文档库 最新最全的文档下载
当前位置:文档库 › 第二章 相干斑形成原理

第二章 相干斑形成原理

第二章 相干斑形成原理
第二章 相干斑形成原理

第二章相干斑点噪声的形成原理与斑点噪声模型

相干斑点噪声是SAR影像的重要特征之一。要进行新滤波器的设计和开发,有必要了解斑点噪声的形成原理和斑点噪声模型以及其他相关知识,因此本章就斑点噪声的形成原理,概率分布函数、自相关函数、功率谱以及人们比较公认的斑点噪声模型做一个简要的介绍。

2.1 斑点噪声的形成原理

SAR影像上的斑点噪声是这样形成的[31],即当雷达波照射一个雷达波长尺度的粗糙表面时,返回的信号包含了一个分辨单元内部许多基本散射体的回波,由于表面粗糙的原因,各基本散射体与传感器之间的距离是不一样的,因此,尽管接收到的回波在频率上是相干的,回波在相位上已不再是相干的;如果回波相位一致,那么接收到的是强信号,如果回波相位不一致,则接收到的是弱信号。一幅SAR影像是通过对来自连续雷达脉冲的回波进行相干处理而形成的。其结果是导致回波强度发生逐像素的变化,这种变化在模式上表现为颗粒状,称为斑点噪声(Speckle)。SAR影像上斑点噪声的存在产生了许多后果,最明显的后果就是用单个像素的强度值来度量分布式目标的反射率会发生错误。

斑点噪声在SAR影像上表现为一种颗粒状的、黑白点相间的纹理。例如,对于一个均匀目标,如一片草覆盖的地区,在没有斑点噪声影响的情况下,影像上的像素值会呈现淡的色调(图2.1 A);然而,每个分辨单元内单个草的叶片的回波会导致影像上某些像素比平均值更亮,而另外一些像素则比平均值更暗(图2.1 B),这样,该目标就表现出斑点噪声效果[32]。

图2.1 斑点噪声的影响效果

2.2 斑点噪声的特征[33]

2.2.1 斑点噪声的概率分布函数

2.2.1.1单视SAR 图像

前人在光学和SAR 影像斑点噪声的理论分析上已经做了大量工作[31]、[34] 。单视图像的斑点噪声服从负指数分布,对均匀的目标场景,图像的像素强度的概率分布为: I I I I p )

/exp()(-= (2.1)

若以振幅A 或分贝值D 来表示,它们与强度I 的关系为

I=A 2 (2.2)

I I D ln 10

ln 10log 1010== (2.3) 所以强度概率分布可以直接转化为下式:

)/e x p (2)(2I A I

A A p -= (2.4) I K I

K D K D D p ))/e x p (e x p ()(-= (2.5)

其中k=10/ln10。它们均为Rayleigh 分布。

2.2.1.2多视SAR 图像

为了提高图像的信噪比要进行多视处理,多视处理是对同一场景的n 个不连续的子图像的平均。n 个独立子图像非相干迭加将改变斑点噪声的概率分布,强度I 的概率分布变成Gamma 分布:

)/e x p ()!1()(1

I nI I n I n I p n n n --=- (2.6)

)/e x p ()!1(2)(21

2I nA I

n A n A p n n n --=- (2.7) ))/e x p (e x p ()!1()(I K D n K nD I n K n D p n

n --= (2.8) 2.2.2 斑点噪声的自相关函数

斑点噪声的自相关函数具有指数分布形式如图2.2[33],可以看出在初始处有较宽的范围及噪声谱的非均匀性,即斑点噪声非白噪声。这可以用成像时邻域像素的相互干扰来解释。

2.2.3斑点噪声的功率密度谱

斑点噪声的功率谱密度如图2.3[33]所示呈椭圆结构,可用经验方程表示:

)e x p (2222

0np P nl l n D F D F C S --= (2.9)

其中F l ,F p 是沿轨迹方向和垂直于轨迹方向的空间频率,C 0,D nl ,D np 为常数。人

们了解到代表性图像具有指数型的自相关函数:

(){}22e x p ),(p p l l p l b b a R ττττ+-

= (2.10) 它的功率密度谱为:

222211)(p fp l fl p l f F D F D C F F S ++=+ (2.11)

其中C 1、D fl 、D fp 为常数。通过实验证明了观测图像的功率谱满足下式:

??

????????--+++=+=2222022221

e x p 1np p nl l p fp l fl n

f D F D F C F D F D C S S S (2.12) 从而表明了SAR 影像噪声和信号的不相关性。 2.3斑点噪声模型

2.3.1 Rayleigh 斑点噪声模型[34]、[36]

考虑一个分辨单元中的大量散射体。接收到的信号是各散射体回波的矢量和。用x 和y 分别表示其实部和虚部。强度I ,定义为I = x 2 + y 2,服从指数分布: )/e x p ()/1()(221σσI I p -= (2.13)

其均值为21)(σ=I M ,方差为41)(var σ=I 。

振幅A 为I 的平方根,服从Rayleigh 分布:

)/exp()/2()(2221σσA A A p -= (2.14)

其均值为2/)(1πσ=A M ,方差为4/)4()(var 21σπ-=A 。

Arsenault 和April 指出,每分辨单元的信息容量是很小的[37]。因此,逐像素进行斑点噪声的整体滤除而不牺牲分辨率是不可能的,使得空间域滤波在去除噪声的同时很难又保持较高的分辨率。

2.3.2乘性噪声模型[1]

在讨论斑点噪声滤波算法时,常用乘性噪声模型[5]、[38]来方便地描述斑点噪声:

ij ij ij v x z = (2.15)

图2.2 斑点噪声的自相关函数,分别估计自:

(a)沿航迹方向;(b)垂直于航迹方向;(c)两个方向 (摘自[33])

这里ij z 是SAR 影像上第(I,j)个像素的强度或振幅,ij x 为反射率,ij v 为服从均值 1(E[v] = 1)和标准偏差συ分布的噪声。Lee [39]提出了(2.15)式的线性近似:

)(v v x x v z ij ij ij -+= (2.16) 其中v 是噪声v 的平均,且1=v ,于是(2.16)式可写成:

ij ij ij u x z += (2.17) 其中)(v v x u ij ij -=,ij u 具有0均值和标准差v u x σσ=,所以我们可以得到斑点噪声图像的近似的加性噪声模型。这就为后面提出的通过小波域对SAR 影像去噪的方法提供了依据。

图2.3 SIR-B 影像斑点噪声的功率密度谱,分别估计自:

(a)沿航迹方向;(b)垂直于航迹方向;(c)两个方向;(d)二维谱的等值线图。 在估计前数据已经作过对数变换,在估计中使用了分割和cosine 窗口[35]。

迈克耳逊干涉仪(2014)

迈克耳逊干涉仪实验 一、实验目的 了解迈克尔逊干涉仪的原理、结构和调节方法,观察非定域和定域干涉条纹,测量氦氖激光的波长及钠双黄线的波长差。 二、实验原理 图1 迈克尔逊干涉仪的原理图 三、实验内容 1. 观察非定域干涉条纹: (1)调整光路,使M 1和M 2 垂直,(即M 1 // M 2 ) 打开He-Ne激光器,使激光束基本垂直M 2 面,在光源前放一小孔光阑,调 节M 2上的三个螺钉(有时还需调节M 1 后面的三个螺钉),使从小孔出射的激光 束经M 1与M 2 反射后在毛玻璃上重合,这时能在毛玻璃上看到两排光点一一重合。 (2)去掉小孔光阑,换上短焦距透镜而使光源成为发散光束,在两光束程差不太大时,在毛玻璃屏上可观察到干涉条纹,轻轻调节M 2 后的螺钉,应出现圆心基本在毛玻璃屏中心的圆条纹。 (3)转动鼓轮,观察干涉条纹的形状,疏密及中心“吞”、“吐”条纹随程差的改变而变化的情况。

2.测量He-Ne激光的波长: 以改变h,中心采用非定域的干涉条纹测波长:缓慢转动微动手轮,移动M 1 每“生出”或“吞进”50个条纹,记下对应的h值。N的总数要不小于500条,利用下式 和适当的数据处理方法求出λ值。 3.测钠黄光波长及钠黄光双线的波长差,观察条纹的可见度的变化 以钠灯为光源,调出等倾圆条纹,且观察者眼睛移动时,圆环中心条纹的改变不超过一两个。慢慢转动M2镜的位置的粗调手轮,观察干涉条纹的清晰度随光程差变化的情况。熟悉之后,改用M2镜的位置细调手轮调节,记下一系列相连的清晰度为零的M2的位置(共记10个位置)。用逐差法处理数据,根据下式求出波长差。 其中, 4. 选做内容: (1) 测量钠黄光的相干长度,观察氦氖激光的相干情况; (2) 调节观察白光干涉条纹,测定透明薄片的折射率. 以白光为干源,调节M1观察白光干涉条纹,直到被场中出现中央条纹(直线黑纹),设计方案,测量固体透明薄片的折射率或厚度。

散斑干涉实验

散斑干涉实验 光信息科学与技术08级3班 组别:B17 一、实验目的 1、了解散斑的性质及特点。 2、掌握散斑和离面散斑的测试方法。 二、实验原理 1、散斑的形成 当相干光照射一个粗糙物体的表面(或通过透明的粗糙面)时,在物体表 面前的空间,可得到一种无规律分布且明暗相间的颗粒状光斑,称为散斑。要 形成散斑且散斑质量较好必须具备以下条件: (1)有能发生散射光的粗糙表面; (2)粗糙表面深度须大于入射光波长; (3)入射光线的相干度要足够高,如使用激光。 图1、散斑图像 散斑携带了散射面的丰富信息,可以通过散斑的性质来推测物体表面的性质。由于这种办法的无损、快速等诸多优点,它被广泛应用于工业控制的缺陷检测、医学的光活检等领域,且受到越来越多的关注 2、散斑的大小 散斑颗粒的大小,可用它的平均直径来表示,颗粒尺寸的严格定义是两相邻亮斑间距离的统计平均值。此值由产生散斑的激光波长及粗糙表面圆型照明区域对该散斑的孔径角' u 决定: 散斑平均半径=='0.6/sin u λ (1) 上式说明散斑的大小粗略对应于散射光的干涉条纹间距。散斑的形状与照明区域的形状有关,若照明区域增大则散斑变小。上面所讲的散斑是由粗糙表面的散射光干涉而直接形成的,称为直接散斑(如图2所示)。若经过一个光学系统,在它的像平面上形成的散斑,称为成像散斑,亦称主观散斑(如图3所示)。 图2、客观散斑的形成 图3、主观散斑原理图 成像平面上P 点的散斑直径v σ,决定于透镜出射光瞳对P 点的孔径角' u ,即 ='0.6/sin u λ=0.6/NA λ=1.2(1+M )F λ (2) 其中NA 为透镜的数值孔径,M 是透镜的放大率。 主观散斑是物面上的散斑图像成像所得,这个物方散斑图的平均直径用表示: ='0.6/M*sin u 0.6/M*NA λλ= (3) 3、散斑的光强分布 正常散斑图是杂乱无章的随机散斑图,其强度分布为负指数概率密度函数。概率最大的 强度趋于零,即黑散斑比其他强度的散斑都多。

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

飞行原理复习题(选择答案) 2

第一章:飞机和大气的一般介绍 一、飞机的一般介绍 1. 翼型的中弧曲度越大表明 A:翼型的厚度越大 B:翼型的上下表面外凸程度差别越大 C:翼型外凸程度越大 D:翼型的弯度越大 2. 低速飞机翼型前缘 A:较尖 B:较圆钝 C:为楔形 D:以上都不对 3. 关于机翼的剖面形状(翼型),下面说法正确的是 A:上下翼面的弯度相同 B:机翼上表面的弯度大于下表面的弯度 C:机翼上表面的弯度小于下表面的弯度 D:机翼上下表面的弯度不可比较 二、1. 国际标准大气规定的标准海平面气温是 A:25℃ B:10℃ C:20℃ D:15℃ 2. 按照国际标准大气的规定,在高度低于11000米的高度上,高度每增加1000米,气温随季节变化 A:降低6.5℃ B:升高6.5℃ C:降低2℃ D:降低2℃ 3. 在3000米的高度上的实际气温为10℃,则该高度层上的气温比标准大气规定的温度 A:高12.5℃ B:低5℃ C:低25.5℃ D:高14.5℃

