文档库 最新最全的文档下载
当前位置:文档库 › 矩阵分析课后习题解答整理版

矩阵分析课后习题解答整理版

矩阵分析课后习题解答整理版
矩阵分析课后习题解答整理版

第一章线性空间与线性变换

(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)

(此处注意线性变换的核空间与矩阵核空间的区别)

1.9.利用子空间定义,)

R对m C满足加

(A

R是m C的非空子集,即验证)

(A

法和数乘的封闭性。 1.10.证明同1.9。

1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)

1.13.提示:设),)(-

?==n j i a A n

n ij (,分别令T

i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行)

,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故

A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a ,

0=+ji ij a a ,

再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1

位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于

0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A

1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(

1.15.存在性:令2

,2H

H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,

唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

111

1C B C B A H

H

H

-=+=,得C A A C B A A B H

H =-==+=

2

,211(矛盾)

第二章酉空间和酉变换

(注意实空间与复空间部分性质的区别)

2.8 法二:设~

2121),,()0,0,1,0,0)(,,(X e e e e e e e n T

n i ==(1在第i 行);

~

2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T

n j ==(1在第j 行)

根据此题内积定义?

?

?≠===j i j i X Y e e H j i 01),~

~( 故n e e e ,,21是V 的一个标准正交基。

(注意,在无特别定义的情况下,内积的定义默认为X

,

()

)

Y

Y

X H

2.15 先求得C 使Λ=AC C H ,假设CB P =,使I AP P H =,则有Λ=-1)(H BB ,依次式求得B ,进而求得P 。(此方法不一定正确)

2.16 将),,(321ααα进行列变换化为阶梯型知可取21αα,为其中两个

基,另两个基可取T T

)1,0,0,0(,0,1,0,043==

αα)(,化标准正交基略。 2.17 略

第二章矩阵的分解

《矩阵分析》考试题A 2016

华南理工大学研究生课程考试题(A) 《矩阵分析》2016年12月 姓名院(系)学号成绩 注意事项:1.考试形式:闭卷(√)开卷() 2.考生类别:博士研究生()硕士研究生(√)专业学位研究生() 3.本试卷共四大题,满分100分,考试时间为150分钟。 一、单项选择题(每小题3分,共15分): 1、设,,是的两个不相同的真子空间,则下列不能构成子空间的是。(A);(B);(C);(D)。 2、设,为阶酉矩阵,则下列矩阵为酉矩阵的是。 (A);(B);(C);(D)。 3、设矩阵的秩为,则下列说法正确的是。 (A)的所有阶子式不等于0;(B)的所有阶子式等于0; (C)的阶子式不全为0;(D)的阶子式不全为0。 4、下列命题不正确的是。 (A)行数相同的两个矩阵一定存在最大右公因子; (B)列数相同的两个矩阵一定存在最大右公因子。 (C)特征多项式的根一定是最小多项式的根; (D)最小多项式的根一定是特征多项式的根; 5、设,则。 (A)1;(B);(C);(D)。 二、填空题(每小题3分,共15分): 1、设,,和,,是的

两个基,则从第一个基到第二个基的的过渡矩阵为 。 2、实线性空间的映射称为内积运算,如果满足下列条件: 。 3、奇异值分解定理内容为 。 4、设,则。 5、设,则。 三、计算题(每小题14分,共56分): 1、设,,;,, ,。求和的一个基。

2、求欧氏空间的一个标准正交基(从基,,,出发),内积定义为 。

3、求的若当标准形和可逆矩阵, 并计算。

4、1)写出的求解公式。 2)已知,计算。

四、证明题(第一小题8分,第二小题6分,共14分): 1、设,是维线性空间,证明都。 2、设方阵满足,且,证明。

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解) 1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用 ij E (,1,2, ,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素 为1外,其余元素全为0的矩阵. 显然,ii E ,ij E 都是对称矩阵,ii E 有(1) 2 n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1) 2 n n +个矩阵线性表示,此即对称矩阵组成 (1) 2 n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1) 2 n n -. 评注:欲证一个集合在加法与数乘两种运算下是一个(1) 2 n n +维线性空间,只需找出 (1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1) 2 n n +个向量线性表示即可. 1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可. 1-3 解:方法一 设11223344x x x x =+++A E E E E 即 123412111111100311100000x x x x ??????????=+++???????????????????? 故 1234 1231211203x x x x x x x x x x +++++?? ??=??? ?+???? 于是 12341231,2x x x x x x x +++=++=

