文档库 最新最全的文档下载
当前位置:文档库 › 基于FPGA的步进电机细分驱动器

基于FPGA的步进电机细分驱动器

基于FPGA的步进电机细分驱动器
基于FPGA的步进电机细分驱动器

2009芷第12期

仪表技术与传感器

InstrumentTechniqueandSensor

2009

No.12基于FPGA的步进电机细分驱动器

赵海洋1,崔翠红2,陈斌2,张文超2

(1.山西机电职业技术学院,山西长治046011;2.辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001)

摘要:在对步进电机细分驱动原理进行研究的基础上,提出了一种采用FPGA实现步进电机恒转矩细分驱动的方法。

利用FPGA芯片中的嵌入式阵列块(EAB)构成LPM.ROM来存储步进电机各相细分电流的数据,并把斩波控制电路集成到FPGA内部,极大地提高了系统的集成度和稳定性。微控制器只需提供细分数等参数,就能精确控制步进电机的运行,特别适用于某些实时控制场合。

关键词:步进电机;细分驱动;斩波;FPGA

中图分类号:TP211文献标识码:B文章编号:1002—1841(2009)12—0067—03

DesignofMicro-stepping

MotorDriverbyFPGA

ZHAOHai.yan91,CUICui.hon92,CHEN—Bin2,ZHANGWen—cha02

(1.ShamfiInstituteofMechanical&ElectricniEngineering,Clmngzhi046011,China;

2.LiaoningUniversityof

Petroleum&ChemicalTechnology,Fushun113001,China)Abstract:Aconstanttorquesubdivideddrivingcircuitforsteppingmotoreon”oHedbyFPGAWaspresented,basedonthea‘nalysisoftheprincipleofsteppingmotordivideddriving.Subdivideddrivingcurrentofsteppingmotorcanbestored

inLPM—ROMwhichWascomposedbyEABinFPGA,andthechoppercontrolcircuitWagintegratedintotheFPGAitself,itenhancedthesystemintegrationandstability.ByusingCPUtOoffersuchassubdivisionnumbers,steppingmotor

Canrunexactly,itwillbee8。

peciallyusedinreal-timesystem.

Keywords:steppingmotor;subdivideddriving;chopping;FPGA

0引言采用现场可编程门阵列FPGA(FieldProgrammableGateAt-

步进电机以其低廉的价格、可开环控制及运行时无累积误差等优点,在工业控制领域里得到了广泛的应用。同时它也存在着低频振荡、电磁噪声大、高频输出转矩下降明显等缺点。采用恒转矩细分驱动技术可以很好地解决步进电机运行时的上述缺点。目前普遍应用的方法主要有2种:一是采用中规模(MSI)数字电路、运放和模拟分立元件以及驱动器件等构成。该种方式适用于功能比较简单、性能要求比较低的应用场合。二是采用单片机取代第一种方式中的数字部分来构成一个步进电机控制系统。此种方式可由任务要求的功能复杂程度和性能的高低不同来选择相应的单片机和外围器件。由于单片机本质上是程序控制器件,所以在功能、性能和速度都要求比较高的场合应用时,要么一般的单片机不能胜任,要么需要采用很高档的单片机才能完成任务。而高档单片机往往是被设计成用于处理那些任务复杂、功能和性能要求较高的应用场合的,所以当用于细分驱动时就要浪费许多内部资源。而且高档的单片机也增加了系统成本。当然,可由用户应用系统中的单片机来兼任完成这个任务。对于比较简单的步进电机控制应用这是可以的。但是,当需要高速、高精度和(或)频繁地对步进电机进行细分控制时,就要占用大量的单片机机时和内部资源,从而会严重影响到用户应用功能的执行与实现。采用FPGA器件可以很好地解决上述诸多问题。

收稿日期:2009—03—03收修改稿日期:2009—08—02ray)来取代步进电机的细分控制系统中的单片机或数字逻辑部分,由于任务相对比较单一,故可以在实现高效的细分驱动功能的前提下,提高速度和降低系统造价。

即把步进电机细分控制系统中的各相细分电流值给定单元、控制逻辑单元和斩波控制模块都集成到单片FPGA芯片内,而用户应用系统的微控制器(MCU)只需给本细分驱动控制系统提供步进步数、转动方向、细分数和启停等信息,就可以精确控制步进电机的运行,从而大大减轻了用户应用系统中的微控制器的负担,使其可以在实时控制场合完成更加复杂的控制算法等重要任务。

1恒转矩细分驱动原理

步进电机细分控制,从本质上讲就是控制步进电机各相励磁绕组中的电流,使其内部的合成磁场为旋转磁场,从而实现步距角的细分。合成磁场矢量的幅值决定了电机旋转转矩的大小,相邻两合成磁场矢量之间的夹角决定了步距角的大小。合成电流的矢量与合成的磁场矢量近似成正比,因此控制步进电机的合成磁场矢量也就是控制通入步进电机各绕组的电流值的大小。一般采用的细分方法为一相绕组通以恒定的电流,而另一相绕组的电流按阶梯方式变化,从而使合成磁场矢量均匀旋转,图1(a)为采用这种细分方式时两相混合式步进电机四细分时的合成磁场矢量图,从图中可以看到,步进电机运行过程中各相电流合成矢量的幅值不断变化,其中最大合成矢量幅值是单相通电时幅值的在倍,这也是此种细分方式下步进电

