文档库 最新最全的文档下载
当前位置:文档库 › 化工原理 第六章 传热设备.doc

化工原理 第六章 传热设备.doc

第六章传热设备

6-1传热设备类型

一. 按用途分:

1)热量输入设备:●加热器

●蒸发器

●再沸器

2)热量输出设备:●冷凝器

●冷却器

二. 按接触状态分:

1)间接接触式,应用最广泛

2)直接接触式

3)蓄热式参见图6-1

图6-1蓄热式换热器图6-2 夹套式换热器

三. 按传热特征分:

1. 间壁式

传热的冷热流体用金属、石墨等壁面隔开,通过壁面导热和流体对流进行热量传递,用得最多。按结构的不同,间壁式换热器又可分为

1)夹套式

其结构如图6-2所示。广泛应用于反应器的加热或冷却。其优点是:结构简单,特别适合于釜式反应器的热交换。其缺点是传热面积小,不耐高压,作冷却器用时通冷却水,对流传热系数较小。

2)蛇管式换热器

a 沉浸式

沉浸式换热器沉浸于热交换的流体中,如图6-3所示。某些电加热器即做成蛇管沉浸式

换热器。

优点:可做成任意形状,结构简单,耐高压,便于防腐。

缺点:传热面积小,控制热阻为管外流体的对流传热系数,较小。通过管外搅拌可提高传热系数。

b 喷淋式

喷淋式换热器如图6-3所示。常用于冷却或冷凝管内流体,管外用自来水喷淋,化肥厂

图6-3 沉浸式换热器图6-4 沉浸式换热器

中可见使用。

优点:结构简单,造价低,耐高压,

装在室外便于检修和清洗。

缺点:喷淋不均匀造成传热不均匀。

3.套管式换热器

各程可串联成一组使用,如图6-5

所示。还可将若干组并联使用。

优点:传热系数K较大,且为严格

逆流,△t m较大。

缺点:接头多,易泄漏,占地较大,

材料消耗量大。

适合流量不大,所需传热面积不大的场合。图6-5 套管式换热器

4.列管式换热器

由壳体、管束、管板(又称花板,固定管子用)、顶盖(又称封头)等组成,如图6-6所示。

图6-6 列管式换热器

列管式换热器是目前应用最广泛得一种换热器。

由于走管程和走壳程的两种流体温度不同,管子受热膨胀和壳体受热膨胀的程度不同,当两流体的温度差大于50℃时,如果将管束和壳体焊成一体,则因两者受热膨胀程度差别较大,可能将管子扭曲(当管内流体温度高于管外流体时)或将管子从管板上拉松(当管内流体温度低于管外流体时),此时,就要考虑采取热补偿措施。

列管式换热器的种类较多,按照有无热补偿或补偿方式的差别,主要有下列几种。

(1) 固定管板式换热器

管束和壳焊成一体,适应于两流体的温差较小,管外流体较清洁,不易结垢的场合。

若在壳体上作一个可伸缩的补偿圈,则固定管板列管式换热器也可用于两流体,温差较大的场合。

补偿圈结构见图6-6。

(2) 浮头式换热器

其结构见教材270图6-11。管板的一端固定在壳体的花板上,另一端则不被花板固定,可以自由伸缩,这样既解决了热补偿问题,且管束可以从壳体中拆卸出来,便于清洁,因而应用较广泛,使用于高温高压。

浮头式换热器的缺点是结构复杂,造价高。

(3) U形管式换热器

其结构见教材270图6-12。管子做成U形,弯曲端悬空,以此解决热补偿问题,结构较浮头式简单,同样适合于高温高压,缺点是管内的清洁较困难。

6-2 列管式换热器的选用和设计

目前,列管式换热器已经标准化、系列化,供人们选用。选用时,须依据工艺条件(冷热流体性质、流量、进出口温度等,即前述设计型问题)进行设计计算,依计算结果进行选用。

一.流程的选择

冷热流体何者走管程,何者走壳程,可据下列一般原则确定(逐一解释理由):

1)不清洁的物料走管内(对于直管管束而言);

2)α小的流体走管内;

3)腐蚀性物料走管内;

4)高压流体走管内;

5)经保温(冷)的流体走管内;

6)蒸汽一般走壳程;

7)粘度大的流体走壳程(装有挡板时)。

二.流速的选择

液体流速的选择主要依据粘度大小而定,一般液体的流速选择范围为:

管程0.5~3m/s

壳程0.2~1.5m/s

粘度大的液体流速取小值,粘度小的液体流速取大值。

气体的流速选择范围为:

管程5~30 m/s

壳程3~15m/s

三.换热管规格及其在管板上排列方法。

换热器采用φ19×2 和φ25×2.5(不锈钢用φ2.5×2)两种规格,长度有1.5米、2

米、3米、6米等几种,3米和6米最常用。

排列方式有正三角形排列、正方形排列和正方形错列3种。

四.阻力损失计算

1.管程阻力损失

△P t =( △P i +△P r )×N s ×N P

2

u

d l P 2i ρ??=λ△ 为直管阻力损失

2u 3P 2r ρ?≈△ 为局部阻力损

失,包括进出口、回弯

式中:N s 为壳程数;N P 为每一壳程内的

管程数

2.壳程阻力损失:经验式

2u d )1N (D p 2

0l B s s ρ?+λ=? )t d 1(BD V S V u u d R R 72.10

S 0S 00e e 19

.0e s -==μρ=

=λ- 式中(N B +1)为流体在壳体内挡板间折转的次数,D(N B +1)相当于L e (流体在壳程内所流过的当量长度),参见图6-7所示。

六.选用和设计计算步骤

1. 计算Q 和△t m ,由流体的性质估计一个K 值,由A=Q/(K △t m )估算传热面积;