1210,3x x x +== 解之得 12343,3,2,1x x x x ==-==- 即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 方法二 应用同构的概念,22R ?是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T , 1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有 111111 000 31110201003110000 01021000300011???? ????-??? ?→???? ??? ? -???? 因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 1-4 解:证:设112233440k k k k αααα+++= 即 12341234123134 12411111110110110110 k k k k k k k k k k k k k k k k k ????????+++???????????????? +++++??==??++++?? 于是 12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++= 解之得 12340k k k k ==== 故1234,,,αααα线性无关. 设

矩阵分析试题中北大学33

§9. 矩阵的分解 矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,这是矩阵理论及其应用中常见的方法。由于矩阵的这些特殊的分解形式,一方面反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,因而使其对分解矩阵的讨论和计算带来极大的方便,这在矩阵理论研究及其应用中都有非常重要的理论意义和应用价值。 这里我们主要研究矩阵的三角分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。 一、矩阵的三角分解——是矩阵的一种有效而应用广泛的分解法。 将一个矩阵分解为酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积,这对讨论矩阵的特征、性质与应用必将带来极大的方便。首先我们从满秩方阵的三角分解入手,进而讨论任意矩阵的三角分解。 定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n 1,2,),=++ j i i n 则上三角矩阵 1112 1222000?? ? ? = ? ? ?? n n nn a a a a a R a 称为正线上三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三角复(实)矩阵。

定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n 1,2,),=++ j i i n 则下三角矩阵 11212212000?? ? ? = ? ? ?? n n nn a a a L a a a 称为正线下三角复(实)矩阵,特别当1(1,2,,)ii a i n == 时,L 称为单位下三角复(实)矩阵。 定理1设,?∈n n n A C (下标表示秩)则A 可唯一地分解为 1=A U R 其中1U 是酉矩阵,R 是正线上三角复矩阵;或者A 可唯一地分解为 2=A LU 其中2U 是酉矩阵,L 是正线下三角复矩阵。 推论1设,?∈n n n A R 则A 可唯一地分解为 1=A Q R 其中1Q 是正交矩阵,R 是正线上三角实矩阵;或者A 可唯一地分解为 2=A LQ 其中2Q 是正交矩阵,L 是正线下三角实矩阵。 推论2 设A 是实对称正交矩阵,则存在唯一的正线上三角实矩阵R ,使得 =T A R R 推论3设A 是正定Hermite 矩阵,则存在唯一的正线上三角复矩阵R ,使得 =T A R R

中科院矩阵分析课件

矩阵分析及其应用 3.1 矩阵序列 定义3.1 设矩阵序列{A (k)},其中A (k)=() (k ij a )∈C m ?n ,当k →∞, )(k ij a →a ij 时,称矩阵序列{A (k)}收敛,并称矩阵A=(a ij )为矩 阵序列{A (k)}的极限,或称{A (k)}收敛于A, 记为 A A k k =∞ →)(lim 或 A (k)→ A 不收敛的矩阵序列称为发散的。 由定义,矩阵序列A (k) 发散的充要条件为存在ij 使 得数列) (k ij a 发散。 类似地,我们可以定义矩阵收敛的Cauchy 定义 定义3.1' 矩阵序列{A (k)}收敛的充要条件为 对任给ε>0 存在N(ε), 当 k , l ≥ N(ε) 时有 ||A (k)-A (l )|| < ε 其中||.||为任意的广义矩阵范数。 例1 ???? ? ? ??- =∑=-n k n n k k e n n 12) ()sin()1sin(11A 如果直接按定义我们因为求不出A (n )的极限从而 很难应用定义3.1证明收敛。 相反,由于∑∑∑+=+=+=-≤≤n m k n m k n m k k k k k k 112 1 2 ) 1(1 1 ) sin( < 1/m 从而只要l 充分大,则当m, n > l 时就有 ε≤∑ +=n m k k k 1 2 ) sin( 这样A (l ) 收敛。 定理3.1 A (k)→ A 的充要条件为 ||A (k) -A||→0 证明:利用广义矩阵范数的等价性定理,仅对∞范数可以证明。 即 c 1 ||A (k) -A||∞ ≤ ||A (k) -A||≤ c 2 ||A (k) -A||∞ 性质0 若A (k)→ A , 则 ||A (k)|| → ||A|| 成立。

