文档库 最新最全的文档下载
当前位置:文档库 › 谈福州地铁1号线葫芦阵站深基坑降排水方案

谈福州地铁1号线葫芦阵站深基坑降排水方案

谈福州地铁1号线葫芦阵站深基坑降排水方案
谈福州地铁1号线葫芦阵站深基坑降排水方案

地铁站深基坑工程的施工监测方法

地铁站深基坑工程的施工监测方法 发表时间:2019-07-22T13:28:39.627Z 来源:《基层建设》2019年第13期作者:何洪海 [导读] 摘要:现代城市发展水平的提升,地铁作为城市发展的重要交通工具,其施工难度比其它工程大,再加上地铁站通常位于城市人口聚集的繁华区域,周围建筑物居多,给地铁站深基坑开挖造成了很多施工困扰。 浙江中赫工程检测有限公司 310021 摘要:现代城市发展水平的提升,地铁作为城市发展的重要交通工具,其施工难度比其它工程大,再加上地铁站通常位于城市人口聚集的繁华区域,周围建筑物居多,给地铁站深基坑开挖造成了很多施工困扰。以某地铁站深基坑工程为例,从地下连续墙水平位移、混凝土结构内支撑梁轴力以及钢管支撑梁轴力等施工监测进行了阐述,为判断深基坑工程的稳定性给出了依据。以便满足其安全施工要求,降低这类工程深基坑施工风险. 关键词:地铁站;深基坑;支撑梁轴力;地下连续墙;施工监测 1工程概况 某地铁站工程基坑长度为 150.2m,宽度为 29.02m,地下支护结构采用连续墙加内支撑的方法。该深基坑工程整体上呈正方形结构,基坑开挖深度都在 25m 左右,基坑南侧位于地铁站隧道正上方,开挖深度为 21.09m,北侧开挖深度为24.91m,塔楼位置开挖深度为 25.14m。深基坑正下方为该地铁线区间盾构隧道,隧道结构顶部埋深约 28m,深基坑开挖至底部后,区间盾构隧道结构顶部正上方岩层厚度约 8m。根据工程概况,深基坑开挖过程施工监测项目主要有:地下连续墙水平位移监测、基坑壁即连续墙顶部水平位移监测、混凝土结构内支撑梁轴力以及钢管支撑梁轴力测试。在施工监测过程中,借助支撑梁内力监测和基坑位移监测大体上可以判断深基坑工程的稳定性。 2 深基坑工程监测过程 2.1 基坑内外各个监测项目测点布置 基坑开挖各个监测项目测点位置设置要按照工程设计进行,同时结合基坑开挖导致的应力场以及位移场分布状况变化、施工经验,在合适的位置布设,保证监测数据能够全面反应基坑变形、受力状况以及对外部环境的影响程度。例如该工程基坑开挖分为三段,即隧道正上方、北侧、塔楼,开挖前需要在不同开挖段设置监测点,同时了解基坑受力和变形状况,及时反馈基坑稳定情况。 2.2 各个监测点基坑埋设 深基坑施工监测点埋设要根据基坑支护结构以及周围环境状况确定,具体如下:①监测点埋设要优先考虑煤气管道和大口径用水管道位置,因为这些管道都是刚性压力管,对于差异沉降十分敏感,尤其是管道接头位置最为薄弱。②根据地表沉降曲线走向,对影响较大区域的管线加密布点,也要兼顾到其他管线。③监测点间距通常在 10~15m,本工程基坑长度为 150.2m,故监测点间距可设置为 15m。通常是根据每一节管道长度进行布点,这样能全面体现出地基沉降曲线。④监测点有直接埋设和间接埋设两种。前者是借助抱箍将测点放在管线上,这种埋设方法能真实体现管线沉降和位移变化,但是实际施工比较困难,对于本工程来讲,由于城市主干道下方管线较多,所以不建议使用该方法;后者是将测点安置在管线轴线对应地表。本工程建议使用两种埋设方法结合,直接测点借助管线于地面露出位置进行设置,间接测点则根据管道轴线设置。 2.3 工程应用 (1)监测点布置。根据工程设计要求,本工程在基坑周围一共设置 8 个测斜孔和18个墙顶位移监测点,第一层设置10 根混凝土支撑的钢筋应力计,另外设置 22 根钢支撑轴力计负责应力监测。 (2)测斜监测。①8 个测斜孔监测使用测斜仪监测,测斜孔监测精度为 0.25mm/m。②8 个测斜孔管道埋设过程中,事先在现场组装完成,然后绑扎固定在钢筋笼上,严格校正导向槽方位,保证导向槽与基坑边线走向垂直或平行,导向槽与钢筋笼一同放入槽内,用混凝土浇灌。③混凝土浇灌之前,事先将管底底盖封好,用清水注满测斜管,避免测斜管在混凝土浇灌过程中浮起,也可以防止水泥砂浆流入管内。测斜管出露冠梁顶部 20cm 左右。为了保证测斜管孔口不受损坏,使用镀锌钢管将测斜管顶部 1m 左右位置套住,并焊接在钢筋笼上,用堵头密封。镀锌管、测斜管间使用水泥砂浆填塞。④基坑开挖和地铁站地下结构施工中进行测斜监测,可以实时了解地下连续墙变形状况。测斜过程中保证测试仪导轮在导槽内,轻滑至管底,待稳定后以 50cm 为间隔单位进行测读;测量到管口位置,翻转测斜仪进行复测,保证每个测斜孔测量两次,同时将测试平均值作为初始值,这样可以降低仪器测量误差。 (3)支撑梁轴力监测。支撑轴力量监测目的是了解基坑开挖以及结构施工阶段的支撑轴力状况,同时结合围护体位移监测评估支护结构安全性,钢支撑受力情况使用轴力计量测。混凝土支撑钢筋应力使用钢筋应力计量测,首先用频率计量测钢筋计频率,然后根据量测的频率标定曲线;其次将最终量测的数据转换成轴力值;最后根据钢筋计直径计算钢筋应力。 (4)地下连续墙施工监测。地下连续墙各个监测点设置在压顶梁体上,按照基坑开挖深度 3 倍距离将基准点设置在该距离范围以外的位置,围护墙体水平位移监测使用小角度法或视准线法。该深基坑工程施工监测所用到的主要监测设备和具体型号:①全站仪 1 台,型号GTS602;②光学测量仪 1台,精密光学测量收敛仪和滑动测斜仪;③光学测量滑动测斜仪 2 台,型号为 CX- 01;④钢筋计 60 个,振弦式钢筋计。 2.4 施工监测中的监控报警值 深基坑施工监测中报警值至关重要,通常需要根据深基坑支护结构和现场环境来确定监测警戒值。一般基坑支护结构位移变化、受力状况、环境沉降位移等只要保持在警戒值允许范围内,就可以继续施工,否则需要及时调整施工方案,制定加固措施,保证基坑工程施工安全。警戒值的设置一方面需要考虑施工安全,另一方面也要考虑到施工经济性。如果警戒值设置过于严格,势必会影响施工进度;反之,警戒值设置较低也会威胁到支护结构稳定性和施工安全。通常警戒值的设置需要考虑以下几点因素:①按照基坑支护结构计算书确定监测报警值;②对于需要特殊保护的地下管线等设施,需要按照主管部门提出的设计要求设置警戒值;③严格按照周围建筑物变形承受能力合理控制警戒值标准;④满足现行的规范要求。按照上面的原则,监测频率应当根据施工进度确定,基坑开挖过程中每天监测一次,其他施工阶段每 3~5d 监测一次。如果监测结果超出预警值,要加密观测;若有危险事故征兆则需连续观测,同时要及时采取应急措施。为了保证基坑安全,要加强基坑基础监测,及时将监测数据反馈给设计人员,按照施工规范要求设置预警值,超出预警值要及时上报相关部门处理。当然除此之外,还需要考虑煤气管道变位、自来水管道变位、立柱桩差异隆沉等,具体见表 1。每次量测后都要对每个测量点进行