2. 确定流体流程,即两流体何种走管程,何种壳程。初选流速,初求管数n ,管程数N ,折流挡板间距B ,从标准系列中初选合适型号的换热器;

3. 核算总传热系数K

求算 αi 、α0、内外R S →求算K 并与初估值比较,若差别较大(一般如此),则由求出的K 值重复上述计算,直到K 的初值与新算值相近为止;

4. 由最终得到的K 值求传热面积A ,选用的换热器面积应比计算值大10~15%;

5. 计算管、壳程阻力损失。

具体见教材P273计算实例。

6-3 换热器的强化途径

由传热方程Q=K.A.△t m 出发,从三方面采取强化措施

1. 提高传热面积A

这里指的是提高单位体积传热设备内的传热面积,

因为如果靠增大设备体积的办法来增

加传热面积是没有意义的。

增大单位体积设备内的传热面积可从改进传热面积结构入手,如采用各种螺纹管、波纹管代替光滑管,在管道上安装翅片(如翅片管换热器,板翅式换热器)以增加传热面积等等。总的原则是:从结构上加以改进,创造一些单位体积设备内有较大的传热面积、高效紧凑的换热器。

2.提高△t m

这里提高△t m 不是靠扩大冷热流体的温度差的办法,因为从节能的观点出发,应尽可能在低温差条件下进行传热(这样可减少热损失)。提高△t m 指的是在冷热流体进出口温度规定的情况下,尽可能从结构上采取逆流或接近于逆流的流向以得到较大的△t m 值。

3.提高传热系数

管壁热阻一般较小,故K 由下式求得:

212212S 1S 11d d 1d d R R 1

1K ?α+++α=

K 1的大小,由分母各项热阻大小所决定,但各项所占比重不同,K 1的数值与各热阻项中最大的项接近,称为控制热阻,故主要应考虑减小控制热阻,即提高α或减小R S 。

提高α的原则是增大流体湍动程度,如搅拌、加挡板、翅片等。上述的螺纹管和波纹管也能增大湍动程度,提高α,但要注意,增大流体湍动程度的措施一般会使流体流动阻力增大,故要全面权衡。

减小R S 的办法有提高流速,延缓垢层形成速度及定期清洁垢层。

6-4其他类型换热器

有板式换热器、螺旋板式换热器、板翅式换热器、翅片管换热器、空气冷却器等,这些换热器是设计较成熟的新型换热器,它们或者强化了传热效果,或者适用于一些比较特殊的场合(如压力、温度较低,流量小,或强腐蚀场合)。

详细内容参见教材P270~280。

化工原理答案第四章 传热

第四章 传 热 热传导 【4-1】有一加热器,为了减少热损失,在加热器的平壁外表面,包一层热导率为(m·℃)、厚度为300mm 的绝热材料。已测得绝热层外表面温度为30℃,另测得距加热器平壁外表面250mm 处的温度为75℃,如习题4-1附图所示。试求加热器平壁外表面温度。 解 2375℃, 30℃t t == 计算加热器平壁外表面温度1t ,./()W m λ=?016℃ (1757530025005016016) t --= ..145 025********t =?+=℃ 【4-2】有一冷藏室,其保冷壁是由30mm 厚的软木做成的。软木的热导率λ= W/(m·℃)。若外表面温度为28℃,内表面温度为 3℃,试计算单位表面积的冷量损失。 解 已 知 .(),.123℃, 28℃, =0043/℃ 003t t W m b m λ==?=, 则单位表面积的冷量损失为 【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。若所测固体的表面积为0.02m 2 ,材料的厚度为0.02m 。现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。 解 根据已知做图 热传导的热量 .28140392Q I V W =?=?= .().() 12392002 002280100Qb A t t λ?= = -- 【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=(m·℃),厚度230b mm =;绝热砖层,热导率λ=(m·℃);普通砖层,热导率λ=(m ·℃)。 耐火砖层内侧壁面温度为1000℃,绝热砖的耐热温度为940℃,普通砖的耐热温度为130℃。 (1) 根据砖的耐热温度确定砖与砖接触面的温度,然后计算绝热砖层厚度。若每块绝热砖厚度为230mm ,试确定绝热砖层的厚度。 (2) 若普通砖层厚度为240mm ,试计算普通砖层外表面温度。 解 (1)确定绝热层的厚度2b 温度分布如习题4-4附图所示。通过耐火砖层的热传导计算热流密度q 。 绝热砖层厚度2b 的计算 每块绝热砖的厚度为023m .,取两块绝热砖的厚度为 习题4-1附图 习题4-3附图 习题4-4附图