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

北京交通大学研究生课程矩阵分析期末考试2011-12-16

北京交通大学 2011-2012学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名 一、(共12分,每小题3分)试对下列概念给出定义: (1)线性映射的值域和核;(2)线性变换的特征值和特征向量; (3)矩阵的最小多项式; (4)矩阵的诱导范数. 二、(共24分,每小题8分)设5R 空间中的向量 110212α????????=????????,201221α????????=????????,312012α?? ? ? ?= ? ? ???,413233α????????=????????,512013α????????=????????,623445α?? ???? ??=?? ?? ???? , Span V =1()1234,,,αααα,Span V =2()56,αα, (1)求矩阵()123456,,,,,A αααααα=的满秩分解; (2)求21V V +的维数及基; (3)求21V V 的维数及基. 三、(10分)求矩阵2000 0224400 2A ????? ?=?????? 的正交三角分解UR A =,其中U 是次酉矩阵,R 是正线上三角矩阵. 四、(10分)设13021i i A i i ??= ?---??24 C ?∈,计算12, , , F A A A A ∞. (这里12-=i ).

2 五、(共28分,每题7分)证明题: (1)设A 是正定Hermite 矩阵,B 是反Hermite 矩阵,证明:AB 的特征值的实部为0. (2)设A 为正规矩阵,证明:)(2A A ρ=. 这里)(A ρ为A 的谱半径. (3)设n n C B ?∈且1

中科院矩阵分析课件.doc

矩阵分析及其应用 3.1矩阵序列 定义3.1设矩阵序列{应)},其中A?)=(#))£Cms,当k—oo, 佝时,称矩阵序列{A00}收敛,并称矩阵A=(佝)为矩阵序列{A00}的极限,或称{A00}收敛于A,记为lim A a)= A或A,k)-> A ks 不收敛的矩阵序列称为发散的。 由定义,矩阵序列A(k)发散的充要条件为存在ij使 得数列站发散。 类似地,我们可以定义矩阵收敛的Cauchy定义 定义31矩阵序列{A00}收敛的充要条件为 对任给£>0存在N(E),当k,l> N(E)时有 IIA(k)-A(/)ll < £ 其中11.11为任意的广义矩阵范数。 例 1 A(n) e~n sin(-) n y,sin(R) k=l K 7 如果直接按定义我们因为求不出A㈤的极限从 而很难应用定义3.1证明收敛。 相反,由于t^< t^< v 1/m 从而只要/充分大,则当m, n > /时就有 n z sin(A) 这样A")收 定理3.1 A(k)->A的充要条件为 HA'10-AII T O 证明:利用广义矩阵范数的等价性定理,仅对co范数可以证明。 即ci IIA(k) -AIL < IIA(k) -All< c2 IIA(k) -AIL

性质 1.设A(k,—> A mxn, B,k,—> B mxn>则 a- A(k)+P ? B(k) -> a- A+P B, V a,PeC 性质2.设A(k)—> A mxn, B,k)—> B nx/,则 A(k)由如一A B 证明:由于矩阵范数地等价性,我们E以只讨论相容的 矩阵范数。 IIA(k).B(k)-A-BII < II A(k) -B(k) -A-B(k)ll+IIAB(k)- A-BII yH Ax,对任意x,y成立. (在无穷维空间中称为弱收敛,但在有限维空间中 和一般收敛性定义是等价的) 对于Hermite(对称)矩阵我们有如下的定理: 设A?), k=l,2,?..,和A都为Hermite矩阵,那么 A(k?A的充要条件为 x”A时X—>x”Ax,对任意x成立 推论:设A如,k=l,2,...,为半正定的Hermite矩阵,且单调减少,即状和4J")为半正定Hermite矩阵,那么4的有极限. 性质3设泌幻和A都为可逆矩阵,且成则 (4伏 证明:因为Af(A如)所以存在K,当必K时有 III-AT?(A(*))II V]/2 我们有(A u))-,= A%( I- A-1- (A(k)? (A(k)r l 从而ll(A(k))-,llK时,有 ll(A(k))_,llK 时)