万方数据

InstrumentTechniqueandSensorDec.舢机运行不稳定的主要原因。

恒幅合成磁场矢量获得:由同步电机工作原理可知,空间

角互差90。放置的两相定子绕组分别通以电气角互差90。的正

弦波电流,合成的磁场为圆形旋转磁场。基于这一原理,在两

相混合式步进电机的两相绕组中分别通以幅值按正弦规律变

化、相位相差90。的阶梯波电流,就能得到图1(b)所示的恒幅

电流矢量…。通入的阶梯电流阶梯越小,越接近正弦波,步距

角也越小。理论上,无限细分的结果就是相位互差90。的正弦

波。该设计就采用“阶梯正弦波”细分方法控制步进电机。

斜诊翻‘两%%题公‰闵‘

(a)传统细分电流矢量图(b)恒矢量电流细分

圈1电流细分图

2系统整体实现

某精密仪器要求的定位精度折合成机械角度为0.0090/步,所选两相混合式步进电机的步距角为1.8。,即要求驱动器至少达到1.8/0.009=200细分的驱动效果。该系统町以提供最大256细分的驱动精度,能够满足设计要求。两相混合式步进电机细分驱动系统的整体实现如图2所示,它主要由FPGA控制模块、功率驱动单元、电流反馈单元等组成,其中FPGA是整个控制系统的核心。

图2系统整体实现框图

步进电机A、B两相绕组中按cos/sin规律变化的阶梯电流波存储在FPGA内部的LPM—ROM单元中,FPGA控制逻辑根据控制信号的要求把LPM—ROM单元中存储的步进电机电流设定值与绕组中的实际采样电流进行比较,根据比较结果输出PWM波,通过功率驱动级控制步进电机各相电流按设定的“阶梯正弦波”规律变化,从而获得所需要的细分精度来驱动步进电机运转口’。光耦隔离电路采用高达10MHz的高速光耦6N13。

2.1FPGA软件设计

FPGA选择EPlK50TCl44—1芯片,其内部的设计主要由分频器、A/D转换控制模块、斩波控制输出模块、地址计数模块和存储步进电机A、B两相参考电流的LPM—ROM等组成,如图3所示。LPM-ROM中的电流数据在地址计数器的作用下加载到斩波控制单元的一端,与步进电机绕组中的反馈电流进行比较,根据比较的结果调制相应斩波控制信号,控制绕组的通断电时间,使反馈电流始终跟随设定电流,保持为一个恒定值。

控制信-

号输入。

豳3FPGA内部逻辑实现框图

地址计数模块是一个1024进制的计数器,用来指定LPM—ROM的输出地址,通过VHDL语言编程的方法实现,其模块图如图4所示,COUNTER在时钟输入端clk、复位输入端rst、方向控制端dir、使能控制端en、细分控制端subdiv[2..0]的控制下输出地址指针AD[9..0],可以通过控制各输入端控制步进电机的旋转方向、工作/停止和运行频率,例如:在dir=en=rst=0,subdiv[2..oJ=“011”时,在elk的每个上升沿,输出AD[9..0]加8,实现步进电机的8细分。

‘l!癌

"删蠼

eOtj牲T£转

{擘k群

{锋暑曹

l和?冉_-e'一??’。

{#囊

{¥H_妇lV£≈.-柏

醐翻

图4地址计数模块

由于该系统要实现的最大细分数为256细分,对于两相混合式步进电机,1个周期要走256×4=1024步,所以LPM—ROM的地址宽度取为10(2”=1024),每相数据宽度取为8(28=256),则两个输出端需要16位的数据宽度,分2组分别加载到斩波控制单元的输入端。LPM—ROM中的初始数据通过加载MIF文件得到,MIF文件可以由c语言或matlab语言等高级语言编程得到,生成初始数据文件后,转化成后缀为MIF的文件,用MAX+PLUSII加载到FPGA芯片中即可,该MIF文件就是在TC3.0平台上用c语言编程得到的。对于FPGA内部LPM—ROM空间较小的芯片,考虑到正余弦信号的对称性,可以只用1024/4=256字节的存储单元,其他单元的数据可以通过逻辑及数学转换得到。

该设计采用它激式斩波恒流驱动的方式使步进电机绕组中的电流在每个细分步里保持为一个恒定值"1。FPGA按照某一固定频率采样步进电机绕组电流,并与设定的绕组电流进行比较,根据比较结果调制相应斩波控制信号,控制绕组的通电时间,使反馈电流始终跟随LPM—ROM中的设置电流。驱动电路板上提供了一个20MHz的有源晶振,FPGA通过内部的分频电路,生成频率为20kHz的时钟,实现定频斩波控制,且两相是问频斩波,不会产生差拍现象,消除了电磁噪声。斩波恒流驱动的具体实现过程如图5所示,K为反馈值与设定设定值的比较结果,根据K的值确定斩波控制信号%是否导通,从而保证步进电机绕组中的电流为设定的恒定