化工原理第一章

一、 选择题 1. 流体阻力的表现,下列阐述错误的是( )。 A.阻力越大,静压强下降就越大 B.流体的粘度越大,阻力越大 流体的流动状况是产生流体阻力的根本原因 D.流体的内摩擦力在流体激烈流动时不存在 2. 压强的具有专门名称的国际单位是Pa ,用基本单位表示是( )。 A.atm B.mmHg C.Kg/m.s2 D.N/m2 3. 水在直管中流动,现保持流量不变,增大管径,则流速( )。 A.增大 B.减小 C.不变 D.无法判断 4. 对不可压缩流体,满足( )条件时,才能应用柏努力方程求解。 A.)%(20p p p 1 21式中压强采用表压表示<- B.)%(01p p p 1 21式中压强采用表压表示<- C.)%(20p p p 1 21式中压强采用绝压表示<- D. )%(01p p p 121式中压强采用绝压表示<- 5. 判断流体的流动类型用( )准数。 A.欧拉 B.施伍德 C.雷诺 D.努塞尔特 6. 流体在圆形直管中滞流流动时的速度分布曲线为( )。 A.直线 B.抛物线 C.双曲线 D.椭圆线 7. 增大流体的流量,则在孔板流量计的孔板前后形成的压强差( )。 A.增大 B.减小 C.不变 D.无法判断 8. 流体在管内流动时的摩擦系数与( )有关。 A.雷诺准数和绝对粗糙度 B.雷诺准数和相对粗糙度 C.欧拉准数和绝对粗糙度 B. 欧拉准数和相对粗糙度 9. 测速管测量得到的速度是流体( )速度。 A.在管壁处 B.在管中心 C.瞬时 D.平均 10. 在层流流动中,若流体的总流率不变,则规格相同的两根管子串联时的压降为并联时的( )倍。 A. 2; B. 6; C. 4; D. 1。 11. 流体在长为3m 、高为2m 的矩形管道内流动,则该矩形管道的当量直径为( )。 A. 1.2m ; B. 0.6m ; C. 2.4m ; D. 4.8m 。 12. 当流体在园管内流动时,管中心流速最大,滞流时的平均速度与管中心的最大流速的关

南工大化工原理第六章习题解答

第六章习题 1)苯酚(C 6 H 5 OH)(A)和对甲酚(C 6 H 4 (CH 3 )OH)(B)的饱和蒸汽压数据为: 温度 ℃ 苯酚蒸汽压 kPa 对甲酚蒸汽压 kPa 温度 ℃ 苯酚蒸汽压 kPa 对甲酚蒸汽 压 kPa 113.7 10.0 7.70 117.8 11.99 9.06 114.6 10.4 7.94 118.6 12.43 9.39 115.4 10.8 8.2 119.4 12.85 9.70 116.3 11.19 8.5 120.0 13.26 10.0 117.0 11.58 8.76 试按总压P=75mmHg(绝压)计算该物系的“t—x—y”数据。此物系为理想物系。 t0C p A 0kPa p B 0kPa x A x B 113.7 10.0 7.70 1.0 1.0 114.6 10.4 7.94 0.837 0.871 115.4 10.8 8.2 0.692 0.748 116.3 11.19 8.5 0.558 0.624 117.0 11.58 8.76 0.440 0.509 117.8 11.99 9.06 0.321 0.385 118.6 12.43 9.39 0.201 0.249 119.4 12.85 9.70 0.0952 0.122 120.0 13.26 10.0 0.000 0.000 2)承第1题,利用各组数据,计算 ①在x=0至x=1围各点的相对挥发度α i ,取各α i 的算术平均值α,算出α对 α i 的最大相对误差。 ②以平均α作为常数代入平衡方程式算出各点的“y—x i ”关系,算出由此法得 出各组y i 值的最大相对误差。 t0C 113.7 114.6 115.4 116.3 117.0 117.8 118.6 119.4 120.0

化工原理(上)主要知识点

化工原理(上)各章主要知识点 三大守恒定律:质量守恒定律——物料衡算;能量守恒定律——能量衡算;动量守恒定律——动量衡算 第一节 流体静止的基本方程 一、密度 1. 气体密度:RT pM V m = = ρ 2. 液体均相混合物密度: n m a a a ρρρρn 22111+++=Λ (m ρ—混合液体的密度,a —各组分质量分数,n ρ—各组 分密度) 3. 气体混合物密度:n n m ρ?ρ?ρ?ρ+++=Λ2211(m ρ—混合气体的密度,?—各组分体积分数) 4. 压力或温度改变时,密度随之改变很小的流体成为不可压缩流体(液体);若有显著的改变则称为可压缩流体(气体)。 二、.压力表示方法 1、常见压力单位及其换算关系: mmHg O mH MPa kPa Pa atm 76033.101013.03.10110130012===== 2、压力的两种基准表示:绝压(以绝对真空为基准)、表压(真空度)(以当地大气压为基准,由压力表或真空表测出) 表压 = 绝压—当地大气压 真空度 = 当地大气压—绝压 三、流体静力学方程 1、静止流体内部任一点的压力,称为该点的经压力,其特点为: (1)从各方向作用于某点上的静压力相等; (2)静压力的方向垂直于任一通过该点的作用平面; (3)在重力场中,同一水平面面上各点的静压力相等,高度不同的水平面的经压力岁位置的高低而变化。 2、流体静力学方程(适用于重力场中静止的、连续的不可压缩流体) )(2112z z g p p -+=ρ )(2121z z g p g p -+=ρρ p z g p =ρ(容器内盛液体,上部与大气相通,g p ρ/—静压头,“头”—液位高度,p z —位压头 或位头) 上式表明:静止流体内部某一水平面上的压力与其位置及流体密度有关,所在位置与低则压力愈大。 四、流体静力学方程的应用 1、U 形管压差计 指示液要与被测流体不互溶,且其密度比被测流体的大。 测量液体:)()(12021z z g gR p p -+-=-ρρρ 测量气体: gR p p 021ρ=- 2、双液体U 形管压差计 gR p p )(1221ρρ-=- 第二节 流体流动的基本方程 一、基本概念 1、体积流量(流量s V ):流体单位时间内流过管路任意流量截面(管路横截面)的体积。单位为13 -?s m 2、质量流量(s m ):单位时间内流过任意流通截面积的质量。单位为1 -?s kg s s V m ρ=

化工原理实验答案

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强 对α关联式无影响。

实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么? 4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。 5.本实验中进料状态为冷态进料,当进料量太大时,为什么会出现精馏段干板,甚至出现塔顶既没有回流也没有出料的现象,应如何调节?