4. 在气温比标准大气温度低的天气飞行,飞机的真实高度与气压高度表指示的高度(基准相同)相比,飞机的真实高度 A:偏高 B:偏低 C:相等 D:不确定 第二章:飞机低速空气动力学 1. 空气流过一粗细不等的管子时,在管道变粗处,气流速度将 A:变大 B:变小 C:不变 D:不一定 2. 空气流过一粗细不等的管子时,在管道变细处,气流压强将 A:增大 B:减小 C:不变 D:不一定 3. 根据伯努利定律,同一管道中,气流速度减小的地方,压强将 A:增大 B:减小 C:不变 D:不一定 4. 飞机相对气流的方向 A:平行于机翼翼弦,与飞行速度反向 B:平行于飞机纵轴,与飞行速度反向 C:平行于飞行速度,与飞行速度反向 D:平行于地平线 5. 飞机下降时,相对气流 A:平行于飞行速度,方向向上 B:平行于飞行速度,方向向下 C:平行于飞机纵轴,方向向上 D:平行于地平线 6. 飞机的迎角是 A:飞机纵轴与水平面的夹角 B:飞机翼弦与水平面的夹角 C:飞机翼弦与相对气流的夹角 D:飞机纵轴与相对气流的夹角 7. 飞机的升力

5.1 脉象形成的原理

第一节脉象形成的原理 脉象是脉动应指的形象。脉象的产生是与心脏的搏动,心气的盛衰,脉道的通利和气血的盈亏直接有关。人体的血脉贯通全身,内连脏腑,外达肌表,运行气血,周流不休,所以,脉象成为反映全身脏腑功能、气血、阴阳的综合信息。具体分析脉象形成的有关因素,主要有以下几个方面: 心、脉是形成脉象的主要脏器 《素问·六节藏象论》说:“心主血,其充在脉”;《灵枢·本神》说,“心藏脉,脉舍神”。心脏搏动是生命活动的标志,也是形成脉象的动力。脉象的至数与心脏搏动的频率、节律相应,并受心脏气血的影响。心血和心阴是心脏生理活动的物质基础,心气和心阳视作心脏的功能状态。心阳概括了心搏加强,心率加速,气血运行加快,精神情志兴奋等功能状态;心阴概括了心搏减弱,心率减慢和精神情志宁静、抑制等功能状态。当心气旺盛,血液充盈,心阴心阳调和时,心脏搏动的节奏和谐有力,脉象和缓从容,均匀有力。反之,可以出现脉象的过大过小,过强过弱,过速过迟或节律失常等变化。同时心神不宁、情绪激动亦可引起脉象动数无序等变化。 脉为血之府,是气血运行的通道,心与脉在组织结构上相互衔接,形成了人体的血液循环系统,在功能上亦相互依存和协调,故称为“心之合”。《灵枢.决气》言脉的生理功能是“壅遏营气,令无所避”。说明脉不仅是运行气血的必要通道,尚有约束和推进血流顺从脉道运行的作用,是气血周流不息,正常循行的重要条件。因此,脉的功能状态能直接影响脉象。 二、气血是形成脉象的物质基础 气、血是构成人体组织和维持生命活动的基本物质。它们对脉象的影响以气的作用更为重要,这是因为气属阳主动,血液的运行全赖于气的推动,脉的“壅遏营气”则有赖于气的固摄,心搏的强弱和节律亦赖气的调节。具体地说,是宗气的“贯心脉而行血气”的作用。宗气聚于胸中,虚里(左乳下心尖部)搏动状况,可以作为观察和判断宗气盛衰的一个重要标志。脉象与虚里搏动的变化往往一致,所以宗气盛衰亦可在脉象上反映出来。若气血不足,则脉象细弱或虚豁而无力;气滞或血瘀,可以出现脉象细涩而不利;气盛血流薄疾,则脉多洪大滑数;阳气升腾则脉浮而大;气虚下陷则脉沉而细等。 有关脉象的形成与气血的关系,李闻言在《四言举要》中作了简单的概括:“脉乃血脉,血之府也,心之合也,…脉不自行,随气而至,气动脉应,阴阳之谊,气如橐籥,血如波澜,血脉气息,上下循环。”这段论述对学习和研究脉学理论有重要的意义。 三、其他脏腑与脉象形成的关系 脉象的形成不仅与心、脉、气、血有关,同时与整体脏腑功能活动的关系亦很密切。 肺主气,司呼吸。肺对脉的影响,首先体现在肺与心,以及气与血的功能联系上。由于气对血有运行、统藏、调摄等作用,所以,肺的呼吸运动是主宰脉动的重要因素。一般情况下,呼吸平缓则脉象徐和;呼吸加快则脉率亦随之急促;呼吸不已则脉动不止,呼吸停息则脉搏亦难以维持,因而前人亦将脉搏称为脉息。另一方面,“肺朝百脉”的功能将肺气与血脉的功能紧密联系。当呼吸匀和深长时,脉象一般呈流利盈实;呼吸急迫浅促,或肺气壅滞呼吸困难时,脉象多呈细涩。总之,肺气对脉率、脉形都有影响。 脾胃的功能是运化水谷精微,为气血生化之源,“后天之本”。气血的盛衰和水谷精微的多寡,表现为脉之“胃气”的多少。脉象中的“胃气”,在切脉时可以感知,主要在切脉的指下具有从容徐和软滑的感觉。脉中的胃气虽可看作脾胃运化功能的反映,但实际上更直接地反映了全身营养状况的优劣和能量的储备状况。《素问·五脏别论》说:“五脏六腑之气味,皆出于胃,变见于气口。”《素问.平人气象论》又说:“人以水谷为本,故人绝水谷则死,脉无胃气亦死。”所以脉有胃气为平脉(健康人的脉象),胃气少为病脉,无胃气为死脉。临