控制信号万方数据

第12期赵海洋等:基于矸,GA的步进电机细分驱动器值。

Ⅲ唧_1HHNHInHHflnn。

Ⅷ。flfl唧『1f1ft

。01f]f1广]『1『1『1『1『1rt

唏■≯、r—“’

图5斩波恒流驱动原理

步进电机A相斩波恒流控制电路在FPGA内部的具体实现电路如图6所示,反馈电流IAF[7..0]与设定电流IA[7..0]通过比较器进行比较,比较结果加到D触发器的清零端,当,.,>,.时,比较器输出清零信号到D触发器的清零端,D触发器在时钟信号的上升沿实现输出清零;当IA,<,.时,D触发器输出跟随输入,由于D端接高电平,输出也为高电平。通过不断比较,D触发器输出PWM信号控制步进电机A相驱动电路通断,使A相绕组电流始终保持为设定电流。为了防止因为设定电流和反馈电流对比较器的A、B输入端赋值时各位的非同步性引起的输出波形带毛刺现象,D触发器的时钟输入信号也同时加到比较器的时钟输入端,在时钟上升沿对IAF[7..0]和IA[7..0]进行比较。

jlA【7—01

蠹l^F17.D】

^懈-^

图6斩波控制模拟

2.2驱动电路设计

两相混合式步进电机A相全桥驱动电路如图7所示,选择功耗极低的HIP4081芯片作为H桥驱动芯片,该芯片可以提供1MHz的开关速率,工作电压为12V,输入兼容5~15V的逻辑电平。功率开关管是功放电路中的关键部分,影响着整个系统的功耗和效率,选择高频MOS功率场效应管IRF540作为开关管,其参数为:I,脚=100V,屁吲。)<77mQ,ID=22A.IRF540导通电阻很小,即使步进电机长时间运转,MOS管本身的温升也比较低,无需外加风扇H】。

利用设计的驱动器驱动某两相混合式步进电机在频率为2kHz,64细分的条件下运行时测得A相绕组电流波形如图8所示,从图中可以看到步进电机绕组电流曲线光滑,电机运转平稳,在细分步内电流脉动较小。

图7A相全桥驱动电路

圈864细分电流波形图(横坐标每格o.5ms)

3结论

基于该方法设计的两相混合式步进电机驱动器,可以实现对步进电机高达256微步的细分,并且把A/D转换控制电路,斩波控制电路集成到了FPGA芯片内部,大大提高了系统的集成度。步进电机在精密仪器中应用时,如果让它按照微步细分角一步一步运行,考虑到运行频率的限制,再加上细分,步进电机运行很慢,该设计中微控制器根据上位机提供的步进电机运行步数,把步进电机运行过程自动分解成整步、半步或者1/4步等加上微步的方法运行,这样不仅定位精度没有打折扣,并且大大提高了步进电机的定位速度p。。实际应用证明,该驱动器基本克服了步进电机低速振动大和噪声大的缺点,电机在较大速度范围内转矩保持恒定,提高了控制精度和定位时间,减小了发生共振的机率,具有很好的稳定性、可靠性和通用性。

参考文献:

[1]张文超,雷瑛.吴勤勤.步进电机PWM恒转矩细分驱动技术研究.机械制造,2003。41(6):33—34.

[2]刘宝廷,程树康.步进电动机及其驱动控制系统.哈尔滨:哈尔滨工业大学出版社,1997:35—42.

[3]乐创自动化技术有限公司.基于CPLD的混合式步进电机驱动器设计.自动化信息,2007(9):44—45.

[4]邹道生.EDA技术在步进电机驱动中的应用.江西师范大学学报(自然科学版),2006,30(6):350—354.

[5]黄将军,甘明.两相混合式步进电机PWM细分驱动器设计.单片机与嵌入式系统应用,2007(11):52-55.

作者简介:赵海洋(1982一).硕士。E.mail:vzhhy@163.com

万方数据

4、基于FPGA的步进电机细分驱动控制设计

南京工程学院 自动化学院 大作业(论文) 题目:基于FPGA的步进电机细分驱动 控制设计 专业:测控技术与仪器 班级:学号: 学生姓名: 任课教师:郭婧 成绩:

基于FPGA的步进电机细分驱动控制设计 一、基本要求: 在理解步进电机的工作原理以及细分原理的基础上,利用FPGA实现四相步进电机的8细分驱动控制。 二、评分标准: 1、设计方案介绍(共15分) 要求:详细叙述利用FPGA实现对四相步进电机进行8细分控制的设计方案。 评分标准: 13-15分:方案叙述详细,正确; 10-12分:方案叙述较详细,基本正确; 9分以下:酌情给分 0分:抄袭别人 2、VHDL设计部分(60分) 要求:给出详细的VHDL设计过程,提供详细的程序代码,如果设计中用到LPM模块,则给出生成LPM模块的每一步操作流程的截图,并加以文字描述。 评分标准: 54-60分:代码详细,截图完整,书写规范, 48-53分:代码较详细,截图较完整,书写较规范; 47以下:酌情给分 0分:抄袭别人 3、模拟调试部分(20分) 要求:给出详细的仿真过程,对软件编译、仿真分析、仿真波形进行截图。并给出8细分情况下的仿真测试结果,给出详细的实验结果分析。 评分标准: 18-20分:调试过程详细,正确,截图完整; 15-17分:调试过程较详细,基本正确,有截图; 14分以下:酌情给分 0分:抄袭别人