地铁站深基坑施工方案

目录 1.工程概况 (1) 1.1危大工程概况及特点 (1) 1.2施工环境概况 (6) 1.3工程重点及应对措施 (11) 1.4施工场地布置 (13) 1.5施工要求 (16) 1.6技术保证条件 (16) 2.编制依据 (17) 2.1编制依据 (17) 2.2编制范围 (19) 3.施工计划及资源投入计划 (19) 3.1施工进度计划 (19) 3.2资源投入计划 (20) 4.施工工艺技术 (23) 4.1技术参数 (23) 4.2钻孔灌注桩(立柱桩、抗拔桩)施工方案 (24) 4.3SMW工法桩施工方案 (32) 4.4基坑降水 (38) 4.5基坑开挖及支撑施工方案 (41) 4.6钢支撑施工 (50) 4.7检查要求 (57) 4.8监控测量 (58) 4.9混凝土支撑拆除施工方案 (68) 5.施工管理及作业人员配备和分工 (69)

5.1组织体系 (69) 5.2施工任务划分 (73) 5.3作业人员配备及分工 (74) 6.安全管理体系与措施 (75) 6.1安全管理目标及责任制 (75) 6.2安全管理组织体系 (76) 6.3安全管理措施 (76) 7.质量管理体系与措施 (85) 7.1质量管理体系 (85) 7.2质量保证措施 (88) 8.环水保及文明施工管理体系与措施 (94) 8.1环境保护及文明施工目标 (94) 8.2环保与文明施工管理保护体系 (94) 8.3环水保及文明施工管理措施 (95) 9.季节性施工保证措施 (97) 9.1雨季的施工措施 (97) 9.2冬季的施工措施 (99) 9.3夏季的施工措施 (100) 10.应急预案 (101) 10.1应急组织体系 (101) 10.2指挥机构及职责 (102) 10.3应急救援流程 (107) 10.4应急预案培训与演练 (109) 10.5应急救援物资与设备 (110) 10.6医疗保证措施 (112)

