MPPT和定电压两种工作方式。 当工作在MPPT工作方式且无功功率可调时遵循Q-V下垂特性。 当工作在定电压工作方式时遵循P-f下垂特性。 (2)微型燃气轮机可工作在功率可调的运行方式或定功率的运行方式。 当工作在功率可调的方式时遵循P-f下垂特性和Q-V下垂特性。在此工作方式下,微型燃气轮机可作为具有自适应调节功能的调节电源,快速跟踪负荷有功功率和无功功率的变化。 当工作在定功率的方式时按照设定值输出有功功率和无功功率。

轿车鼓式制动器设计毕业设计

第1章绪论 1.1制动系统设计的意义 汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。 通过查阅相关的资料,运用专业基础理论和专业知识,确定汽车制动器的设计方案,进行部件的设计计算和结构设计。使其达到以下要求:具有足够的制动效能以保证汽车的安全性;同时在材料的选择上尽量采用对人体无害的材料。 1.2制动系统研究现状 车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至零,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价: (1)制动效能:即制动距离与制动减速度; 1

(2)制动效能的恒定性:即抗热衰退性; (3)制动时汽车的方向稳定性; 目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系!制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。 1.3制动系统设计内容 (1)研究、确定制动系统的构成 (2)汽车必需制动力及其前后分配的确定 前提条件一经确定,与前项的系统的研究、确定的同时,研究汽车必需的制动力并把它们适当地分配到前后轴上,确定每个车轮制动器必需的制动力。 (3)确定制动器制动力、摩擦片寿命及构造、参数 制动器必需制动力求出后,考虑摩擦片寿命和由轮胎尺寸等所限制的空间,选定制动器的型式、构造和参数,绘制布置图,进行制动力制动力矩计算、摩擦磨损计算。 (4)制动器零件设计 零件设计、材料、强度、耐久性及装配性等的研究确定,进行工作图设计。 1.4制动系统设计要求 制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。利用计算机辅助设计绘制装配图 2

列车再生制动能量回收的方法及分析

列车再生制动能量回收的方法及分析 城市轨道交通是耗电大户。而如何高效利用电能是目前城市轨道交通节能技术的关键问题。车辆在运行过程中,由于站间距一般较短,因此要求起动加速度和制动减速度比较大,并具有良好的起动和制动性能。城轨交通供电系统一直采用二极管整流技术实现交流电源到直流牵引电源的转换,特别是采取24脉波整流技术后,与电网的谐波兼容问题得到较好地解决。该技术虽然可以较好地满足车辆牵引取流的需求,但是此类系统存在以下问题: (1)只能实现能量的单向流动,对于需要频繁起动和制动的地铁、轻轨等交通工具,制动能量的回收有着很大的潜力。车辆再生制动产生的反馈能量一般为牵引能量的30%甚至更多。而这些再生能量除了按一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其它相邻列车吸收利用外,剩余部分将主要被车辆的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。如果在一列地铁列车刹车时附近没有其他列车加速运行,那它所回馈的电能中只有30%~50%能被再次利用(尤其是在低电压、高电流的网络系统里)。如果当列车发车的间隔大于10 min时,再生制动能量被相邻列车吸收重新利用的概率几乎为零。 (2)由于制动电阻的发热引发站台和地下隧道热量积累、温度上升,某些城轨系统隧道温度高达50℃,不得不加大通风设备的容量,造成严重的二次能耗; (3)对于车载制动电阻模式制动电阻增加车体自重造成的电能消耗十分可观; (4)牵引网上同时在线运行的车辆有十几对甚至几十对,负荷的变化造成牵引网压波动严重,不利于车辆平稳、可靠运行。可见车辆的制动能量至今还是一种没有被很好地开发利用的能量。 目前,在我国大力提倡节能降耗的形势下,城轨供电系统的发展进度已滞后列车车辆技术的发展,多个待建的城市轨道线路,如无锡、苏州、长沙、西安、深圳和广州等多条线路,都提出了对现有牵引供电系统进行技术改造的需求或者是寻求更好的储能装置去回收这些多余的再生能量。再生制动能量循环利用主要有储能和逆变两种方式:储能所采用的技术主要有蓄电池储能、电容储能、飞轮储能3种;而能量回馈所采用的技术主要是逆变至中压网络和低压网络两类。 首先介绍储能型回收装置 (1)蓄电池储能 蓄电池储能系统如图所示,该装置是将制动能量吸收到电池介质中,当供电区间有列车需要取流时,再将所储存的能量释放出去,由于蓄电池本身的特点充放电电流小,瞬间不能大功率充放电,所以该装置体积较大电池处于频繁充放电状态将影响其使用寿命,储能容量相对较少。

相关文档
相关文档 最新文档