【化工原理】第四章传热补充习题

第四章 传热 填空题 (1) 对流传热的热阻主要集中在 ,因此, 是强化对 流传热的重要途径。 答案:滞流内层;减薄湍流内层的厚度 (2)黑体的表面温度从300℃升至600℃,其辐射能力增大到原来的 倍. 答案: 5.39 分析:斯蒂芬-波尔兹曼定律表明黑体的辐射能力与绝对温度的4次方成正比, 而非摄氏温度,即4 273300273600?? ? ??++=5.39。 (3)处理量为440kg/h 的有机溶液在某换热器中预热。运转一周期后,该溶液 在管内生成积垢,使换热器总热阻增加了10%。若维持冷、热介质出口温度不变, 则该溶剂的处理量变为 。 答案:400kg/h 分析:设Q=m t KA ? m t A K Q ?='' ∴ ==''K K Q Q K K 11 '=1.1 故 Q '=1 .14401.1=Q =400kg/h 选择题 (1)对下述几组换热介质,通常在列管式换热器中K 值从大到小正确的排列顺 序应是( )。 A .②>④>③>①; B .③>④>②>①; C .③>②>①>④; D .②>③>④>①; 冷流体 热流体 ① 水 气 体 ②水沸腾 水蒸气冷凝 ③ 水 水 ④ 水 轻油 答案:D (2)揭示了物体辐射能力与吸收率之间关系的定律是( )。 A. 斯蒂芬-波尔兹曼定律; C. 折射

B. 克希霍夫 D. 普郎克 答案:B (3)关于下面两种说法的正确结论应是( )。 1)固体的辐射和吸收只能在表面上进行,因此只和表面积的大小和表面特性有关; 2)气体的辐射和吸收是在整个体积上进行的,必然和气体积的大小和形状有关。 A. 这两种说法都对; C. 第一种说法对,第二种说法错; B. 这两种说法都错; D.第二种说法对,第一种说法错 答案:A (4)传热速率公式q=KAΔt m 中,Δt m 的物理意义是( )。 A.器壁内外壁面的温度差; B.器壁两侧流体对数平均温度差; C.流体进出口的温度差; D.器壁与流体的温度差。 B (5)用饱和水蒸汽加热空气时,传热管的壁温接近( ) A. 蒸汽的温度; B. 空气的出口温度; C. 空气进、出口平均温度 A (6)( )是指当间壁两侧泠、热流体之间的温度为1K 时,在单位时间内通过单位传热面积,由热流体传给泠流体的热能。 A. 导热系数; B. 对流传热系数; C. 总传热系数 C (7)在间壁式换热器内用饱和水蒸汽加热空气,此过程的总传热系数K 值接近于( )。 A. α蒸汽 B. α空气 C. α蒸汽与α空气的平均值 B (8)翅片管换热器的翅片应安装在( )。 A. α小的一侧 B. α大的一侧 C. 管内 D. 管外 A 计算题 (1)某厂库存有一台列管式换热器,其主要尺寸为:列管规格?38,3?管长4m ,管数127根,欲利用这台换热器,用水蒸气加热空气。蒸汽走壳程,空气走管程,空气流量为6000标准3m / 小时,要求自20℃加热至100℃以上。 已知:空气侧对流传热系数为?2/58m W ℃; 蒸汽侧对流传热系数为11000 w/2m ℃ 污垢热阻和管壁热阻可以忽略不计; 标准状况下,空气密度为1.29kg/3m ,操作条件下空气比热取1.01kJ/kg.℃ 蒸汽的有关参数见附表。

化工原理下册--第六章吸收习题答案

6-1 已知在101.3 kPa(绝对压力下),100 g 水中含氨1 g 的溶液上方的平衡氨气分压为987 Pa 。试求: (1) 溶解度系数H (kmol ·m -3·Pa -1); (2) 亨利系数E(Pa); (3) 相平衡常数m ; (4) 总压提高到200 kPa(表压)时的H ,E ,m 值。 (假设:在上述范围内气液平衡关系服从亨利定律,氨水密度均为1000 3/m kg ) 解:(1)根据已知条件 Pa p NH 987*3= 3/5824.01000 /10117 /13m kmol c NH == 定义 333*NH NH NH H c p = () Pa m kmol p c H NH NH NH ??==-34/109.5333 (2)根据已知条件可知 0105.018 /10017/117 /13=+= NH x 根据定义式 333*NH NH NH x E p = 可得 Pa E NH 41042.93?= (3)根据已知条件可知

00974.0101325/987/* *33===p p y NH NH 于是得到 928.0333*==NH NH NH x y m (4)由于H 和E 仅是温度的函数,故3NH H 和3NH E 不变;而 p E px Ex px p x y m ====** ,与T 和p 相关,故309.0928.03 1' 3 =?=NH m 。 分析(1)注意一些近似处理并分析其误差。 (2)注意E ,H 和m 的影响因素,这是本题练习的主要内容之一。 6-2 在25℃下,CO 2分压为50 kPa 的混合气分别与下述溶液接触: (1) 含CO 2为0.01 mol/L 的水溶液; (2) 含CO 2为0.05 mol/L 的水溶液。 试求这两种情况下CO 2的传质方向与推动力。 解: 由亨利定律得到 * 2 250CO CO Ex kPa p == 根据《 化工原理》 教材中表 8-1 查出 ()kPa E CO 51066.1252?=℃ 所以可以得到 4 *1001.32 -?=CO x 又因为 ()()345 25/10347.318 1066.11000 22 2m kPa kmol EM H O H O H CO ??=??= ≈ -ρ℃ 所以得