地铁车站基坑监测方案

地铁车站基坑监测方案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

1 工程概况 武汉市轨道交通3号线为武汉市第一条穿汉江地铁,它起始于沌阳大道站,终止于汉口三金潭站。全长28公里,设站23座,范湖站为第14座车站。 范湖站为地下三层单柱两跨式岛式站台车站,地下分站厅、设备、站台三层,车站标准段结构外包尺寸为×,顶部覆土约~。主体建筑面积16443m2,附属建筑面积6808 m2,总建筑面积23251 m2。有效站台宽11m,有效站台中心处轨面绝对标高为。车站主体围护结构采用1000mm厚地下连续墙,并入岩以满足抗浮要求;出入口和风道部分采取SMW工法桩加内支撑,桩径850mm,咬合250mm 本站位于规划马场角路与青年路的交叉路口,沿规划马场角路布置于路下,路口北侧有富苑假日酒店,马场角路北侧为在建葛洲坝国际广场北区住宅小区,南侧为规划葛洲坝国际广场(如图1-1所示)。车站与2号线范湖站通过通道换乘。车站内主要有电力、电信、自来水、排水等管线。 图1-1 现场图片 拟建场区地形平坦,原始地貌属长江冲积I级阶地。场区内地表水体不发育,未发现有河、沟、塘等地表水体分布。地下水按赋存条件,可分为上部滞水、潜水、孔隙承压水、碎屑岩裂隙水。地下水对砼及砼中钢筋不具腐蚀性,对地下钢结构具弱腐蚀性。 2 编制依据及主要原则 编制依据 1)武汉市轨道交通3号线一期工程设计施工图 2)地下铁道、轻轨交通工程测量规范(GB-50308-1999) 3)《建筑变形测量规范》(JGJ8-2007) 4)《工程测量规范》(GB50026-2007) 5)《建筑基坑工程监测技术规范》GB 50497-2009 主要原则 1)对围护体系及支撑系统中相当敏感的区域加密测点数和项目,进行重点监测; 2)对勘察工程中发现地质变化起伏较大的位置,施工过程中有异常的部位进行重点监测; 3)除关键部位优先布设测点外,在系统性的基础上均匀布设监测点;结合施工实际确定测试方法、监测元件的种类、监测点的保护措施,调整监测点的布设位置,尽量减少对施工质量的影响;结合施工实际确定测试频率。

地铁站工程深基坑的施工监测方法

地铁站工程深基坑的施工监测方法 [ 摘要] 某地铁站工程基坑开挖深度23 m , 采用地下连续墙加内支撑的支护方法 ,为保证基坑开挖及结构施工安全, 采用信息法施工,本文介绍其监测方法、监测设施、数据处理与反馈 [ 关键词] 基坑开挖;信息法施工;监测方法;监测设施;数据处理与反 1 概述某地铁站工程基坑长1481 2 m , 宽28175 m , 开挖深度2 3 m , 采用地下连续墙加内支撑的支护方法。按设计要求, 为保证基坑开挖及结构施工安全,基坑施工应与现场监测相结合,根据现场所得的信息进行分析 ,及时反馈并通知有关人员,以便及时调整设计、改进施工方法、达到动态设计与信息化施工的目的。该基坑的监测内容主要有:基坑壁(地下连续墙) 的水平位移观测(测斜);地下连续墙顶水平位移监测;混凝土内支撑梁的轴力测试;钢管支撑梁的轴力测试。通过基坑位移与支撑梁的内力监测,基本上可以了解基坑的稳定情况。该工程通过信息化施工,监测小组与驻地监理、设计、业主及相关各方建立良性的互动关系,积极进行资料的交流和信息的反馈,优化设计, 调整方案,保证了工程施工的顺利进行。2 监测组织按该工程的特点和要求,施工单位与勘察研究机构合作,组建专业监测小组,负责该工程监测的计划、组织和质量审核。制定如下组织措施: a) 监测小组由经验丰富的专业技术人员组成; b) 做好基准点和监测点的保护工作; c) 采用专门的测量仪器进行监测,并定期标定; d) 测量仪器由专人使用,专人保养,定期检验; e) 测量数据在现场检验,室内复核后才上报,并建立审核制度,对采集的数据及其处理结果经过校验审核后方可提交; f) 严格按现行《建筑基坑支护技术规程》等规范与有关细则操作; g) 根据测量及分析的结果,及时调整监测方案的实施; h) 测量数据的储存、计算与管理,由专人采用计算机及专用软件进行; i) 定期开展相应的QC 小组活动,交流信息和经验。3 测点布置及监测方法3.1 测点布置 按设计要求,在基坑周边共布置8 个测斜孔、19 个墙顶水平位移监测点、每层11 根钢筋混凝土支撑梁、23 根钢支撑梁进行应力监测。3.2 测斜方法测斜采用CX201 型测斜仪对土体进行监测, 精度0.01 mm 。测斜管埋设时,在现场组装后绑扎固定于钢筋笼上,校正导向槽的方向,使导向槽垂直或平行于基坑边线方向,随钢筋笼一起沉放到槽内, 并将其浇灌在混凝土中。浇灌混凝土前,封好管底底盖,并在测斜管内注满清水,防止测斜管在浇灌时浮起和防止水泥浆渗入管内。测斜管露出冠梁顶部约10~20 cm 。测斜管孔口的保护措施:用<100 镀锌钢管将测斜管顶部约1 m 套住,焊接在钢筋笼上,并用堵头封住。镀锌管与测斜管之间用水泥砂浆填塞。在基坑开挖及地下结构施工过程中实施测斜,以了解地下连续墙的变形情况。测试时保证测试仪导轮在导槽内,轻轻滑入管底待稳定后每隔50 cm 测读一次,直至管口;然后测斜仪反转180 度,重新测试一遍,以消除仪器的误差。第一次(基坑开挖前) 测试时,每个测斜孔至少测试2 次,取平均值作为初始值。3.3 支撑梁轴力监测方法对钢筋混凝土支撑梁,采用钢筋应力计测试混凝土内支撑梁的轴力。施工时在支撑梁每个测试断面的上下主筋上各焊接一只钢筋应力计,将导线引出。基坑开挖时由频率计测试其轴力变化情况。对钢管支撑梁,钢支撑安装好以后,将钢弦式表