矩阵分析 2018年期末试题

一、填空题 1、4[]R x 表示实数域R 上所有次数小于或等于3的多项式构成的向量空间,则微分算子 D 在4[]R x 的基 321234(),(),(),()1p x x p x x p x x p x ====下的矩阵表示______________。 2、λ-矩阵 322(1)()(1)A λλλλλλ??- ?=- ? ??? 的初等因子组为______________________ _______________, Smith 标准形是___________________________ 3、已知矩阵210024120A -??? ?=??????,则 1____,A =____,A ∞= _____F A = 其中1,∞??分别是由向量的1-范数和∞-范数诱导出来的矩阵范数(也称算子范数), F ?是矩阵的Frobenius 范数。 4. 已知函数矩阵222()2x A x x ??= ???,则22()d A x dx =___________, 5、已知n 阶单位矩阵I , 则 sin _______,2I π= 2______,i I e π=cos _______.I π= 6、设()m J a 表示主对角元均为 a 的m 阶Jordan 块。则 ()k m J a 的Jordan 标准形为________ _______, ()k m J a 的最小多项式为___________,这里0,a ≠ ,m k 是整数且 1,1m k >≥. 二、 已知 220260114A -????=?????? , (1)求矩阵的Jordan 标准形和最小多项式; (2)求矩阵函数 sin ,.t A A e 30(())_______.t A x dx '=?

矩阵分析试卷

2007《矩阵分析》试题(A 卷) 一、 计算题 (每题10分,共40分) 1. 设函数矩阵???? ? ? ?=001t e -sint t e cost A(t)t 2t 试求 )t A(t d d ; )t A(lim 0t →. 2. 设矩阵??? ? ? ?=441-0A 试求 A e . 3. 将下面矩阵作QR 分解:??? ? ? ??110011-111. 4. 求下面矩阵的若当(Jordan)标准形??? ? ? ??1-1-2-020 021。 二、证明题(每题10分,共30分) 1. 设321,,ααα是三维V 线性空间V 的一组基, 试求由向量 2 1332123 21183232-ααβαααβαααβ+=++=+=. 生成的子空间),, (U 321βββ=的一个基. 2. 设V 1 , V 2 是内积空间V 的两个子空间, 证明: ()⊥ ⊥⊥ +=?2121V V V V . 3. 设T 是线性空间V 的线性变换, V ∈α, 且 )(T ,),(T ),T(,1-k 2αααα 均为不为 零的向量, 而0)(T k =α, 证明 )(T ,),(T ),T(,1-k 2αααα 线性无关. 三、简单论述题(每题15分, 共30分) 1. 试述: 将一个矩阵简化(化为对角矩阵或若当矩阵)的方法有几种? 那种方法一定可 以将一个矩阵化为对角矩阵? 那些方法一定可以将一个什么样的矩阵化为对角矩阵? 此外,将一个矩阵简化的数学理论基础是什么? 实现这种矩阵简化的具体方式是怎么作的? 2. 实空间的角度是如何引入的? 复空间中的角度又是怎样定义的? 试给出主要的过 程. 2007《矩阵分析》试题(B 卷) 一、 计算题 (每题10分,共40分)