南工大化工原理第六章习题解答

第六章习题 1)苯酚(C6H5OH)(A)和对甲酚(C6H4(CH3)OH)(B)的饱和蒸汽压数据为: 温度 ℃苯酚蒸汽压 kPa 对甲酚蒸汽压 kPa 温度 ℃ 苯酚蒸汽压 kPa 对甲酚蒸汽 压 kPa 试按总压P=75mmHg(绝压)计算该物系的“t—x—y”数据。此物系为理想物系。 t0C p A0kPa p B0kPa x A x B 2)承第1题,利用各组数据,计算 ①在x=0至x=1范围内各点的相对挥发度αi,取各αi的算术平均值α,算出α对αi的最大相对误差。 ②以平均α作为常数代入平衡方程式算出各点的“y—x i”关系,算出由此法得出各组y i值的最大相对误差。 t0C

t0C x i0 y i0最大误差= 3)已知乙苯(A)与苯乙烯(B)的饱和蒸汽压与温度的关系可按下式算得: 式中p0的单位是mmHg,T的单位是K。 问:总压为60mmHg(绝压)时,A与B的沸点各为多少℃在上述总压和65℃时,该物系可视为理想物系。此物系的平衡汽、液相浓度各为多少摩尔分率

4)苯(A)和甲苯(B)混合液可作为理想溶液,其各纯组分的蒸汽压计算式为 式中p0的单位是mmHg,t的单位是℃。 试计算总压为850mmHg(绝压)下含苯25%(摩尔百分率)的该物系混合液的泡点。 5)试计算总压为760mmHg(绝压)下,含苯、甲苯(摩尔分率)的混合蒸汽的露点。若令该二元物系降温至露点以下3℃,求平衡的汽、液相摩尔之比。

6)有一苯(A)、甲苯(B)、空气(C)的混合气体,其中空气占2%,苯与甲苯浓度相等(均指摩尔百分数),气体压强为760mmHg(绝压)。若维持压强不变,令此三元物系降温至95℃,求所得平衡汽相的组成。A、B组分均服 从拉乌尔定律。已知95℃时,。 设X A 算得的X‘A 7)常压下将含苯(A)60%,甲苯(B)40%(均指摩尔百分数)的混合液闪蒸(即平衡蒸馏),得平衡汽、液相,汽相摩尔数占总摩尔数的分率——汽化率(1-q)为。物系相对挥发度α=,试求:闪蒸所得平衡汽、液相的浓度。

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

化工原理第六章吸收习题答案解析

6-1 已知在 kPa(绝对压力下),100 g 水中含氨1 g 的溶液上方的平衡氨气分压为987 Pa 。试求: (1) 溶解度系数H (kmol ·m -3·Pa -1); (2) 亨利系数E(Pa); (3) 相平衡常数m ; (4) 总压提高到200 kPa(表压)时的H ,E ,m 值。 (假设:在上述范围内气液平衡关系服从亨利定律,氨水密度均为 10003/m kg ) 解:(1)根据已知条件 Pa p NH 987*3= 3/5824.01000 /10117 /13m kmol c NH == 定义 333*NH NH NH H c p = () Pa m kmol p c H NH NH NH ??==-34/109.5333 (2)根据已知条件可知 0105.018 /10017/117 /13=+= NH x 根据定义式 333*NH NH NH x E p = 可得 Pa E NH 41042.93?= (3)根据已知条件可知 00974.0101325/987/* *33===p p y NH NH 于是得到 928.0333*==NH NH NH x y m (4)由于H 和E 仅是温度的函数,故3NH H 和3NH E 不变;而 p E px Ex px p x y m ====** ,与T 和p 相关,故309.0928.03 1' 3 =?=NH m 。 分析(1)注意一些近似处理并分析其误差。 (2)注意E ,H 和m 的影响因素,这是本题练习的主要内容之一。

6-2 在25℃下,CO 2分压为50 kPa 的混合气分别与下述溶液接触: (1) 含CO 2为 mol/L 的水溶液; (2) 含CO 2为 mol/L 的水溶液。 试求这两种情况下CO 2的传质方向与推动力。 解: 由亨利定律得到 * 2 250CO CO Ex kPa p == 根据《 化工原理》 教材中表 8-1 查出 ()kPa E CO 51066.1252?=℃ 所以可以得到 4 *1001.32 -?=CO x 又因为 ()()3 45 25/10347.318 1066.1100022 2m kPa kmol EM H O H O H CO ??=??= ≈ -ρ℃ 所以得 3 4*/0167.05010347.32 22m kmol p H c CO CO CO =??==- 于是:(1)为吸收过程,3/0067.0m kmol c =?。 (2)为解吸过程,3/0333.0m kmol c =?。 分析 (1)推动力的表示方法可以有很多种,比如,用压力差表示时: ① kPa H c p CO CO CO 9.2910347.301 .04 * 2 22 =?= = - 推动力 kPa p 1.20=?(吸收)

化工原理课后习题答案第4章传热习题解答

化工原理课后习题答案第4章传热习题解答

习 题 1. 如附图所示。某工业炉的炉壁由耐火砖λ1=1.3W/(m·K )、绝热层λ2=0.18W/(m·K )及普通砖λ3=0.93W/(m·K )三层组成。炉膛壁内壁温度1100o C ,普通砖层厚12cm ,其外表面温度为50 o C 。通过炉壁的热损失为1200W/m 2,绝热材料的耐热温度为900 o C 。求耐火砖层的最小厚度及此时绝热层厚度。 设各层间接触良好,接触热阻可以忽略。 已知:λ1=1.3W/m·K ,λ2=0.18W/m·K , λ3=0.93W/m·K ,T 1=1100 o C ,T 2=900 o C ,T 4=50o C ,3 δ=12cm ,q = 1200W/m 2,Rc =0 求: 1 δ=?2 δ=? 解: ∵δλT q ?= ∴1 δ=m q T T 22.01200 900 11003.12 1 1 =-? =- λ 又∵3 3 224 23 4 33 2 3 22 λδλδδλδλ+-= -=-=T T T T T T q ∴W K m q T T /579.093 .012 .0120050900233422 2?=--=--= λδλ δ 得:∴m 10.018.0579.0579.022 =?==λδ