4、提高部分(5分) 要求:利用FPGA实验箱上的步进电机,实现细分控制。 评分标准:根据完成的程度给分。 0分:抄袭别人

参考:实验十八 FPGA步进电机细分驱动控制设计 示例程序和实验指导课件位置:\EDA_BOOK3_FOR_C35\chpt3\EXP18_MOTO\工程:step_a 一、实验目的 学习用FPGA实现步进电机的驱动和细分控制。 二、实验设备 PC机一台 GW48-PK4试验系统一台 连接线若干 三、实验内容 1、建立工程。完成以图18-1为原理图的工程设计,并保存工程名为step_a。 2、编译仿真。对以上工程进行编译,成功后进行方针测试。 3、引脚锁定。引脚锁定参考图18-2. 图18-1 步进电机PWM细分控制控制电路图 图18-2 引脚锁定图 4、下载测试 参考\EDA_BOOK3_FOR_C35\Chpt3\ALl.PPT\实验17.PPT 选择模式5,短路冒接clock0.根据第一章注释分别“38“和”42“或”“7”连接(见GW48主

步进电机驱动器的主要细分作用

步进电机是一种开环伺服运动系统执行元件,以脉冲方式进行控制,输出角位移。与交流伺服电机及直流伺服电机相比,其突出优点就是价格低廉,并且无积累误差。但是,步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高等,又严重制约了步进电机的应用范围。 通过细分步进电机驱动方式不仅可以减小步进电机的步距角,提高分辨率,而且可以减少或消除低频振动,使电机运行更加平稳均匀。 步进电机驱动器细分的主要作用是提高步进电机的精确率。 国内有一些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分,这两者之间的本质是不同的: 一、 “平滑”并不精确控制电机的相电流,只是把电流的变化率变缓一些,所以“平滑”并不产生微步,而细分的微步是可以用来精确定位的。 二、 步电机系统解决方案

电机的相电流被平滑后,会引起电机力矩的下降,而细分控制不 但不会引起电机力矩的下降,相反,力矩会有所增加。 驱动器细分后的主要优点为:完全消除了电机的低频振荡。低频振荡是步进电机(尤其是反应式电机)的固有特性,而细分是消除它的唯一途径,如果您的步进电机有时要在共振区工作(如走圆弧),选择细分驱动器是唯一的选择。提高了电机的输出转矩。尤其是对三相反应式电机,其力矩比不细分时提高约30-40% 。提高了电机的分辨率。由于减小了步距角、提高了步距的均匀度,‘提高电机的分辨率‘是不言而喻的。 很多用户误以为步进电机驱动器的细分越高,步进电机的精度就越高,其实这是一种错误的观念,比如步进电机驱动器细分较高的可以达到60000个脉冲一转,而步进电机实际是无法分辨这个精度的,当驱动器设置为60000个脉冲/转的时候,步进电机驱动器接受好几个脉冲,步进电机才走一步,这样并不能提高步进电机的精度。 步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是 减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术 步电机系统解决方案

D306三相混合式步进电机驱动器使用说明

D306三相混合式步进电机驱动器使用说明 !阅读 请详细阅读本说明书后,再进行安装连接! !!!安全事项 ★严禁带电对驱动器进行任何拔码设置或进行测量! ★必须在断电三分钟后,接线,安装和拔码设置! ★二次开关机之间须有三分钟间隔,以免发生故障报警! ★驱动器的输入电压需满足技术要求! ★通电前,确定电源电缆,电机动力电缆,信号电缆连接正确,且连接紧固! ★通电前,电缆连接完毕后,用万用表电阻档测量驱动器A、B、C端子与接地端子之间的电阻应为无穷大。用万用表最小电阻档测量驱动器A、B、C端子每两相电阻值应相等,避免电机相间短路,或电机缺相引起驱动器损坏。 一.性能简介 D306型号三相伺服混合式步进电机驱动器,具有以下特点: 1.采用交流伺服控制原理,在控制方式上增加了全数字式电流环控制,三相正弦电流驱动输出,使三相混合式电机低速无爬行,无共振区,噪音小。 2.驱动器功放级的电压达到DC325伏,步进电机高速运转时仍然有高转矩输出。 3.具备短路、过压、欠压、过热等完善保护功能,可靠性高。 4.具有细分和半流功能。有多种细分选择,最小步距角可设为0.036°。 5.适用面广,通过设置不同相电流可配置各种电机。