地铁工程深基坑结构工程施工质量、安全监督规定【最新版】

地铁工程深基坑结构工程施工质量、安全监督规定 地铁工程深基坑,是指基坑开挖深度超过5米(含5米)的基坑。深基坑支护工程施工包括:支护结构(地下连续墙、咬合桩围护工程、SWM工法桩、喷锚、桩锚、土钉墙等),支撑体系(钢结构支撑、钢筋砼支撑等),地下水处理(深井降水、侧壁帷幕、水平封底等)。深基坑结构工程施工质量、安全须符合以下监督规定: 一、地铁深基坑工程施工图设计文件须依据国务院《建设工程质量管理条例》、建设部《房屋建筑和市政基础设施工程施工图设计文件审查管理办法》(建设部令第134号)做好施工图审查工作;施工专项方案必须符合国家有关规范的要求,并做好审查、专家论证、技术交底工作和现场的各项准备工作。当深基坑工程的设计单位为非原主体结构工程的设计单位时,其设计文件应由原主体结构工程设计单位核验、确认。 二、深基坑工程的设计单位应做好技术交底和工程施工过程的跟踪服务工作,及时掌握施工现场情况,发现实际情况与勘察报告不符或者出现异常情况时,应当及时通知建设单位,必要时应当提出进行补充勘察或修改设计的要求。 三、深基坑工程的施工单位应依据设计文件、勘察报告及环境资

料,编制深基坑工程施工组织设计。施工组织设计应当具有针对性和可操作性,从施工方法、施工程序、进度安排、安全防范等方面进行有效控制,并符合下列要求: (一)对相邻设施应当有周密的保护措施; (二)对地面堆载、地表水、地下水应当有详细的控制措施; (三)对地质条件和周围环境及地下管线复杂的深基坑工程应当有控制险情的应急措施。 深基坑工程的土方开挖前,施工单位应组织专家对土方开挖专项施工方案进行论证。 四、监理单位要针对深基坑工程特点,认真编写、完善监理规划、监理实施细则及旁站、见证监理方案,并落实各项监理措施,严格按经依法审查批准的设计文件和施工组织设计监督施工和监测,及时掌握监测数据、分析意见。 监理单位发现深基坑工程的施工问题应当及时向施工单位下达整改通知单;出现险情的,应当及时下达暂停令并向建设单位和监督机构报告,并立即采取应急措施。

地铁车站深基坑支撑体系施工技术

地铁车站深基坑支撑体系施工技术 摘要:以广西大学地铁车站为依托,分析深基坑开挖范围地质与周边环境情况下,确定深基坑支撑体系施工方案,论述支撑体系施工的重点和注意的问题,确保深基坑施工安全。通过理论验算和对监测数据分析,阐述本工程深基坑支撑体系施工技术方案的可行性。 关键词:深基坑连续墙钢支撑钢围囹支撑体系监测施工技术 0 前言 随着人口和汽车不断增加,为城市发展的需要,解决部分交通拥堵问题,全国各大城市大兴城市轨道交通建设。虽然在国内城市轨道交通发展已经经历了几十年了,总结了不少施工技术经验,但是南宁尚无轨道交通工程建设经验,同时南宁的地质条件与其它城市不同,给南宁轨道交通建设带来一定的难度,所以对南宁轨道交通工程的第一个试验段——广西大学站的各种施工技术的研究,特别是在南宁特有的地质条件下深基坑支撑体系施工技术的研究,为今后南宁轨道交通工程设计、施工积累经验,提供数据,具有非常好的意义 1 工程概况 1.1车站设计概况 广西大学站是南宁市轨道交通工程一号线近期工程的第九个站,位于大学路和明秀路交叉的十字路口。车站设计总长465m,车站设置11个出入口,2个风亭。车站标准断面宽度为20.7m,为地下两

层岛式车站。一号线有效站台中心线轨面埋深为14.955m(相对地面),中心轨面标高62.315m。底板埋深为15.535m(相对地面),顶板覆土厚度大于3m。基坑开挖深度为16.24m~19.16m,基坑开挖宽度20.7m~27.7m。广西大学站分为车站主体、两端盾构始发井、出入口、风亭、冷却塔等,车站总建筑面积26941.29m2,主体建筑面积21163.6m2,主要结构形式为双柱三跨(7.45+5+7.45m)和(9.95+9.95m)框架结构,车站负一层为站厅,负二层为站台层,有效站台长120m,宽12m。 1.2地质地貌情况 大学路为南宁市东西向的主要交通枢纽,车流量大,人口密集。地面条件复杂,地表两侧的建筑物密集,是集商业民用建筑的一条街。拟建车站构筑物左侧沿线埋藏有旧地下防空洞,东西走向。防空洞顶板埋深一般为6m左右,深度范围一般为4~10m。车站及附属工程用地范围内,主要为道路及绿化带,地形起伏小,平坦,地面高程75.86~77.89米,相对高差2.03米;地貌属邕江北岸ⅱ级阶,第四系沉积物为邕江河流冲积砂砾层及土层,下伏基岩为下第三系泥岩、粉砂质泥岩、泥质粉砂岩、粉砂岩。 1.3 基坑情况分析 工程范围内地质条件复杂,多为透水性地层,施工中可能出现泥浆流失、钻孔坍塌、基坑失稳、周边建筑结构地基失稳、主体结构施工过程中渗水漏水严重等情况。因此在围护结构和支撑体系施工中,要注意各道工序的施工要点,安全施工,保证支撑体系的质量。

地铁车站监控量测方案_(车站)