医学影像学考试资料—X线的基本原理

一、X线的特性 X线是一种波长很短的电磁波。波长范围为0.0006~50nm.目前X线诊断常用的X线波长范围为0.008~0.031nm(相当于40~150kv时)。在电磁辐射谱中,居γ射线与紫外线之间,比可见光的波长要短得多,肉眼看不见。除上述一般物理性质外,中公医疗卫生人才网为您总结X线还具有以下几方面与X线成像相关的特性: 1.穿透性:X线波长很短,具有很强的穿透力,能穿透一般可见光不能穿透的各种不同密度的物质,并在穿透过程中受到一定程度的吸收即衰减。X线的穿透力与X线管电压密切相关,电压愈高,所产生的X线的波长愈短,穿透力也愈强;反之,电压低,所产生的X线波长愈长,其穿透力也弱。另一方面,X线的穿透力还与被照体的密度和厚度相关。X线穿透性是X线成像的基础。 2.荧光效应:X线能激发荧光物质(如硫化锌镉及钨酸钙等),使产生肉眼可见的荧光。即X线作用于荧光物质,使波长短的X线转换成波长长的荧光,这种转换叫做荧光效应。这个特性是进行透视检查的基础。 3.摄影效应:涂有溴化银的胶片,经X线照射后,可以感光,产生潜影,经显、定影处理,感光的溴化银中的银离子(Ag+)被还原成金属银(Ag),并沉淀于胶片的胶膜内。此金属银的微粒,在胶片上呈黑色。而未感光的溴化银,在定影及冲洗过程中,从X线胶片上被洗掉,因而显出胶片片基的透明本色。依金属银沉淀的多少,便产生了黑和白的影像。所以,摄影效应是X线成像的基础。 4.电离效应:X线任何物质都可产生电离效应。空气的电离程度与空气所吸收X 线的量成正比,因而测量空气电离的程度可计算出X线的量。X线进入人体,也产生电离作用,使人体产生生物学方面的改变,即生物效应。它是放射防护学和放射治疗学的基础。 二、X线成像的基本原理 X线影像的形成,应具备以下三个基本条件:第一,X线应具有一定的穿透力;第二,被穿透的组织结构,必须存在密度和厚度的差异,在穿透过程中被吸收后剩余下来的线量,才会是有差别的;第三,这个有差别的剩余的X线,仍是不可见的,还必须经过显像这一过程,例如经X线片、荧屏或电视屏幕显示才能或得具有黑白对比,层次差异的X线影像。 人体的组织结构的密度可归类为三类:属于高密度的有骨组织和钙化灶等;中等密度的有软骨、肌肉、神经、实质器官、结缔组织以及体内液体等;低密度的有脂肪组织以及存在于呼吸道、胃肠道、鼻窦和乳突内的气体等。由于胸部的肋骨密度高,对X线吸收多,X线胶片上呈白影;肺部含气体密度低,X线吸收少,X

横向剪切干涉实验 (3)

横向剪切干涉实验 PB05210153 蒋琪 实验目的 利用一个焦距为190毫米的单薄透镜的剪切干涉条纹的分布求出该透镜的轴向离焦量及初级球差比例系数。 实验元件 HeNe激光、反射镜、小焦距透镜、薄透镜(190mm)、平行玻璃扳、白屏、带变焦镜头的CCD、处理软件 准直镜 实验原理 剪切干涉是利用待测波面自身干涉的一种干涉方法,在横向剪切干涉测量中,从相互垂直方向上剪切干涉图获得的差分波前可以恢复待测的二维波前。本次实验是利用平行平板来产生横向剪切干涉的装置,由于平行平板有一定厚度和对入射光束的倾角,因此通过被检测透镜后的光波被玻璃平板前后表面反射后形成的两个波面发生横向剪切干涉,剪

切量为s ,'cos 2i dn s =,其中d 为平行平板的厚度,n 为平行平板的折射率,'i 为光线在平行平板内的折射角。S 一般为1到3毫米左右。当使用光源为氦氖激光时,由于光源的良好的时间和空间相干性,就可以看到很清晰的干涉条纹。条纹的形状反映波面的象差。 (一)扩束镜焦点A 与被测准直透镜焦点F 不重合(即物点与F 不重合),但只有轴向离焦( ?z 不为零,y0=0): )(),(221ηξηξ+=a W (7) 由于剪切方向在ξ方向,所以: s a s W ξηξ?12),,(= (8) 所以干涉条纹方程为:12m a s λξ= (m=0,±1, ±2,…)(为平行于η轴,间隔为12a s λ 的直条纹,剪切条纹的零级条纹在0=ξ)。 (二) 扩束镜焦点A 与被测准直透镜焦点F 不重合,只有轴向离焦( ?z 不为零,y0=0),透镜具有初级球差(b3不为零),.剪切方向在ξ方向: 2223221)()(),(ηξηξηξ+++=b a W (9) 所以波象差方程为3 32231))(2(2),,(s b b a s s W ηηξηηξ?+++= (10) 此时亮条纹方程为: λξηξξm s b b a s =+++332231))(2(2(m=0,±1, ±2,…) (a) (b) (c)

散斑干涉实验

数字散斑干涉法测量横梁的面内位移 摘要:运用数字散斑干涉法研究横梁的面内位移。数字散斑计量采用CCD记录数字散斑图,因此不需要进行显影和定影等冲洗处理。数字散斑计量除了可以采用相加模式外,还可以采用相减模式。采用相减模式不需要进行滤波处理即可显现干涉条纹。 关键词:数字散斑干涉法,面内位移,散斑图。 20世纪70年代采用光电子器件(摄像机)代替全息地底片记录散斑图并存储在磁带上,由摄像机输入的物体变形后的散斑图通过电子处理方法不断与磁带中存储的物体变形前的散斑图进行比较后显示器上显示散斑干涉条纹,这种方法称为电子散斑干涉法。 进入20世纪80年代,随着计算机技术、电荷耦和器件和数字图像处理技术的快速发展,散斑计量技术进入了数字化时代,出现了数字散斑干涉法。数字散斑干涉法把物体变形前后的散斑图通过采样和量化变成数字图像,通过数字图像处理再现干涉条纹或相位分布。目前,数字散斑干涉已经取代了电子散斑干涉法。 另外,随着计算机技术,光电子技术与图像处理技术的发展,出现了数字散斑相关技术。同时,基于散斑计量技术,还出现了粒子图像测速技术。数字散斑计量的基本原理与传统散斑计量(也称为光学散斑计量)相同,差别主要表现在传统散斑计量由于采用全息底片记录散斑图,因此需要进行显影和定影等冲洗过程。另外,传统散斑计量只能采用相加模式,因此必须进行滤波处理,以便消除直流分量从而显现干涉条纹。而数字散斑计量由于采用CCD 记录数字散斑图,因此不需要进行显影和定影等冲洗处理。另外通过CCD记录的物体变形前后的数字散斑图可以存储咋同一帧存中,也可以存储在不同的帧存中,因此数字散斑计量除了可以采用相加模式,还可以采用相减模式或相关模式。采用相减模式不需要进行滤波处理即可显现干涉条纹。 目前该技术可进行变形、振型、形状、温度分布和无损检测等方面的测量,建筑物现场监测、复合材料的无损检测、焊缝质量检测、表面粗糙度检测等方面的研究都有过详细的报道。总之,该技术在航空航天、轮机工程、土木电子及生物医学等领域的测试中有非常重要的地位。 1、实验目的 采用数字散斑干涉技术和相移干涉技术测量物体的残余变形分布,通过相位解展开技术获取残余变形场的连续相位分布。加深对散斑干涉的感性认识,学会使用数字散斑计量技术对散斑干涉进行分析以及位移的计算。 2、实验设备和器具