三.外观尺寸

2 3。 接口信号说明:CP+/CP-(脉冲信号):每个脉冲上升沿使电机转动一步,最小脉宽≥2.5μS,最高接收频率200KHz 。 CW+/CW-(方向信号):单脉冲控制方式时为方向控制信号输入接口,若CW 为低电平,电机顺时针旋转,CW 为高电平,电机逆时针旋转。双脉冲控制方式时为反转步进脉冲信号输入接口。方向信号切换时间≥10μS 。改变电机旋转方向可通过互换电机任意两相接线。 FREE+/FREE-(脱机信号)脱机信号输入接口,脱机+与脱机-之间分别加高低电平,电机无相电流,电机转子处于不稳定的自由状态(脱机状态);反之脱机+与脱机-之间分别加相同电平和不接,电机处于锁定状态。 Vin 外部电源输入端(仅需接ERR 和FINE 时所需) ERR 报警信号输出接口。 FINE 当FINE 为高电平时,细分功能有效,当FINE 为低电平时,细分功能无效。 当细分功能为无效时,电机每转的脉冲数为细分功能有效时的1/10。 五.拔码开关设置 D306驱动器有一个拔码开关,如图示: 1 2437865 1. 相电流设置 步进电机内部线圈必须接成三角形,驱动器的相电流设置值必须小于或等于电机铭牌上的额定相电注:若电机额定电流标称值是“Y ”接法的电流值时,设定电流值等于额定值的1.7倍。 2. 半流功能设置 半流功能是指输入脉冲频率<800Hz 时输出相电流减小到额定值的60%,可防止电机发热,减小低频振动。通常拔码DIP4设置为OFF ,半流功能有效,当设置为ON 时,半流功能无效。

步进电机工作原理

步进式电动机 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴 线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A’与齿5相对齐,(A’就是A,齿5就是齿1)。 2、旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转 子不受任何力以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、 C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过 一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电

步进电机驱动方式(细分)概述

步进电机驱动方式(细分)概述 众所周知,步进电机的驱动方式有整步,半步,细分驱动。三者即有区别又有联系,目前,市面上很多驱动器支持细分驱动方式。本文主要描述这三种驱动的概述。 如下图是两相步进电机的内部定子示意图,为了使电机的转子能够连续、平稳地转动,定子必须产生一个连续、平均的磁场。因为从宏观上看,电机转子始终跟随电机定子合成的磁场方向。如果定子合成的磁场变化太快,转子跟随不上,这时步进电机就出现失步现象。 既然电机转子是跟随电机定子磁场转动,而电机定子磁场的强度和方向是由定子合成电流决定且成正比。即只要控制电机的定子电流,则可以达到驱动电机的目的。下图是两相步进电机的电流合成示意图。其中Ia是由A-A`相产生,Ib是由B-B`相产生,它们两个合成后产生的电流I就是电机定子的合成电流,它可以代表电机定子产生磁场的大小和方向。 有了以上的步进电机背景描述后,对于步进电机的整步、半步、细分的三种驱动方式,都会是同一种方法,只是电流把一个圆(360°)分割的粗细程序不同。 整步驱动 对于整步驱动方式,电机是走一个整步,如对于一个步进角是3.6°的步进电机,整步驱动是每走一步是走3.6°。

下图是整步驱动方式中,电机定子的电流次序示意图: 由上图可知,整步驱动每一时刻只有一个相通电,所以这种驱动方式的驱动电路可以是很简单,程序代码也是相对容易实现,且由上图可以得到电机整步驱动相序如下: BB’→A’A→B’B→A A’→B B’ 下图是这种驱动方式的电流矢量分割图: 可见,整步驱动方式的电流矢量把一个圆平均分割成四份。 下图是整步驱动方式的A、B相的电流I vs T图: 可以看出,整步驱动描出的正弦波是粗糙的。使用这种方式驱动步进电机,低速时电机会抖动,噪声会比较大。但是,这种驱动方式无论在硬件或软件上都是相对简单,从而驱

步进电机控制器--说明书[1].答案

步进电机,伺服电机可编程控制器KH-01使用说明 一、系统特点 ●控制轴数:单轴; ●指令特点:任意可编程(可实现各种复杂运行:定位控制和非定位控制); ●最高输出频率:40KHz(特别适合控制细分驱动器); ●输出频率分辨率:1Hz; ●编程条数:99条; ●输入点:6个(光电隔离); ●输出点:3个(光电隔离); ●一次连续位移范围:—7999999~7999999; ●工作状态:自动运行状态,手动运行状态,程序编辑状态,参数设定状态; ●升降速曲线:2条(最优化); ●显示功能位数:8位数码管显示、手动/自动状态显示、运行/停止状态显示、步数/计数值/程序显示、编辑程序,参数显示、输入/输出状态显示、CP脉冲和方向显示; ●自动运行功能:可编辑,通过面板按键和加在端子的电平可控制自动运行的启动和停止; ●手动运行功能:可调整位置(手动的点动速度和点动步数可设定); ●参数设定功能:可设定起跳频率、升降速曲线、反向间隙、手动长度、手动速度、中断跳转行号和回零速度; ●程序编辑功能:可任意插入、删除可修改程序。具有跳转行号、数据判零、语句条数超长和超短的判断功能; ●回零点功能:可双向自动回到零点; ●编程指令:共14条指令; ●外操作功能:通过参数设定和编程,在(限位A)A操作和(限位B)B操作端子上加开关可执行外部中断操作; ●电源:AC220V(电源误差不大于±15%)。