习 题1附图 习题2附图 2. 如附图所示。为测量炉壁内壁的温度,在炉外壁及距外壁1/3厚度处设置热电偶,测得t 2=300 o C ,t 3=50 o C 。求内壁温度t 1。设炉壁由单层均质材料组成。 已知:T 2=300o C ,T 3=50o C 求: T 1=? 解: ∵δ λ δλ3 13 2 3 T T T T q -=-= ∴T 1-T 3=3(T 2-T 3) T 1=2(T 2-T 3)+T 3=3×(300-50)+50=800 o C

化工原理习题解答第六章

第6章蒸馏 6-1.苯(A )和甲苯(B )的饱和蒸气压数据为 苯的饱和蒸气压 p A /kPa 甲苯的饱和蒸 气压p B / kPa 80.2 101.33 39.99 84.1 113.59 44.4 88.0 127.59 50.6 92.0 143.72 57.6 96.0 160.52 65.66 100 179.19 74.53 104 199.32 83.33 108 221.19 93.93 110.4 233.05 101.33 根据上表数据作101.33kPa 下苯和甲苯溶液的t - y - x 图及y 一 x 图。此溶液服从 拉乌尔定律。 解: 80.2 1.0 1.0 84.1 0.823 0.925 88.0 0.659 0.83 9 2.0 0.508 0.72 96.0 0.376 0.596 100 0.256 0.453 104 0.155 0.304 108 0.058 0.123 110.4 0 0 P - P B P A X A 0 0 ; y A X A P A F B 6-2 .利用习题6-1的数据 (1 )计算相对挥发度:?。(2)写出平衡方程式。 3)算出y-x 的一系列平衡数据与习题1作比较 (答:(1) :一2.44, ( 2) y = 2.44X ) 1 + 1.44x 解: ⑴:■ 80.2 2.53 1.0 1 84.1 2.56 0.823 0.919 88.0 2.52 0.659 0.825 92.0 2.50 0.508 0.716 96.0 2.44 0.376 0.595 100 2.40 0.256 0.456 104 2.39 0.155 0.309 108 2.36 0.058 0.131 110.4 2.30 0 0 P A

南工大化工原理第四章习题解答

第四章习题 1)用平板法测定材料的导热系数,其主要部件为被测材料构成的平板,其一侧用电热器加热,另一侧用冷水将热量移走,同时板的两侧用热电偶测量其表面温度。设平板的导热面积为0.03m2,厚度为0.01m。测量数据如下: 电热器材料的表面温度℃ 安培数 A 伏特数V 高温面低温面 2.8 2.3 140 115 300 200 100 50 试求:①该材料的平均导热系数。②如该材料导热系数与温度的关系为线性: ,则λ 和a值为多 少? 2)通过三层平壁热传导中,若测得各面的温度t 1、t 2 、t 3 和t 4 分别为500℃、 400℃、200℃和100℃,试求合平壁层热阻之比,假定各层壁面间接触良好。 3)某燃烧炉的平壁由耐火砖、绝热砖和普通砖三种砌成,它们的导热系数分别为1.2W/(m·℃),0.16 W/(m·℃)和0。92 W/(m·℃),耐火砖和绝热转厚度都是0.5m,普通砖厚度为0.25m。已知炉壁温为1000℃,外壁温度为55℃,设各层砖间接触良好,求每平方米炉壁散热速率。

4)在外径100mm的蒸汽管道外包绝热层。绝热层的导热系数为0.08 W/(m·℃),已知蒸汽管外壁150℃,要求绝热层外壁温度在50℃以下,且每米管长的热损失不应超过150W/m,试求绝热层厚度。 5)Φ38×2.5mm的钢管用作蒸汽管。为了减少热损失,在管外保温。 50第一层是mm厚的氧化锌粉,其平均导热系数为0.07 W/(m·℃);第二层是10mm 厚的石棉层,其平均导热系数为0.15 W/(m·℃)。若管壁温度为180℃,石棉层外表面温度为35℃,试求每米管长的热损失及两保温层界面处的温度? 解:①r0 = 16.5mm = 0.0165m ,r1 =19mm = 0.019 m r2= r1+ 1 = 0.019+0.05 = 0.069 m r3= r2+2= 0.069+0.01 = 0.079 m 0= 45 W/(m·℃) W/m ②即 ∴t2= 41.8 ℃ 6)通过空心球壁导热的热流量Q的计算式为:,其中 ,A 1、A 2 分别为球壁的、外表面积,试推导此式。