医学影像成像原理附答案

《医学影像成像原理》考试(附答案) 一、A型题(每小题1 分) (D)1.X线由德国科学家伦琴发现于 A.1800年 B.1840年 C.1890年 D.1895年 (C)2.在产生通常诊断条件下的X线时,大部分的能量都转化为热能,产生X线的能量只占 A.1% B.5% C.0 .2% D.0.1% (A)2.透视主要利用了X线的 A. 荧光作用 B. 感光作用 C.生物作用 D.电离作用 (C)3.孕妇需避免X线检查,是因为X线的 A.光化学效应 B.荧光作用 C.生物作用 D.感光效应 (A)4.X线吸收量主要取决于 A.密度 B.厚度 C.形状 D.靶片距 (C)5.吸收X线能力最强的组织结构是 A.肌肉 B.脂肪 C.骨骼 D.肺组织 (D)6.增感屏的作用是: A.增加X线用量 B.延长曝光时间 C.提高图像清晰度 D..提高胶片感光量 (A)7.影响X线强度的因素,正确的是X线强度与: A.管电压成正比 B.管电压成反比 C.靶物质原子序数成反比 D. X线波长成正比 (D)8.下列成像方法中,哪一种较少用于胸部? A.平片 B.CT C.MR https://www.wendangku.net/doc/6110846397.html, (D)9.与平片相比,哪一项不是CT的优势 A.横断面成像 B.解剖分辨率高 C.密度分辨率高 D.空间分辨率高(A)10.相对CT而言,哪一项不是MRI的特点 A.对钙化和骨质结构敏感 B.无射线损伤 C.造影剂安全系数较大 D.直接多轴面成像 (C)11.磁场强度单位是 A.伦琴 B.戈瑞 C.特斯拉 D.居里 (A)12.人体 MRI最常用的成像原子核是 A.氢核 B.钠核 C.钙核 D. 碘核 (A)13.下列哪一组放射性核素需加速器生产: A .11C、13N、18F B .3H、12C、16O C .12C、13N、16O D .11C、16O、18F (C)14.PET探测原理是基于 A.光电效应 B.康普顿效应 C.湮没辐射 D.电子对生成效应 (C)15.若2MHz声波用于检查人体软组织,则其波长接近 A.0.01mm B.0.5mm C.0.75mm D.10mm (B)16. Doppler超声在诊断中居有重要地位,其原因是: A.可用于各个区域的检查 B.能发现组织界面的运动 C.不引起生物效应 D.用于小器官的检查 (A)17.低频探头的特点是 A.波较长和穿透力较大 B.波较短和穿透力较大 C.波较短和穿透力较弱 D.波较短和穿透力较弱

飞行原理

飞行原理 低速飞机翼型前缘较圆鈍 高速飞机翼型前缘较尖 平直机翼有极好的低速特性 椭圆机翼诱导阻力最小 梯形机翼矩形加椭圆优点,升阻比特性和低速特性 后掠翼、三角翼------ -------- ------ 高速特性 基本术语: 翼弦---翼型前沿到后沿的连线弦。 相对厚度(厚弦比)----翼型最大厚度与弦长的比值。 翼型的中弧曲度越大表明翼型的上下表面外凸程度差别越大。 翼展---机翼翼尖之间的距离。 展弦比---机翼翼展与平均弦长的比值。 飞机展弦比越大,诱导阻力越小。 后掠角---机翼1/4弦线与机身纵轴垂直线之间夹角。后掠角为了增大临界马赫数。 迎角---- 相对气流方向与翼弦夹角。 临界迎角---升力系数最大时对应的迎角。 有利迎角---升阻比最大时对应的迎角。

阻力 阻力=诱导阻力+废阻力 诱导阻力: 1.大展弦比机翼比小展弦比机翼诱导阻力小。 2.翼梢小翼可以减小飞机的诱导阻力。 3.诱导阻力与速度平方成反比。 废阻力: 废阻力=压差阻力+摩擦阻力+干扰阻力 1.摩擦阻力: 飞机表面积越大或表面越粗糙,摩擦阻力也越大。 2.压差阻力: 与迎风面积、机翼形状、迎角有关。 3.干扰阻力: 废阻力大小与速度的平方成正比。 总阻力是诱导阻力和废阻力之和。 在低速(起降)时诱导阻力占主要,在高速(巡航)时废阻力占主导。 诱导阻力=废阻力时,总阻力最小,升阻比最大。 放下起落架,升阻比减小。 增升装置----前缘缝翼+后缘襟翼 前缘缝翼:

位于机翼前缘,延缓机翼气流分离,提高最大升力系数和临界迎角。 在迎角较小时打开,会降低升力系数。 只有在接近临界迎角时打开,才能起到增升的作用。有的飞机装有“翼尖前缘缝翼”,其主要作用是在 大迎角下延缓翼尖部分的气流分离,提高副翼的效能,改善飞机横侧稳定性和操纵性。 后缘襟翼:简单襟翼+开缝襟翼+后退襟翼+后退开缝襟翼+前缘襟翼 1.简单襟翼—改变了翼型弯度—升阻比降低。 2.开缝襟翼—机翼弯度增大;最大升力系数增大 多,临界迎角降低不多。 3.后退襟翼—增大了机翼弯度和机翼面积,增升 效果好,临界迎角降低较少。 4.后退开缝襟翼(查格襟翼+富勒襟翼)—兼有 后退襟翼和开缝襟翼优点。 5.前缘襟翼—一方面减小前缘延缓气流分离;另 一方面增大了翼型弯度。使最大升力系数和临 界迎角得到提高。 增升装置通过三个方面达到增升目的: 一是增大翼型弯度,提高机翼上、下压强差,从而增大升力系数。