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

2014矩阵分析试卷

2014矩阵分析试卷 一、判断题(不要求证明)(20分) 1.设n 是大于1的整数,{()|()}V f x f x n F =是次数小于的域上的多项式,V 关于多项式的加法与数乘是一个域F 上的线性空间。 ( √ ) 2.设a r 为XOY 面上的非零向量,V 为XOY 面内所有不平行于a r 的向量构成的集合,V 关于向量的加法与数乘是一个域R 上的线性空间。 ( × ) 3.设V 是域F 上的线性空间, V α∈不是零向量,映射:,()V V ξξα→=+A A 是V 上的线性变 换。 ( × ) 4. 设A 是数域R 上的对称阵,映射:,()n n R R A αα→=A A 是n R 上的对称变换。 ( √ ) 二、计算题 1. (1,1,1,1)T 2. 已知1 12212W ={,},W ={,}Span a a Span b b ,而 1212(0,1,1,1),(1,0,2,0);(0,3,3,1),(1,2,0,0)a a b b =-==-=。 12W W ?的基为(1,1,3,1)T --与维数1; 12122212W +W ={,,}={,,}span span ααβαββ的基122,,ααβ或212,,αββ与维数3 3. 23:,()R R A ββ→=A A ,基 123(1,0,0),(0,1,0);(0,0,1) ααα===及基 12(1,0),(0,1)ββ==下的矩阵为110=211T B ?? ? ?? 。 4. (10分)设线性变换22:R R →A ,在基12(1,0),(0,1)ββ==的矩阵为12=24A ?? ??? ,求A 的核为{k(-2,1)| k}T ?、值域的基1 2+2β β,维数1。 6.(8分)求矩阵11010=0111123131A ?? ? ? ??? 的满秩分解 7.(24分)设矩阵308=3-16-20-5A ?? ? ? ??? ,求可逆矩阵P ,使得1 P AP -为约当阵。 A E -λ = ??? ? ? ??+-+---502613803 λλλ→ ????? ??++2)1(0001 0001λλ,

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

2010矩阵分析试题A110118

A 第 1 页 共 3 页 考试方式: 闭卷 太原理工大学 矩阵分析 试卷(A) 适用专业:2010级硕士研究生 考试日期: 2011. 1.18 时间: 120 分钟 共 8 页 一.单项选择题(每小题3分,共15分) 1.线性空间},|{A A R A A V T n n =∈=?)2(≥n 的维数是 ( ) (A ))1(+n n ; (B ))1(-n n ; (C )2)1(+n n ; (D )2)1(-n n . 2.设??????? ??-=1100010000100001A ,则A 的最小多项式为 ( ) (A ))1()1(3+-λλ; (B ))1)(1(2--λλ; (C ))1)(1(+-λλ; (D ))1)(1(2+-λλ. 3.设矩阵????? ??--=110110321A ,则=+-2009201020112A A A ( ) (A )0; (B )E ; (C )A ; (D )2A . 4.设A 是正规矩阵,则 ( ) (A )A 是正定矩阵; (B )A 的特征值均为实数; (C )A 是正交矩阵; (D )A 可对角化. 5.下列命题不正确的是 ( ) (A )矩阵A 存在左逆矩阵的充分必要条件是A 列满秩; (B )任意矩阵的加号逆总是唯一的; (C )对任意矩阵A ,恒有A A =--)(; (D )b Ax =有解时,通解可表示为:z A A E b A x )(---+=,其中z 是与x 同维数的任意列 向量. 二.填空题(每小题3分,共15分) 6.设可逆线性变换T 在基n ααα ,,,21 下的矩阵为A ,则从基n ααα,,,21 到基n T T T ααα,,,21 的过渡矩阵为 . 7.设???? ? ?? ---=λλλλλ20011001)(A ,则)(λA 的不变因子为 . 8.如果实对称矩阵A 满足0≠+E A ,而0)2)((=-+E A E A ,则=2||||A .

矩阵分析习题

一,设311202113A -?? ?=- ? ?--?? (1)求矩阵e At . (2)求()At d e dt . 二,(15分)设矩阵1001200-1A ??????=?????? , (1)求矩阵A 的奇异值。 (2)求矩阵A 的奇异值分解。 三、证明对任何方阵A 和B ,有 A B A B B A e =e e =e e ⊕??,其中A B=A I+I B ⊕??。 四、已知102011121A -?? ?= ? ?--?? (1) 写出A 的若当标准型 (2) 写出A 的最小多项式()A m λ (3)计算矩阵函数At e 五、设矩阵方程为AX XB D +=,其中111020,,02011A B D λ--??????=== ? ? ??????? (1) 当λ为何值时, 矩阵方阵有唯一解 (2) 当=1λ 时,求矩阵的解X 六、设 110021001A ?? ?= ? ??? ,求一个次数不超过3 的矩阵多项式 ()g x , 将矩阵函数 ()cos A 用矩阵多项式 ()g A 表示出来 七、对给定的矩阵5010,1253A B -????== ? ????? , 矩阵空间22 R ?上的线性变换 T 被定义为 : ()22 ,T X AX XB X R ?=+?∈ (a) 求变换 T 在空间 22 R ?的基 {}11211222,,, E E E E 下的变换矩阵P .