一、汉中门车站基坑施工监测方案 1.1 工程概况 汉中门车站位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m车站总长度为:161. 50米, 车站标准段宽度:20. 90米。顶板埋深约2. 8?3. 6米,基坑开挖深度约20. 93?23. 1米。车站西端南北侧在施工阶段各设一个10nm8m的盾构吊出井,东端车站底板设1. 9X1. 9的电缆过轨通道与I号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11 . 5m 考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m 有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3 号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用? 800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的? 1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的?1200人工挖孔 桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用?609mm勺钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m

1. 2工程地质条件和周边环境情况 1. 2. 1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1. 80—4. 30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5. 10—22. 90米,主要为全新世?上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层” ,岩芯为泥质粉砂岩加粉砂质泥岩,软硬相间,属极软岩。汉中门车站地质参数由《南京地铁二号线汉中门站岩土工程详细勘察报告》(编号:2004168-1)提供。穿越的主要土层由上至下依次为:①—杂填土; ①—2b2-3素填土;②—15-2粉质粘土;②一3b2-3粉质粘土;③一lb |-2粉质粘土:③一2b2-3粉质粘土;③一3b1- 2粉质粘土:③一4e粉质粘土:Klg-1a强风化泥质粉砂岩:Klg-2a中风化泥质粉砂岩。 1. 2. 2.水文 本站地下水类型主要为上层滞水、孔隙潜水和基岩风化裂隙水。上层滞水主要赋存于①层填土的碎砖、碎石等杂物的孔隙格架中;孔隙潜水分布在②层软土中;③层硬可塑粉质粘土,可视为相对隔水层;基岩风化裂隙水土要分布于岩石风化界面和粉砂岩、泥质粉砂岩裂隙中,裂隙多被允填、裂隙一般不富水。地下水年变幅0. 50?1. 50米,地下水对砼无腐蚀性,对钢筋砼结构中的钢筋无腐蚀性,对钢结构具有弱腐蚀性。场地土对砼无腐蚀性,对钢结构有弱腐蚀性。 设计时,地下水位埋深按1. 00米考虑。 1. 2. 3.气象 本项目所在区域处于长江下游北热带季风气候区,具有气候温和,雨量充沛,日照充足,无霜期长,四季分明等特点,因受大陆、海洋以及来自南北天气系统段影响,气候比较复杂,年际间的变化大,气象灾害比较频繁,年降雨量为1000?1200mm年内分布也不

杭州市地铁深坑工程监测管理规定

杭州市地铁深基坑工程监测管理规定 第一章总则 第一条为进一步加强本市地铁建设工程深基坑施工监测工作的监督管理,提高监测水平,确保工程及相邻设施和人员的安全,依据《中华人民共和国建筑法》、《建设工程安全生产管理条例》、《建筑基坑工程监测技术规范》、建设部《城市轨道交通工程安全质量管理暂行办法》等法律、法规和规定,结合本市实际,特制订本规定。 第二条本市行政区域内地铁建设工程深基坑(以下简称深基坑)施工的监测活动,应遵守本规定。 第三条本规定所称地铁深基坑,是指地铁基坑开挖深度5米及以上的基坑。本规定所称深基坑施工过程,包括基坑(含边坡)支护结构、支撑体系、基底加固、地下水处理和土方开挖、主体结构等阶段。 第四条杭州市建设工程质量安全监督总站(以下简称总站)负责实施对所办理监督登记手续的地铁工程深基坑施工监测活动的监督管理。 第二章一般规定 第五条地铁深基坑工程设计单位应当在施工图中明确工程及其周边环境的监测要求和监测控制标准等内容。工程监测的设计要求应包括监测范围、监测项目、监测频率和监测报警值等。 当有深基坑施工影响范围内需进行保护的周边建筑物、构筑物及地下管线时,设计单位应明确所涉及的建筑物、构筑物及地下管线的监测

要求和监测控制标准。 第六条深基坑工程施工前,应由建设方委托具备相应资质的第三方监测单位对基坑工程实施监测,第三方监测单位应当具有相应工程勘察资质,监测单位不得转包监测业务,不得与所监测工程的施工单位有隶属关系或者其他利害关系。 第七条监测单位应根据工程地质和水文地质条件、安全质量风险评估报告、基坑安全等级、基坑周边环境和设计文件要求,制定科学合理、安全可靠的第三方监测方案,报由建设单位组织专家进行专项论证,并经建设、设计、施工、监理及监测单位主要负责人签字认可,必要时还须与基坑周边环境涉及的有关管理单位协商一致后方可实施。方案内容应包括: (一)监测工程概况及测点布点平面图; (二)监测范围、项目及内容,包括监测范围、监测项目、监测周期、测点数量、测点布臵、监测方法及精度、监测频率、报警值及巡视检查的内容、记录和报警信息传送方式; (三)监测计划,包括监测人员、仪器设备、监测时间和监测项目负责人; (四)遇有异常天气或突发情况的报告及应急措施。 第八条建设与监测单位填写《杭州市地铁深基坑工程监测方案登记表》(附件1),携带设计文件(平面布臵图、说明)、经建设、设计、施工、监理及监测单位主要负责人签字认可的监测方案等材料,到总站相关工程质量监督部门提出登记申请。 第九条监测单位对监测方案、监测成果、监测工作质量承担监测责任。

地铁车站深基坑施工安全监理控制要(新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 地铁车站深基坑施工安全监理控 制要(新版)