中医把脉是何原理

中医把脉是何原理? 版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明 https://www.wendangku.net/doc/6110846397.html,/logs/8275652.html 在公元前五世纪,我国就已经出现了脉诊,并一直沿用至今,充分证明了其强大的生命力和科学性。现代脉象研究证实,脉象的形成,主要取决于心脏的功能、血管的机能、血液的质和量。这三方面决定了脉象出现某些形态的改变,即脉动应指的形象,也即脉象。脉象首先可显示这三方面因素的病变,其次可据其推断其他的病变。显然,脉象是有其客观存在因素的。 心脏是形成脉象的动力器官,所以脉象首先可反映心脏的病变。如冠心病、心脏供血不好、心功能低下等可通过脉象有所反映。如当冠心病形成的时候,心脏可有停跳现象,这时通过脉象就可发现脉搏停跳。 血管的舒缩运动,反映了血液流动的质、量与速度等信息。血管本身的病变,如动脉硬化等也可反映在脉象上。 结脉的脉象特征是脉搏缓慢、时有停跳且没有规律。而冠心病、风湿性心脏病、甲亢性心脏病等疾病可出现脉搏停跳。 弦脉的脉象特征是血管紧张度增高,脉体端直、长。弦脉反映出高血压病,血液流动阻力增高、血管壁硬化。 濡脉的脉象特征是脉象细、位置表浅、无力,即浮细无力。当人体患有胃肠性感冒(不想吃饭、恶心、呕吐、拉肚子等,摄入不足)、急性胃肠炎,呕吐时,体液减少,气血不足,反映在脉象上就可出现濡脉的特征。 影响因素多难于准确把握 人体大致有28种脉象,每一种脉象都是对人体机能的反映,都有所对应的病症范围。脉象是一种生物信息传递现象,是从外部测量到的关于循环系统的一个信号。 其不足之处是,不精确,缺乏量化,如号脉可发现高血压,但测不出血压值,若说号出高压180mmhg是不科学的。任何一个生物体,除了发送内源性信息,还发送外源性的信息。决定脉象的内源性因素主要是前面提到的三方面的因素。决定脉象的外源性因素有地理、气候等。 天冷了,血管收缩变细了,血流会减慢;天热了,血管舒张变宽了,血流会加快,脉象就出现了相应的变化。哪怕是外界环境微不足道的变化,在脉象上都可能会出现明显的变化。如果在生理的调节范围内,是正常的脉象;超过生理范围,就是病态的脉象。有了干扰,脉象有时就不准确可靠。在这时,经验显得尤其重要,诊脉技艺高超、经验丰富的中医大夫可以较准确地发现病变,而一般的中医大夫就

飞行原理复习资料

飞行原理复习资料 140001 放襟翼的主要目的是()。 A:增大升阻比 B:减小升阻比 C:增大最大升力系数 D:增大升力系数 140002 增升装置的主要作用是()。 A:增大最大升阻比 B:增大最大升力 C:增大阻力 D:增大临界迎角 140003 通常规定升力的方向是()。 A:垂直于地面向上 B:与翼弦方向垂直 C:与飞机纵轴垂直向上 D:与相对气流方向垂直 140004 前缘缝翼能延缓机翼的气流分离现象,主要原因是可以()。 A:减小机翼对相对气流的阻挡 B:增大临界迎角 C:减小阻力使升阻比增大 D:增大上表面附面层中空气动能 140005 在通常情况下,放下大角度简单襟翼能使升力系数和阻力系数增大、临界迎角减小、升阻比()。 A:增大 B:不变 C:难以确定其增减 D:减小 140006 有利迎角的()最大。 A:升力系数 B:性质角 C:升阻比 D:性质角的正切值 140007 在额定高度以下,螺旋桨拉力随飞行高度的增高将()。 A:增大 B:减小 C:难以确定 D:不变 140008 即使在发动机工作的情况下,如果()螺旋桨也会产生负拉力。 A:飞行速度过大且油门也较大时 B:飞行速度过大且油门较小时 C:飞行速度小且油门较大时 D:飞行速度过小且油门也较小时 140009 对于没有顺桨机构的飞机,一旦发生停车,应该()。 A:把变距杆推向最前 B:把变距杆拉向最后 C:立即关闭油门 D:增大飞机的迎角 140010 螺旋桨有效功率随飞行速度的变化规律是:在小于某一速度的范围内,随速度的增大而(),大于某一飞行速度的范围内,随飞行速度的增大而()。 A:增大,保持不变 B:增大;减小 C:减小,增大 D:减小,保持不变 140011 在额定高度以上,螺旋桨有效功率随飞行高度的增高将()。 A:减小 B:增大 C:难以确定 D:不变

剪切电子散斑干涉仪的实验应用

万方数据

图1是剪切散斑的光路图 L:扩束镜;M:反射镜;W:Wollaston棱镜;P:偏振镜。楔块的楔角为a,肛是折射率,在像平面上被测量物体的剪切量: 觑’=Dl(肛一1)口 同样地,如折合到物体表面的剪切量为 n 既=甄7is.--0=Do(p—1)口(1) 工,l 其中D。和D。分别为透镜到物体表面和到成像平面的距离。这里假设楔块的楔角是沿x方向。图2为剪切散斑记录光路。同样,如楔块的楔角是沿Y方向的则剪切也是沿,,方向。 图2剪切散斑记录光路 对于整个物体来说,在像平面上形成了两个互相剪切的像,它们的波前分别为: U(X,y)=otexp[O(x,,,)](2) U(菇+舐,Y)=aexp[o(x+舐,Y)](3) 这里a表示光的振幅分布,p(菇,,,)和p(z+缸,Y)分别表示为两个剪切像的相位分布。这样,在像平面上两个像叠加结果为: Ur=re(茗,Y)=ty(菇+舐,y)(4) 其光强则为: ,=UrUr‘=2a2[1+cos∥_]r] ∥x=秒(菇+融,),)一日(茁,,,)(5) 当物体变形后,光波将形成一个相位的相应变化△∥。变形后的光强将变为: ,’=2a2[1+1308(∥x+△∥j)](6) 在剪切电子散斑干涉中,采用光电子元件(通常CCD摄像机)进行记录并直接输入计算机。它采用与电子散斑干涉法相同的信息表征模式,即用变形前后两幅散斑图像相减,其合成的记录光强为式(5)和现代科学仪器20081(6)相减: Ir=I,7(r)一,(r)I =|4Ⅱ2sinh学】sin学I(7)这种相减方式把本底光强或背景光强去除,而突 出了由于变形引起的相位变化△矽。的结果。当△勿。=2nor+儡r/2,其中,l=0,4-1,4-2…时,,,为极大值,即为亮条纹,从(7)可以看出,通过计算机可以很快地、直接地获得表示物体位移导数的条纹图。但是由于其存在的高频散斑的调制,图像质量较差,所以,必须采用滤波以及相位处理的方法进一步处理。 3实验设备 我们实验所采用的剪切电子散斑干涉仪是由同济大学与上海71l研究所联合研制的。剪切电子散斑干涉大多使用剪切棱镜,棱镜是由两个直角棱镜组成,当一束光垂直人射到棱镜表面上时,在后表面形成两束互相分开的,振动方向互相垂直的平面偏振光。这两束光互为参考光和物光而干涉,但其振动方向互相垂直,所以需要在棱镜后加一块偏振片,使其振动方向相同。图3为ESSPI的内部构造,图4为整套设备。它的优点在于光路布置简单,两束相干光波强度基本相等,因而可达到等光强的要求。: 图3仪器内部构造 图4整套设备  万方数据