(b) 求矩阵P 的特征值 , 讨论P 是否可逆 八、叙述奇异值分解定理(即酉相抵标准形定理)并用其证明方阵的极分解定理: 九、设A 是n 阶不可约非负矩阵,证明:若A 恰有d 个对角元非零,则21n d A O --> . 十、证明分块上三角矩阵为酉矩阵当且仅当其为对角块均为酉矩阵的分块对角阵 十一、试证:如果A 是n 阶正规矩阵,则A 相应于不同特征值的特征向量复正交 十二、设矩阵U 是酉矩阵,()12diag ,, ,n A a a a = 证明UA 的所有特征值λ满足 不等式 {}{}min max i i i i a a λ≤≤ 十三、设A 是正定Hermite 矩阵,B 是斜Hermite 矩阵,证明A B +是可逆矩阵. 十四、证明若A 是Hermite 矩阵,则i A e 为酉矩阵 十五、设A 是正规矩阵,证明A 是酉矩阵的充要条件是A 的特征值的绝对值等于1。 十六、设,A B 均为n 阶半正定阵,证明A B 也是半正定阵. 十七、设,m m n n A C B C ??∈∈ 及m n F C ?∈ ,且,A B 无公共特征值, 证明: B O F A ?? ??? 与B O O A ?? ??? 相似 十八、设A 是n 阶复方阵,(){}12,,,n Spec A λλλ=,证明: ()(){} 1211k k i i i k Spec C A i i n λλλ=≤<<≤ 十九、陈述Perron-Frobenius 系列定理。 二十、陈述关于Hermite 方阵特征值的min-max 原理

2016北京邮电大学《矩阵分析与应用》期末试题

北京邮电大学 《矩阵分析与应用》期末考试试题(A 卷) 2015/2016学年第一学期(2016年1月17日) 注意:每题十分,按中间过程给分,只有最终结果无过程的不给分。 一、 已知22 R ?的两组基: 111000E ??=? ??? ,120100E ??=????,210010E ??=????,220001E ??=????; 11100 0F ??=? ???,121100F ??=????,211110F ??=????,221111F ??=????。 求由基1112212,,,E E E E 到11122122,,,F F F F 的过渡矩阵,并求矩阵 3542A -?? =?? ?? 在基11122122,,,F F F F 下的坐标。 二、 假定123x x x ,,是3 R 的一组基,试求由112323y x x x =-+, 2123232y x x x =++,312413y x x =+;生成的子空间()123,,L y y y 的基。 三、 求下列矩阵的Jordan 标准型 (1)1 0002 10013202 31 1A ???? ? ?=??????(2)310 0-4-1007121-7-6-10B ?? ????=?????? 四、 设()()123123,,,,,x y ξξξηηη==是3 R 的任意两个向量, 矩阵 210=120001A ?? ???????? ,定义(),T x y xAy = (1) 证明在该定义下n R 构成欧氏空间; (2) 求3 R 中由基向量()()()1231,0,0,1,1,0,1,1,1x x x ===的度量矩阵; 五、 设y 是欧氏空间V 中的单位向量,x V ∈,定义变换 2(,)Tx x y x y =- 证明:T 是正交变换。

多元统计分析期末试题及答案

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92,32 16___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 __________, __________, ________________。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (), 12 3设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差1 11 X σ=的方差 21X g = 1公因子f 对的贡献121330.93400.1280.9340.4170.83511 00.4170.8940.02700.8940.44730.8350.4470.1032013R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ?? ?

矩阵分析第章习题答案

第三章 1、 已知()ij A a =是 n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,, ,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ?-?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----???? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设 n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且 1()()H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则 E iH +满秩,且1()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =, 只要()()1 1 ()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS

相关文档
相关文档 最新文档