一、前面板图 前面板图包括: 1、八位数码管显示 2、六路输入状态指示灯 3、三路输出状态指示灯 4、 CP脉冲信号指示灯

5、 CW方向电平指示灯 6、按键:共10个按键,且大部分按键为复合按键,他们在不同状态表示的功能不同,下面的说明中,我们只去取功能之一表示按键。 后面板图及信号说明: 后面板图为接线端子,包括: 1、方向、脉冲、+5V为步进电机驱动器控制线,此三端分别连至驱动器的相应端,其中: 脉冲————步进脉冲信号 方向————电机转向电平信号 +5V————前两路信号的公共阳端 CP、CW的状态分别对应面板上的指示灯 2、启动:启动程序自动运行,相当于面板上的启动键。 3、停止:暂停正在运行的程序,相当于面板上的停止键,再次启动后,程序继续运行。 4、 (限位A)A操作和(限位B)B操作是本控制器的一大特点:对于步进电机,我们一般进行定量定位控制,如控制电机以一定的速度运行一定的位移这种方式很容易解决,只需把速度量和位移量编程即可。但还有相当多的控制是不能事先定位的,例如控制步进电机从起始点开始朝一方向运行,直到碰到一行程开关后停止,当然再反向运行回到起始点。再例如要求步进电机在两个行程开关之间往复运行n次,等等。在这些操作中,我们事先并不知道步进电机的位移量的具体值,又应当如何编程呢?本控制器利用:“中断操作”,我们称之为“(限位A)A操作”和“(限位B)B操作”。以“(限位A)A操作”为例,工作流程为:当程序在运行时,如果“(限位A)A 操作”又信号输入,电机作降速停止,程序在此中断,程序记住了中断处的座标,程序跳转到“(限位A)A操作”入口地址所指定的程序处运行程序。 5、输入1和输入2通过开关量输入端。 6、输出1、输出2和输出3通过开关量输出端。 7、+24V、地—输入输出开关量外部电源,本电源为DC24V/0.2A,此电源由控制器内部隔离提供。 8、 ~220V控制器电源输入端。 输入信号和输出信号接口电路: 本控制器的“启动”、“停止”、“(限位A)A操作”、“(限位B)B操作”、“输入1”、“输入2”为输入信号,他们具有相同的输入接口电路。“输出1”、“输出2”、“输出3”称为输出信号。他们具有相同的输出接口电路。输入和输出电路都有光电隔离,以保证控制器的内部没有相互干扰,控制器内部工作电源(+5V)和外部工作电源(+24V)相互独立,并没有联系,这两组电源由控制器内部变压器的两个独立绕组提供。 开关量输入信号输出信号的状态,分别对应面板上的指示灯。对于输入量,输入低电平(开关闭合时)灯亮,反之灯灭;对于输出量,输出0时为低电平,指示灯灭,反之灯亮。 开关量输入电路:

步进电机细分控制(英文)

1/17 AN1495 APPLICATION NOTE 1INTRODUCTION Microstepping a stepper motor may be used to achieve one or both of two objectives; 1) increase the position resolution or 2) achieve smoother operation of the motor. In either case the basic the-ory of operation is the same. The simplified model of a stepper motor is a permanent magnet rotor and two coils on the stator separated by 90 degrees, as shown in Figure 1. In classical full step operation an equal current is delivered to each of the coils and the rotor will align itself with the resulting magnetic vector along one of the 45 degree axis. To step the motor, the current in one of the two coils is reversed and the rotor will rotate 90 degrees. The complete full step sequence is shown in figure 2. Half step drive,where the current in the coil is turned off for one step period before being turned on in the opposite direction, has been used to double the step resolution of a motor. In either full and half step drive,the motor can be positioned only at one of the 4 (8 for half step) defined positions.[4][5] Therefore,the number of steps per electrical revolution and the number of poles on the motor determine the resolution of the motor. Typical motors are designed for 1.8 degree steps (200 steps per revolution)or 7.5 degree steps (48 steps per revolution). The resolution may be doubled to 0.9 or 3.75 degrees by driving the motor in half step. Further increasing the resolution requires positioning the rotor at positions between the full step and half step positions. Figure 1. Model of stepper motor MICROSTEPPING STEPPER MOTOR DRIVE USING PEAK DETECTING CURRENT CONTROL Stepper motors are very well suited for positioning applications since they can achieve very good positional accuracy without complicated feedback loops associated with servo sys-tems. However their resolution, when driven in the conventional full or half step modes of operation, is limited by the configuration of the motor. Many designers today are seeking alternatives to increase the resolution of the stepper motor drives. This application note will discuss implementation of microstepping drives using peak detecting current control where the sense resistor is connected between the bottom of the bridge and ground. Examples show the implementation of microstepping drives with several currently available chips and chip sets. REV . 2AN1495/0604