化工原理第六章主要内容

第六章 传热设备 一、换热器的分类及特点 按用途分类: 加热器、冷却器、冷凝器、蒸发器和再沸器 按传热特征分类: 直接接触式、蓄热式、间壁式 二、夹套式换热器 夹套式换热器是在容器外壁安装夹套制成;主要用于反应过程的加热或冷却。 特点:结构简单,但其传热面积不大,不耐压,且传热系数也不高。 三、蛇管式换热器 (一)沉浸式 蛇管浸没在容器中的液体中形成 优点 :结构简单、价格低廉,能承受高压,便于防腐。 缺点 :传热面积有限,容器内液体湍动程度低,管外给热系数小。 (二) 喷淋式 蛇管成行地固定在钢架上形成,多用作冷却器。 优点:结构简单,造价便宜,耐腐蚀;管内 耐高压;管外α 比沉浸式大。 缺点:冷却水喷淋不易均匀,只能安装在室 外,占地面积大,要定期清洗。 四、套管式换热器 由大小不同的直管制成的同心套管,并由U 型弯头连接而成;每一段称为一程。 优点:构造较简单,耐高压,传热面积可调,应用方便,两流体均可达到较高的流速 ,且可完全逆流。 缺点:管间接头多,易泄露,占地较大,单位传热面消耗的金属量大。 五、列管换热器 优点 :单位体积所具有的传热面积大,结构紧凑、坚固、传热效果好。能用多种材料制造,故适用性较 强,操作弹性较大,尤其在高温、高压和大型装置中多采用列管式换热器。 (一)列管换热器的构造和形式 主要部件: 壳体、管束、管(花)板、顶盖(封头) 管束装在壳体内,固定于管板上 1.固定管板式(G ) 两端管板和壳体制成一体,结构简单,成本低; 壳程清洗和检修困难; 不进行热补偿或采用补偿圈进行热补偿; 不宜用于两流体温差过大(大于70℃)和壳程流体压强过高的场合。 2.浮头式换热器(F) 一端管板不与外壳连为一体, 形成可沿轴向自由浮动的浮头进行热补偿; 整个管束可以从壳体中抽出,管、壳程均便于清洗和检修; 允许两程温差较大; 结构比较复杂,造价较高。 3. U 型管式换热器 每根管子都弯成U 型,进出口分别安装在同一管板的两侧,每根管子可以自由伸缩进行热补偿; 封头用隔板分成两室,形成双管程; 管程不易清洗。 ????????????夹套式浸没式蛇管式间壁式喷淋式套管式 列管式

化工原理(下册)第六章吸收习题答案解析讲课稿

化工原理(下册)第六章吸收习题答案解析

6-1 已知在101.3 kPa(绝对压力下),100 g 水中含氨1 g 的溶液上方的平衡氨气分压为987 Pa 。试求: (1) 溶解度系数H (kmol ·m -3·Pa -1); (2) 亨利系数E(Pa); (3) 相平衡常数m ; (4) 总压提高到200 kPa(表压)时的H ,E ,m 值。 (假设:在上述范围内气液平衡关系服从亨利定律,氨水密度均为10003/m kg ) 解:(1)根据已知条件 Pa p NH 987*3= 3/5824.01000 /10117 /13m kmol c NH == 定义 333*NH NH NH H c p = () Pa m kmol p c H NH NH NH ??==-34/109.5333 (2)根据已知条件可知 0105.018 /10017/117 /13=+= NH x 根据定义式 333*NH NH NH x E p = 可得 Pa E NH 41042.93?= (3)根据已知条件可知 00974.0101325/987/* *33===p p y NH NH 于是得到 928.0333*==NH NH NH x y m (4)由于H 和E 仅是温度的函数,故3NH H 和3NH E 不变;而 p E px Ex px p x y m ====** ,与T 和p 相关,故309.0928.03 1' 3 =?=NH m 。 分析(1)注意一些近似处理并分析其误差。 (2)注意E ,H 和m 的影响因素,这是本题练习的主要内容之一。

6-2 在25℃下,CO 2分压为50 kPa 的混合气分别与下述溶液接触: (1) 含CO 2为0.01 mol/L 的水溶液; (2) 含CO 2为0.05 mol/L 的水溶液。 试求这两种情况下CO 2的传质方向与推动力。 解: 由亨利定律得到 * 2 250CO CO Ex kPa p == 根据《 化工原理》 教材中表 8-1 查出 ()kPa E CO 51066.1252?=℃ 所以可以得到 4 *1001.32 -?=CO x 又因为 ()()3 45 25/10347.318 1066.1100022 2m kPa kmol EM H O H O H CO ??=??= ≈ -ρ℃ 所以得 3 4*/0167.05010347.32 22m kmol p H c CO CO CO =??==- 于是:(1)为吸收过程,3/0067.0m kmol c =?。 (2)为解吸过程,3/0333.0m kmol c =?。 分析 (1)推动力的表示方法可以有很多种,比如,用压力差表示时: ① kPa H c p CO CO CO 9.2910347.301 .04 * 2 22 =?= = - 推动力 kPa p 1.20=?(吸收)

化工原理习题解 第六章 蒸馏

第六章 蒸 馏 相平衡 【6-1】苯(A)和甲苯(B)的饱和蒸气压数据如下。 根据上表数据绘制总压为时苯一甲苯溶液的-t y x -图及y x -图。此溶液服从拉乌尔定律。 解 计算式为 ,00 00 B A A B p p p x y x p p p -==- 计算结果见下表 苯-甲苯溶液的t x y --计算数据 苯-甲苯溶液的t y x --图及y x -图,如习题6-1附图1与习题6-1附图2所示。

习题6-1附图1 苯-甲苯t-y-x 图 习题6-1附图2 苯-甲苯y-x 图 【6-2】在总压.101325kPa 下,正庚烷-正辛烷的汽液平衡数据如下。 试求:(1)在总压.101325kPa 下,溶液中正庚烷为(摩尔分数)时的泡点及平衡汽相的瞬间组成;(2)在总压.101325kPa 下,组成.035x =的溶液,加热到117℃,处于什么状态?溶液加热到什么温度,全部汽化为饱和蒸气? 解 用汽液相平衡数据绘制t y x --图。 (1) 从t y x --图上可知,.035x =时的泡点为113.8℃,平衡汽相的瞬间组成.053y =。 (2) .035x =的溶液,加热到117℃时为气液混合物,液相组成.024x =,汽相组成.040y =。 .035x =的溶液加热到118℃时,全部汽化为饱和蒸气。 习题6-2附图 正庚烷-正辛烷t-y-x 图 【6-3】 甲醇(A)-丙醇(B)物系的汽液平衡服从拉乌尔定律。 (1) 试求温度80℃t =、液相组成.05x =(摩尔分数)时的汽相平衡组成与总压。 (2) 试求总压为.10133kPa 、液相组成.04x =(摩尔分数)时的汽液相平衡温度与汽相组成。 (3) 试求液相组成.06x =、汽相组成.084y =时的平衡温度与总压。组成均为摩尔分数。 用Antoine 方程计算饱和蒸气压(kPa) 甲醇 .lg ..157499 71973623886A p t =- +o 丙醇 .lg .137514 674414193 B p t =- +o 式中t 为温度,℃。 解 (1) 80℃t =)时,..1811,5093A B p kPa p kPa ==o o B A B p p x p p -=-o o o 总压 ()() ....18115093055093116A B B p p p x p kPa =-+=-?+=o o o 汽相组成 (181105) 0781116 A p x y p ?== =o (2) 已知..10133,04,求、p kPa x x y ==