地铁车站深基坑施工安全监理控制要(新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 地铁施工是个高风险行业,如何确保安全施工是监理的重要职责。实践说明,通过监理企业的强化管理和施工企业实施各种安全管理措施,能够确保工程建设的安全性。现将地铁车站深基坑施工中安全监理控制过程的一些做法和体会奉上,供各位同仁探讨。 我单位共监理三个车站,主体均为明挖二层岛式车站,双柱三跨箱型框架结构,设计埋深均为16m左右。进场后监理人员首先熟悉图纸,分析危险源,针对危险源编制了监理规划和监理细则,并组织实施。截止目前车站均已顺利封顶,无安全事故发生。回顾在基坑施工过程中的监理工作,其中开挖、降水、支撑是决定基坑施工成败的关键工序,是深基坑工程的主要危险源,现场监理人员应高度关注,具体如下: 1基坑开挖过程的控制要点: (1)基坑开挖必须按设计要求分段开挖。每段开挖完成后尽快支撑。

地铁车站主体基坑施工监测方案

基坑和区间隧道施工监测方案 二〇〇六年八月

一、x基坑施工监测方案 1.1工程概况 位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m。车站总长度为:161.50米,车站标准段宽度:20.90米。顶板埋深约2.8~3.6米,基坑开挖深度约20.93~23.1米。车站西端南北侧在施工阶段各设一个10m×8m的盾构吊出井,东端车站底板设1.9×1.9的电缆过轨通道与l号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11.5m考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m,有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用φ800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的φ1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的φ1200人工挖孔桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用φ609mm 的钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m。 1.2工程地质条件和周边环境情况 1.2.1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1.80—4.30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5.10—22.90米,主要为全新世~上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层”,岩芯为泥质粉砂岩加粉砂质泥岩,软硬相间,属极软岩。x地质参数由《南京地铁二号线汉中门站岩土工程详细勘察报告》(编号:2004168-1)提供。穿越的主要土层由上至下依次为:①-杂填土;①-2b2-3素填土;②-1b1-2粉质粘土;②

地铁工程深基坑施工监测技术应用

地铁工程深基坑施工监测技术应用 2010年第5期 铁道建筑 RailwayEngineering53 文章编号:1003—1995(2010)05—0053—03 地铁工程深基坑施工监测技术应用 李瑞杰 (中铁二十局集团第四工程有限公司,山东青岛266061) 摘要:以地铁深基坑工 程为例,首先分析了深基坑的变形机理及影响因素,进而全 面深入地阐明了地铁 深基坑工程的监测技术及实际应用效果,同时还预测了此项监测技术的发展前景. 关键词:地铁工程深基坑监测技术应用 中图分类号:U455.45;U2314文献标识码:B 1工程概况 地铁二号线大学站位于中山路与中华街交叉口, 地处中山路上,基坑为地下两层,宽度不一,其中车站西段(A区)宽36I/1,长54m;东段(C区)宽3O.85m, 长43m;中段(B区)宽2t.1m,长85m;车站全长 182.90m.工程所在区域地质构造简单,未见断层;但地层复杂,厚度变化比较大,地面呈东低西高之势.地下水主要为地表潜水和基岩裂隙水两大类;而地表潜水主要赋存于第四系人工填土和冲,残积层中的粉细砂,粉土,粉质黏土的孔隙中,站区岩石富水性差,基岩裂隙水贫乏,地下水位为1.6,2.5ITI,主要补给为大气降水和生产用水.本车站采用明挖顺筑法施工,基坑支护主要采用人工挖孔桩加预应力锚杆支护形式, 另外在基坑四角及变截面处安设四道+600mm,壁厚

12mm的钢管内支撑. 2基坑变形机理 2.1基坑周围地层移动 1)坑底土体隆起 坑底隆起是垂直方向卸荷而改变坑底土体原始应力状态的反应.在开挖深度不大时,坑底土体在卸荷后发生垂直的弹性隆起;随着开挖深度的增加,基坑内外的土面高差不断增大,当开挖到一定深度时,基坑内外土面高差所形成的加载和地面各种超载的作用,就会使维护墙外侧土体产生向基坑内移动,使基坑坑底收稿日期:2009-1124;修回日期:2010~2—18 作者简介:李瑞杰(1979一),男,山西襄汾人,工程师,硕士. 产生向上的塑性隆起,同时在基坑周围产生较大的塑性区,并引起地面沉降. 2)围护墙位移 围护墙墙体变形是由水平方向改变基坑外雕土体的原始应力状态而引起的地层移动.事实上基坑开挖从一开始,围护墙便开始受力变形了.由于总是开挖在前支撑在后,所以围护墙在开挖过程巾安装每道支撑前已经发生了一定的先期变形.实践证明,挖到设计坑底高程时,墙体最大位移发生在坑底面下l,2nl 处.围护墙位移使墙体主动压力区和被动压力区的土体发生位移,从而产生塑性区及坑底局部塑性区.j. 墙体变形不仅使墙外侧发生地层损失而引起地面沉降,而且使墙外侧的塑性区扩大,从而增加了墒外土体向坑内的位移和相应的坑内隆起. 2.2周围地层移动的相关因素 1)支护结构系统的特征 墙体的刚度,支撑水平与垂直向的间距,墒体厚度 及插入深度,支撑预应力的大小及施加的及时程度,安装支撑的施工方法和质量等这些支护结构系统的特征参数都是影响地层位移的重要因素.