步进电机细分驱动方式的研究

步进电机作为电磁机械装置,其进给的分辨率取决于细分驱动技术。采用软件细分驱动方式,由于编程的灵活性、通用性,使得步进细分驱动的成本低、效率高,要修改方案也易办到。同时,还可解决步进电机在低速时易出现的低频振动和运行中的噪声等。但单一的软件细分驱动在精度与速度兼顾上会有矛盾,细分的步数越多,精度越高,但步进电机的转动速度却降低;要提高转动速度,细分的步数就得减少。为此,设计了多级细分驱动系统,通过不同的细分档位设定,实现不同步数的细分,同时保证了不同的转动速度。 1 细分驱动原理 步进电机控制中已蕴含了细分的机理。如三相步进电机按A→B→C……的顺序轮流通电,步进电机为整步工作。而按A→AC→C→CB→B→BA→A……的顺序通电,则步进电机为半步工作。以A→B为例,若将各相电流看作是向量,则从整步到半步的变换,就是在IA与IB之间插入过渡向量IAB,因为电流向量的合成方向决定了步进电机合成磁势的方向,而合成磁势的转动角度本身就是步进电机的步进角度。显然,IAB的插入改变了合成磁势的转动大小,使得步进电机的步进角度由θb 变为0.5θb,从而也就实现了2步细分。由此可见,步进电机的细分原理就是通过等角度有规律的插入电流合成向量,从而减小合成磁势转动角度,达到步进电机细分控制的目的。 在三相步进电机的A相与B相之间插入合成向量AB,则实现了2步细分。要再实现4步细分,只需在A与AB之间插入3个向量I1、I2、I3,使得合成磁势的转动角度θ1=θ2=θ3=θ4,就实现了4步细分。但4步细分与2步细分是不同的,由于I1、I2、I33个向量的插入是对电流向量IB的分解,故控制脉冲已变成了阶梯波。细分程度越高,阶梯波越复杂。 在三相步进电机整步工作时,实现2步细分合成磁势转动过程为 IA→IAB→IB;实现4步细分转动过程为IA→I2→IAB……;而实现8步细分则转

研控步进电机YKD3422MA细分驱动器说明书

YKD3422MA 数字式细分驱动器 特点木工雕刻机 数控机床 包装设备 纺织设备 水钻设备 激光切割机 YKD3422MA是一款基于高性能DSP控制的三相步进电机驱动器,硬件设计上采用DSP+IPM模块进行高集成度简约化设计,数字式PWM控制方式,软件上采用矢量控制技术及微细分自适应控制技术,即使在低细分条件下也可以使电机低速运行平稳,几乎没有震动和噪音,电机在高速时力矩大大高于两相和五相混合式步进电机。驱动电压为交流110V-240V,适配电流在4.2A以下的各种型号三相混合式步进电机。此款驱动最适宜控制高电压小电流电机。定位精度最高可达10000步/转.细分设置更改需要断电重启后才生效,运行电流及抱轴电流设定支持不断电在线设置。 电流设定驱动器接线示意图 典型应用概述1. STOP/Im为保持状态(或抱轴状态)输出电流设置电位器,可设置为 正常输出电流的20%-80%(顺时针增大,逆时针减小),支持在线调整。 2. RUN/Im为正常工作输出电流设置开关(详见下表),支持在线调整。 PU DR MF DIP开关设定输入信号波形时序图安装尺寸(单位:mm)◆◆◆◆◆◆◆◆◆◆◆◆ 采用矢量控制及微细分控制技术,在运行平稳性、噪音、震动、发热等方面 较传统驱动器均有较大的提升; 衰减模式及衰减时间自适应控制,开关管运行在最少开关模式,运行时发热 大大降低,电流波形失真度较小; 设有16档等角度恒力矩细分,最高分辨率10000步/转; 最高响应频率可达200Kpps; 加减速曲线配置合适的情况下电机最高空载速度可达50R/S(or 3000RPM); 步进脉冲停止超过100ms时,线圈电流自动减为20%-80%(由STOP/Im设定) 光电隔离信号输入/输出 驱动电流从0.6A/相到4.2A/相分16档可调 单电源输入,电压范围:交流AC110-220V 出错保护:过热保护/过流、电压过低保护 YKD3422MA体积为178x108.5x68(),净重量为:0.93kg 相位记忆功能(注:输入脉冲停止超过5秒后,驱动器自动记忆当时电机相位, 重新上电或MF信号由有效变为无效时,驱动器自动恢复电机相位)。 3mm 注意!信号端DB15塑料壳 需保留45mm的安装空间。

本教程介绍步进电机驱动和细分的工作原理

本教程介绍步进电机驱动和细分的工作原理,以及stm32103为主控芯片制作的一套自平衡的两轮车系统,附带原理图pcb图和源代码,有兴趣的同学一起来吧.本系统还有一些小问题,不当之处希望得到大家的指正. 一.混合式步进电机的结构和驱动原理 电机原理这部分不想讲的太复杂了,拆开一台电机看看就明白了。 电机的转子是一个永磁体,它的上面有若干个磁极SN组成,这些磁极固定的摆放成一定角度。电机的定子是几个串联的线圈构成的磁体。出线一般是四条线标记为A+,A-,B+,B-。A相与B相是不通的,用万用表很容易区分出来,至于各相的+-出线实际是不用考虑的,任意一相正负对调电机将反转。另外一种出线是六条线的只是在A相和B相的中间点做两条引出线别的没什么差别,六出线的电机通过中间出线到A+或A-的电流来模拟正向或负向的电流,可以在没有负相电流控制的电路中实现电机驱动,从而简化驱动电路,但是这种做法任意时刻只有半相有电流,对电机的力矩是有损失的。步进电机的转动也是电磁极与永磁极作用力的结果,只不过电磁极的极性是由驱动电路控制实现的。 我们做这样的一个实验就可以让步进电机转动起来。1找一节电池正负随意接入到A相两端;然后断开;(记为A正向)2再将电池接入到B相两端; 然后断开;(记为B正向)3电池正负对调再次接入A相; 然后断开;(记为A负向)4保持正负对调接入B相;然后断开;(记为B负向)…如此循环你会看到步进电机在缓慢转动。注意电机的相电阻是很小的接