数字散斑干涉(DSPI)研究的文献综述

数字散斑干涉振动测量技术研究进展 摘要:数字散斑干涉技术(DSPI)是一种光学测试方法,具有非接触、高灵敏度、全场、实时、无损检测的特点,在振动测量方面有着较大的优势。本文从图像处理、相移技术等方面阐述了数字散斑干涉振动测量的发展现状,并对其中的关键技术进行了比较和分析。 关键词:数字散斑干涉,振动测量,数字图像处理,相移技术 Research Progress on V ibration Measurement Using Digital Speckle Pattern Interferometry Abstract:Digital speckle pattern interferometry (DSPI) is an optical testing and measuring method,a non-contact, high-sensitivity, full-field, real-time, non-destructive one, which has an advantage in vibration analysis. This paper introduces the recent progress on DSPI vibration measurement from aspects of digital image processing and phase shifting, also compares and analyzes their key technologies. Keywords:Digital speckle pattern interferometry; Vibration measurement; Digital image processing; Phase shifting 0 引言 散斑计量技术是现代光测力学技术中的一种。它具有非接触、无损、全场、高精度、实时测量的特点,在轮廓、应变、位移和振动测量方面有着广泛的应用前景[1]。目前广泛采用的振动测试技术,包括加速度传感器、应变式传感器等,由于均为单点测量,且会为结构带来附加质量,从而对振动产生影响,无法应用于微小振动测量。数字散斑干涉振动测量技术可以直接显示被测表面的模态振型,并且对环境稳定性的要求低于全息干涉方法[2],这一系列优势使数字散斑干涉法成为激光测振技术中的一个重要分支。 采用激光散斑来研究振动测量的方法,最先由Massey于1968年开始进行研究。随后发展起来的散斑剪切干涉法[3],从而实现了对振动中形变的导数进行测量。在最初的散斑计量技术中,用于记录散斑条纹图的介质为全息干板。此后,随着电子技术的发展,出现了采用磁带记录散斑图的测量方法,即电子散斑测量技术,最初于20世纪70年代初由J.N.Butters和J.A.Leendertz

飞行原理和飞行性能基础教材

VERSION 0.1

飞行原理和性能是航空的基础。我们将简单介绍飞机的基本构成及其主要系统的工作,然后引入许多飞行原理概念,研究飞行中四个力的基础——空气动力学原理,讨论飞机的稳定性和设计特点。最后介绍飞行性能、重量与平衡等有关知识。 第一节飞机结构 本节主要介绍飞机的主要组成部件及其功用、基本工作原理,最后介绍飞机的分类。 飞机的设计和形状虽然千差万别,但它们的主要部件却非常相似(图1—1)。 *飞机一般由五个部分组成:动力装置、机翼、尾翼和起落架, 它们都附着在机身上,所以机身也被看成是基本部件。 图1—1 一、机体 1.机身 机身是飞机的核心部件,它除了提供主要部件的安装点外,还包括驾驶舱、客舱、行李舱、仪表和其他重要设备。现代小型飞机的机身一般按结构类型分为构架式机身和半硬壳式机身。构架式机身所受的外力由钢管或铝管骨架承受;半硬壳式机身由铝合金蒙皮承受主要外力,其余外力由桁条、隔框及地板等构件承受。单发飞机的发动机通常安装于机身的前部。为了防止发动机失火时危及座舱内飞行员和乘客的安全,在发动机后部与座舱之间设置有耐高温不锈钢隔板,称为“防火墙”(图1—2)。

图1—2构架式和半硬壳式机身结构形式 2.机翼 机翼连接于机身两侧的中央翼接头处,横贯机身形成一个受力整体。飞行中空气流过机翼产生一种能使飞机飞起来的“升力”。现代飞机常采用一对机翼,称为单翼。机翼可以安装于机身的上部、中部或下部,分别称为上翼、中翼和下翼。民用机常采用下单翼或上单翼。许多上单翼飞机装有外部撑杆,称为“半悬臂式”;部分上单翼和大多数下单翼飞机无外部撑杆,称为“悬臂式”(图1—3)。 图1—3半悬臂式和悬臂式机翼 机翼的平面形状也多种多样,主要有平直翼和后掠翼,小型低速飞机常采用平直矩形翼或梯形翼。 机翼一般由铝合金制成,其主要构件包括翼梁、翼肋、蒙皮和桁条。一些飞机的机翼内都装设有燃油箱。在机翼两边后缘的外侧铰接有副翼,用来操纵飞机横滚;后缘内侧挂接襟翼,在起飞和着陆阶段使用(图1—4)。 *金属机翼由翼梁、翼肋、桁条和蒙皮等组成。翼梁承受大部分弯曲载荷, 蒙皮承受部分弯曲载荷和大部分扭转载荷,翼肋主要起维持翼型作用。 图1—4

飞行原理练习题

1. 翼型的中弧曲度越大表明 A:翼型的厚度越大 B:翼型的上下表面外凸程度差别越大 C:翼型外凸程度越大 D:翼型的弯度越大 你的答案: 正确答案: B 2. 低速飞机翼型前缘 A:较尖 B:较圆钝 C:为楔形 D:以上都不对 你的答案: 正确答案: B 3. 关于机翼的剖面形状(翼型),下面说法正确的是 A:上下翼面的弯度相同 B:机翼上表面的弯度大于下表面的弯度 C:机翼上表面的弯度小于下表面的弯度 D:机翼上下表面的弯度不可比较 你的答案: 正确答案: B 1. 国际标准大气规定的标准海平面气温是 A:25℃ B:10℃ C:20℃ D:15℃ 回答: 错误你的答案: 正确答案: D 2. 按照国际标准大气的规定,在高度低于11000米的高度上,高度每增加1000米,气温随季节变化 A:降低6.5℃ B:升高6.5℃ C:降低2℃ D:降低2℃ 回答: 错误你的答案: 正确答案: A 3. 在3000米的高度上的实际气温为10℃,则该高度层上的气温比标准大气规定的温度A:高12.5℃ B:低5℃ C:低25.5℃ D:高14.5℃

回答: 错误你的答案: 正确答案: D 4. 在气温比标准大气温度低的天气飞行,飞机的真实高度与气压高度表指示的高度(基准相同)相比,飞机的真实高度 A:偏高 B:偏低 C:相等 D:不确定 你的答案: 正确答案: B 1. 空气流过一粗细不等的管子时,在管道变粗处,气流速度将 A:变大 B:变小 C:不变 D:不一定 回答: 错误你的答案: 正确答案: B 提示: 2. 空气流过一粗细不等的管子时,在管道变细处,气流压强将 A:增大 B:减小 C:不变 D:不一定 回答: 错误你的答案: 正确答案: B 提示: 3. 根据伯努利定律,同一管道中,气流速度减小的地方,压强将 A:增大 B:减小 C:不变 D:不一定 回答: 错误你的答案: 正确答案: A 提示: 4. 飞机相对气流的方向 A:平行于机翼翼弦,与飞行速度反向 B:平行于飞机纵轴,与飞行速度反向