化工原理第一章题库与解答

一、单选题 1.单位体积流体所具有的()称为流体的密度。 A A 质量; B 粘度; C 位能; D 动能。 2.单位体积流体所具有的质量称为流体的()。 A A 密度; B 粘度; C 位能; D 动能。 3.层流与湍流的本质区别是()。 D A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 4.气体是()的流体。 B A 可移动; B 可压缩; C 可流动; D 可测量。 5.在静止的流体内,单位面积上所受的压力称为流体的()。 C A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为()。 A A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。 D A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。 A A 大于; B 小于; C 等于; D 近似于。 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A A 压力表; B 真空表; C 高度表; D 速度表。 10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。 D A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的 关系为()。 B A. Um=1/2Umax; B. Um=; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。 A A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 13.层流底层越薄( )。 C A. 近壁面速度梯度越小; B. 流动阻力越小; C. 流动阻力越大; D. 流体湍动程度越小。 14.双液体U形差压计要求指示液的密度差( ) C A. 大; B. 中等; C. 小; D. 越大越好。 15.转子流量计的主要特点是( )。 C A. 恒截面、恒压差; B. 变截面、变压差; C. 恒流速、恒压差; D. 变流速、恒压差。 16.层流与湍流的本质区别是:( )。 D A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 17.圆直管内流动流体,湍流时雷诺准数是()。 B A. Re ≤ 2000; B. Re ≥ 4000; C. Re = 2000~4000。 18.某离心泵入口处真空表的读数为 200mmHg ,当地大气压为101kPa, 则泵入口处的绝对压强为()。 A

化工原理习题解答(第六章)

第6章 蒸馏 6-1. 尔定律。 解:0 0B A B A P P P P x --=; A A A x P P y 0 = x (y ) t/0 C

0.0 0.2 0.4 0.6 0.8 1.0 0.00.20.40.60.8 1.0 y x 6-2.利用习题6-1的数据 (1)计算相对挥发度α。(2)写出平衡方程式。 (3)算出x y -的一系列平衡数据与习题1作比较。 (答:(1) 44.2=α, (2)x x y 44.1144.2+=) 解:⑴0 A P P = α, 44.22 == α ⑵()x x x x y 44.1144.211+=-+=αα ⑶由α计算所得的一系列y 、x 值与习题6-1之值很接近。 6-3.将含%24(摩尔分数,下同)易挥发组分的某液体混合物送入一连续精馏塔中。要求馏出液含%95易挥发组分,釜液含%3易挥发组分。送至冷凝器的蒸气量为1h kmol 850-?,流入精馏塔的回流液量为1h kmol 670-?。试求: (1)每小时能获得多少kmol 的馏出液?多少kmol 的釜液? (2)回流比D L R = 为多少? (答:1h kmol 180-?=D , 1 h kmol 6.608-?=W ;72.3=R ) 解:D L V +=,

1h kmol 180670850-?=-=-=L V D , 72.3180 670=== D L R , W W D F +=+=180, W D F Wx Dx Fx +=即()03.018018095.024.0?-+?=F F , 解得:1h kmol 6.788-?=F , 1h kmol 6.6081806.788-?=-=-=D F W 。 6-4.有1 h kg 10000-?含物质A (摩尔质量为1 kmol 8kg 7-? )3.0(质量分数,下同) 和含物质B (摩尔质量为1 kmol 0kg 9-? )7.0的混合蒸气自一连续精馏塔底送入。若要求 塔顶产品中物质A 的组成为95.0,釜液中物质A 的组成为01.0。试求:(1)进入冷凝器底蒸气流量为多少?以摩尔流量表示。(2)回流比R 为多少? (答:(1)1h kmol 116-?=V ; (2) 96.1=R ) 解:W D F +=, W D F Wx Dx Fx +=, ?1 h kg 1.3085-?=D , 956.09005 .07895.078 /95.0=+= D x , 33.090 7.0783.078 /3.0=+= F x , 53.7890044.078956.0=?+?=D M , 11.869067.07833.0=?+?=F M , 1h kmol 11611.8610000-?==V , 1h kmol 28.3953 .781.3085-?==D , 96.1128 .39116 1)1(=-=-=?+=D V R D R V 。 6-5.某连续精馏塔,泡点加料,已知操作线方程如下: 精馏段 172.08.0+=x y 提馏段 018.03.1-=x y 试求原料液、馏出液、釜液组成及回流比。 (答: 38.0=f x ;86.0=d x ;06.0=W x ;4=R ) 解:精馏段操作线的斜率为8.01 =+R R , 4=?R ; 精馏段操作线的截距为 172.01 =+R x D 。 86.0=?D x ; 提馏段操作线在对角线的坐标为: W W x x y ==, 018.03.1-=?W W x x ,

相关文档
相关文档 最新文档