地铁车站明挖深基坑施工方案计划

深基坑开挖专项施工方案

目录1、编制依据及编制原则 1.1编制依据 1.2编制范围 1.3编制原则 2、工程概况 2.1基本概况 2.2工程地质及水文地质 2.2.1工程地质 2.2.2水文地质 2.3本工程特征分析 2.3.1工程特点 2.3.2工程重点、难点 2.4主要地下管线情况 2.5施工现场周围环境 3、施工总体安排 3.1施工现场平面布置 3.2施工管理机构及劳动力组织 3.3施工进度计划 3.4拟投入的主要施工机械、材料及人员 4、基坑开挖施工方案 4.1开挖原则 4.2车站基坑土方开挖

4.2.1 开挖顺序 4.2.2基坑开挖方法 4.2.3 基坑开挖应急措施 4.3钢支撑安装 4.3.1钢支撑制作 4.3.2支撑安装工艺流程 4.3.3钢支撑体系安装施工要点 4.3.4 钢支撑拆除 4.4钢支撑保护及防脱落措施 4.5开挖、支撑施工必要的措施 4.5.1充分备好排除基坑积水的排水设备 4.5.2坑顶防护措施 4.5.3预应力复加 4.5.4施工间隔期间变形控制 4.5.5其它保证措施 4.6桩间土护壁施工 4.6.1 桩间土护壁形式 4.6.2 喷射混凝土施工要点 5、基坑开挖质量保证措施 5.1质量保证体系 5.2质量体系要素职责分配 5.3组织措施 5.4技术保证措施 6、施工安全保证措施 6.1安全生产目标及保证体系 6.1.1安全生产目标 6.1.2安全管理机构及安全监控网络 6.1.3 建立健全项目部安全保证体系6.2落实安全生产责任制 6.3安全技术交底 6.4安全教育

6.5完善各项安全管理制度 6.6认真执行安全检查制度 6.7制定切实可行的保证安全的奖惩办法 6.8建立健全各项安全作业制度和防护措施 6.9安全保证措施 6.10安全管理目标和安全防范要点 6.11施工安全保证措施 6.12重大危险源防控措施 7、基坑开挖施工的应急措施 7.1基坑开挖及降水施工的应急措施 7.2编制应急预案 7.2.1项目部应急领导机构与职责 7.2.2应急保障 7.2.3应急预案 7.2.4施工安全风险预警报警标准 7.2.5预警后相应及事务处理 7.2.6监督管理 7.3安全事故应急预案 7.3.1 发生基坑坍塌事故的应急预案 7.3.2 高处坠落、物体打击、机械伤害事故应急预案 7.3.3 发生触电事故的应急预案 7.3.4 发生烧伤事故的应急预案 7.3.5 发生食物中毒的应急预案 7.3.6 发生传染病的应急预案 7.3.7 火灾事故的应急预案 7.3.8 施工过程中突发事件应急预案 8、文明施工及环境保护措施 8.1文明施工组织保证与责任分工 8.2文明施工管理制度 8.3现场文明施工措施 8.3.1 减少噪声

地铁车站监控量测方案

一、汉中门车站基坑施工监测方案 1.1工程概况 汉中门车站位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m。车站总长度为:161.50米,车站标准段宽度:20.90米。顶板埋深约2.8~3.6米,基坑开挖深度约20.93~23.1米。车站西端南北侧在施工阶段各设一个10m×8m的盾构吊出井,东端车站底板设1.9×1.9的电缆过轨通道与l号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11.5m考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m,有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用φ800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的φ1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的φ1200人工挖孔桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用φ609mm 的钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m。 1.2工程地质条件和周边环境情况 1.2.1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1.80—4.30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5.10—22.90米,主要为全新世~上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层”,岩

地铁基坑监测方案

地铁XXXX深基坑监测技术方案 第一章工程概况 1、工程概况 XXXX是XXXX轨道交通二号线一期工程的第三个车站,车站位于金雅二路中段,东侧是正在建设中的XXXXC区,西侧是XXX移动公司,站前折返线上部地面东侧为常青花园空地,西侧为建设中的XXXXD区。周边空间比较狭窄。长港路以北西北角拟占用作为轨排基地。车站外包尺寸为530.2×30.5×12.61m(长×宽×高),车站顶部覆土约3.0m。车站所处位置周边交通处于发育中,车流量不大。 XXXX主体结构为两层两跨局部单跨双层矩形框架结构,采用明挖法施工。车站标准段明挖基坑深度15.89米,宽度18.5米;盾构井加宽段明挖基坑北侧深度约17.8米,宽度约30.5米;南侧深度16.822米,宽度约为23.3米。根据本站基坑深度和周边环境条件,确定本基坑安全等级为一级,支护结构的水平位移ε≤3‰H,且ε≤30mm。 2、工程地质、水文地质情况 2.1工程地质 拟建场区地形平坦,原始地貌属长江冲积一级阶地。根据钻探揭示及对地层成因、年代的分析,本代地层主要由第四纪全新统人工堆积层(Q4ml)组成,岩性为粉质粘土、淤泥质粉质粘土、淤泥质粉质粘土夹粉土、粉质粘土粉土粉砂互层、粉砂夹粉土、粉砂、砂类土。各土层描述如下: (1-1)层杂填土:松散,由粘性土,砂土与砖块、碎石、块石、炉渣等建筑及生活垃圾混成。该层全场地分布,层厚约0.6~2.4m。 (1-2)素填土:褐黄~灰色,松散,高压缩性,粘性土及砂土为主组成,混少量碎石,砖瓦片等。该层局部分布,层厚1.1~1.7m。 (1-3)层淤土:灰黑色,软~流塑,高压缩性,含有机质及生活垃圾。该层局部分布,层厚2.8~3.9m。 (3-1)层粘土:黄褐~褐黄~灰褐色,可塑(局部偏硬塑),中压缩性,含氧化钛、铁锰质结核。该层大部分地段分布,厚1.0~6.8m。 (3-1a)层粘土:褐黄色,中偏高压缩性,含氧化铁、铁锰质结核。该层局部分