电子剪切散斑干涉技术

第3章剪切散斑干涉技术 3.1 剪切散斑干涉技术的概念 剪切散斑干涉技术(Shearography)因其快速准确的检测能力在航空航天领域得到广泛认可,它与红外热成像检测技术(Thermography)一样,都是一种高效率的无接触无损检测技术,可以用于进行大面积的检测,在检测同时可以提供被测构件的完整图像的即时成像功能。与Thermography 不同的是Shearography 是一种光学传感技术,它利用激光照射在构件身上产生的散斑,对构件的表面破损、变形进行全面检测,所以它也是一种散斑干涉测量技术。 Shearography源自1971年诺贝尔物理学奖得主Dennis Gabor发明的全息干涉技术(Holography),可以说Shearography属于Holography系列,是Holography的一个简化版本。 由于Holography需要在宁静、避震的环境下才能发挥出功效,香港大学机械工程学系教授洪友仁于1980年将Holography改良,于是发明了Shearography,之后便将其应用于检测汽车轮胎上,不久洛杉矶发生飞机爆胎意外,FAA开始强制要求所有航空公司必须用Shearography检测飞机轮胎,自此之后,因轮胎问题而引起的飞机意外很少有发生。 近年来美国LTI(Laser Technology Inc.)公司开始将Shearography用于飞机无损检测。他们开发出基于Shearography的标准无损检测系统,可以用来检测部件的分层、脱胶、裂纹、空隙、冲击损伤、损坏的修补部位以及任何对结构完整性造成影响的缺陷。它可以应用于许多不同材料的检测,包括碾压材料,复合材料,蜂窝结构以及泡沫材料等,尤其对蜂窝结构的检测得心应手。 Shearography起初只作为一种生产工具应用于B-2隐形轰炸机计划,经过几年的评估,它的适用性和灵敏度得到证明后,航空宇航部件生产线便全线装备这套系统,目前NASA正使用它为航天飞机、Delta IV以及X-33实验机服务。

第3章飞行原理(精简版)

C001、飞机的迎角是 A.飞机纵轴与水平面的夹角 B.飞机翼弦与水平面的夹角 C.飞机翼弦与相对气流的夹角【答案】C(解析:-) C002、飞机下降时,其迎角A.大于零 B.小于零 C.等于零 【答案】A(解析:-) C003、飞机上升时,其迎角A.大于零 B.小于零

C.等于零 【答案】A(解析:-) C004、影响升力的因素 A.飞行器的尺寸或面积,飞行速度,空气密度 B.CL C.都是 【答案】C(解析:-) C005、载荷因子是 A飞机压力与阻力的比值 B.飞机升力与阻力的比值 C.飞机承受的载荷【除升力外】与重力的比值

【答案】C(解析:-) C006、失速的直接原因是 A.低速飞行 B.高速飞行 C.迎角过大 【答案】C(解析:p63) C007、当无人机的迎角为临界迎角时 A.飞行速度最大 B.升力系数最大 C.阻力最小 【答案】B(解析:-) C008、相同迎角,飞行速度增大一倍,

阻力增加约为原来的 A.一倍 B.二倍 C.四倍 【答案】C(解析:-) C009、通过改变迎角,无人机驾驶员可以控制飞机的 A.升力,空速,阻力 B.升力,空速,阻力,重量 C.升力,拉力,阻力 【答案】A(解析:-) C010、无人机驾驶员操作副翼时,飞行器将

A.横轴运动 B.纵轴运动 C.立轴运动 【答案】B(解析:-) C011、无人机飞行员操纵升降舵时,飞行器将绕 A.横轴运动 B.纵轴运动 C.立轴运动 【答案】A(解析:-) C012、无人机飞行员操纵方向舵时,飞行器将绕 A.横轴运动

B.纵轴运动 C.立轴运动 【答案】C(解析:p71) C013、舵面遥控状态时,平飞中向前稍推升降舵杆量,飞行器的迎角A.增大 B.减小 C.先减小后增大 【答案】B(解析:-) C014、舵面遥控状态时,平飞中向后稍拉升降舵杆量,飞行器的迎角A.增大 B. 减小

激光散斑检测中剪切散斑干涉术和相移ESPI技术介绍讲解

激光散斑检测中剪切散斑干涉术和相移ESPI技术介绍 孙小勇周克印王开福 (南京航空航天大学无损检测中心南京中国210016) 摘要:本文介绍了剪切散斑干涉术和相移ESPI技术成像的原理,对剪切散斑干涉术和相移ESPI技术应用于无损检测领域中散斑图像的获取方法进行了说明,列举了两种方法所得的散斑图,并比较了剪切散斑干涉术和相移ESPI技术在无损检测领域的应用,可为激光散斑检测技术应用到无损检测工作提供有益的参考。 关键词:无损检测剪切散斑干涉术相移ESPI技术 引言:激光散斑检测技术在无损检测应用广泛。与非光测技术相比,激光散斑检测技术具有非接触,高精度和全场等优点,是无损检测领域的一种重要和新兴的检测方法,随着激光散斑测量技术的发展,采用CCD摄像机输出干涉图像信号,可直接将输出的数字化信号与计算机连接,自动处理,并可在计算机屏幕上实时观察到干涉图形,现场应用十分方便。 在激光散斑应用于无损检测领域过程中,出现了剪切散斑干涉和相移ESPI两种技术,本文将就两种技术进行介绍并比较其在应用过程中的差异。 1、剪切散斑干涉技术: 1.1剪切散斑干涉的原理 电子剪切散斑干涉技术能直接测定位移的微分,对于应变非常有利。其基本原理是一般散斑干涉测量和剪切机理的结合,其装置是在一般散斑干涉测量光路的透镜前加上错位元件一剪切镜,通过不同的剪切元件,形成剪切散斑。其光路如图1所示,由激光器发出的激光经扩束镜照射在具有漫反射的物体上时,漫反射的光线通过剪切镜将产生偏折,在像平面上产生两个错位的像。它们在像平面上互相干涉,形成散斑干涉图像。该图像通过透镜由CCD经图像卡采集到计算机中,并对

相关文档 最新文档