62号关于进一步加强地铁深基坑施工安全质量管理的若干意见.doc

杭建监总〔2016〕62号 关于进一步加强地铁深基坑施工 安全质量管理的若干意见 市地铁集团、各有关单位: 为进一步提高地铁深基坑施工安全质量管理,落实各责任主体责任,强化基坑围护结构设计,规范施工缺陷处置质量安全工作,防范基坑突涌等事故发生,根据建质(2009)87号《危险性较大的分部分项工程安全管理办法》和《杭州市建设工程施工安全管理条例》等法律法规和文件的规定,对地铁深基坑施工的风险预控和质量安全管理,提出如下管理意见,请遵照实施。在实施过程中,意见或建议请及时反馈我站。 一、优化基坑围护结构设计管理 设计单位应根据地铁深基坑所处水文、工程地质条件、管线种类及迁改、交通环境条件等,在设计阶段进行优化设计,根据相关方案的比选结果,明确以下内容: 1、地连墙接缝形式;支撑种类及支撑方式;当存在“Z、L、T”等异形墙幅的,应对异形墙幅的接头方式予以明确,附相应的节点大

样图; 2、对存在饱和砂土、杂填土以及地下水位高的地连墙,应明确地连墙槽壁的加固范围和深度; 3、对周边环境复杂、变形控制要求高的基坑,应明确地连墙插入比、基坑被动区土层加固、基坑内降水、基坑外降水以及地下水回灌等设计控制要求。 二、强化基坑临近通行道路质量控制 基坑临近通行道路质量控制是基坑安全的重要组成部分,应充分考虑基坑施工对周边环境的相互影响。 1、设计单位应对临近机动车辆通行道路进行专项设计,并进行承载能力验算; 2、涉及管线迁改的,设计单位应明确临时或永久迁改的具体管位及质量控制要求。 3、建设单位应在相关合同中明确临时便道通行的承载能力要求和维护要求,并落实附件《地铁车站深基坑边交通导改、管线迁改质量控制要求》相关内容。 三、强化专业分包作业管理 总包单位应强化分包作业管理,总包单位在选择围护结构(地连墙)专业分包队伍时,应比选分包队伍在杭地铁施工业绩和质量安全管理情况,择优选择,按程序进行申报和审批。 1、对超深地连墙、入岩隔水地连墙、砂卵石层厚度较大的复杂岩土地层的地连墙,总包单位应组织分包单位对成槽设备的选择进行

上海地铁车站工程深基坑土方滑坡事故

上海地铁车站工程深基坑土方滑坡事故 一、事故概况: 2001年8月20日,上海某建筑公司土建主承包、某土方公司分包的上海某地铁车站工程工地上(监理单位为某工程咨询公司),正在进行深基坑土方挖掘施工作业。下午18点30分,土方分包项目经理陈某将11名普工交予领班褚某,19点左右,褚某向11名工人交代了生产任务,11人就下基坑开始在14轴至15轴处平台上施工(褚某未下去,电工贺某后上基坑未下去)。大约20点左右,16轴处土方突然开始发生滑坡,当即有2人被土方所掩埋,另有2人埋至腰部以上,其它6人迅速逃离至基坑上。现场项目部接到报告后,立即准备组织抢险营救。20时10分,16轴至18轴处,发生第二次大面积土方滑坡。滑坡土方由18轴开始冲至12轴,将另外2人也掩没,并冲断了基坑内钢支撑16根。事故发生后,虽经项目部极力抢救,但被土方掩埋的四人终因窒息时间过长而死亡。 二、事故原因分析: 1、直接原因 该工程所处地基软弱,开挖范围内基本上均为淤泥质土,其中淤泥质粘土平均厚度达9.65米,土体坑剪强度低,灵敏度高达5.9这种饱和软土受扰动后,极易发生触变现象。且施工期间遭百年一遇特大暴雨影响,造成长达171米基坑纵向留坡困难。而在执行小坡处置方案时未严格执行有关规定,造成小坡坡度过陡,是造成本次事故的直

接原因。 2、间接原因 目前,在狭长形地铁车站深基坑施工中,对纵向挖土和边坡留置的动态控制过程,尚无比较成熟的量化控制标准。设计、施工单位对复杂地质地层情况和类似基坑情况估计不足,对地铁施工的风险意识不强和施工经验不足,尤其对采用纵向开挖横向支撑的施工方法,纵向留坡与支撑安装到位之间合理匹配的重要性认识不足。该工程分包土方施工的项目部技术管理力量薄弱,在基坑施工中,采取分层开挖横向支撑及时安装到位的同时,对处置纵向小坡的留设方法和措施不力。监理单位、土建施工单位上海五建对基坑施工中的动态管理不严,是造成本次事故的重要原因,也是造成本次事故的间接原因, 3、主要原因 地基软弱,开挖范围内淤泥质粘土平均厚度厚,土体坑剪强度低,灵敏度高受扰动后,极易发生触变。施工期间遭百年一遇特大暴雨,造成长达171米基坑纵向留坡困难。未严格执行有关规定,造成小坡坡度过陡,是造成本次事故的主要原因。 三、事故预防及控制措施: 土方施工单位 l、在公司范围内,进一步健全完善各部门安全生产管理制度,开展一次安全生产制度执行情况的大检查,在内容上重点突出各生产安全责任制到人、权限和奖惩分明,在范围上重点为工程一部、工程二部和各项目部。

相关文档
相关文档 最新文档