通时近乎短路。我们将相电流的方向记录下来应该为:A+B+A-B-A+…, 如果我们更换接线顺序使得相电流顺序为A+B-A-B+A+…这时我们会看 到电机向反方向运动。这里每切换一次相电流电机都会转动一个很小的角度,这个角度就是电机的步距角。步距角是步进电机的一个固有参数,一般两相电机步距角为1.8度即切换200次可以让电机转动一圈。这里我们比较正反转的电流顺序可以看出A+和A-;B+和B-的交换后的顺序 和正反顺序是一致的,也就是前面所说的”任意一相正负对调电机将反转”。以上为四排工作方式,为了使相电流更加平滑另外可以使用八排的工作方式即: A+;A+B+;B+;B+A-;A-;A-B-;B-;B-A+;从前往后循环正转,从后往前循环反转。 为了用单片机实现相电流的正负流向控制必须要有一个H桥的驱动电路,这种带H桥的驱动模块还是很多的,比较便宜的是晶体管H桥比如L298N,晶体管开关速度比较慢,无法驱动电机高速运动。有些模块将细分控制电路也包含在内,我们也不用这种,因为我们的细分由软件控制。实际应用中使用ST的mos管两桥驱动芯片L6205一片即可驱 动一台步进电机。有了H桥通过PWM就可以控制相电流大小,改变输入极IN1、IN2的状态(参看手册第8页)可以控制相电流的方向。 二.细分的原理和输出控制 从这里开始重点了,别的地方看不到哦。 一个理想的步进电机电流曲线应该是相位相差90度的正弦曲线如

步进电机驱动器及细分控制原理

步进电机驱动器及细分控制原理 步进电机驱动器原理: 步进电机必须有驱动器和控制器才能正常工作。驱动器的作用是对控制脉冲进行环形分配、功率放大,使步进电机绕组按一定顺序通电。 以两相步进电机为例,当给驱动器一个脉冲信号和一个正方向信号时,驱动器经过环形分配器和功率放大后,给电机绕组通电的顺序为AA BB A A B B ,其四个状态周而复始 进行变化,电机顺时针转动;若方向信号变为负时,通电时序就变为 AA B B A A BB ,电机就逆时针转动。 随着电子技术的发展,功率放大电路由单电压电路、高低压电路发展到现在的斩波电路。其基本原理是:在电机绕组回路中,串联一个电流检测回路,当绕组电流降低到某一下限值时,电流检测回路发出信号,控制高压开关管导通,让高压再次作用在绕组上,使绕组电流重新上升;当电流回升到上限值时,高压电源又自动断开。重复上述过程,使绕组电流的平均值恒定,电流波形的波顶维持在预定数值上,解决了高低压电路在低频段工作时电流下凹的问题,使电机在低频段力矩增大。 步进电机一定时,供给驱动器的电压值对电机性能影响较大,电压越高,步进电机转速越高、加速度越大;在驱动器上一般设有相电流调节开关,相电流设的越大,步进电机转速越高、力距越大。 细分控制原理: 在步进电机步距角不能满足使用要求时,可采用细分驱动器来驱动步进电机。细分驱动器的原理是通过改变A,B相电流的大小,以改变合成磁场的夹角,从而可将一个步距角细分为多步。

定子 A 转子 S N B B B S N A A (a)(b) A S N B B N S B S N A (c)(d) 图3.2步进电机细分原理 图 仍以二相步进电机为例,当A、B相绕组同时通电时,转子将停在A、B相磁极中间,如图3.2。 若通电方向顺序按AA AA BB BB BB AA AA AA BB BB BB AA,8个状态周而 复 始进行变化,电机顺时针转动;电机每转动一步,为45度,8个脉冲电机转一周。与图2.1相比,它的步距角小了一半。 驱动器一般都具有细分功能,常见的细分倍数有:1/2,1/4,1/8,1/16,1/32,1/64;或:1/5,1/10,1/20。 细分后步进电机步距角按下列方法计算:步距角=电机固有步距角/细分数 例如:一台1.8°电机设定为4细分,其步距角为 1.8°/4=0.45°。当细分 等级大于1/4后,电机的定位精度并不能提高,只是电机转动更平稳。

步进电机驱动电路设计

https://www.wendangku.net/doc/6211249441.html,/gykz/2010/0310/article_2772.html 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。

基于FPGA的步进电机的PWM控制__细分驱动的实现

姓名___ _ _ _ 学号201016050136 院系电气信息工程学院 专业电子信息工程 班级___信息10-1______ __

目录 目录 (2) 摘要 (3) 关键词 (3) Abstract (3) Keywords (3) 一、引言 (4) 二、步进电机细分驱动的基本原理 (4) 三、Quartus II概述 (5) 四、课题设计 (5) (一)总体设计 (5) (二)细分电流的实现 (6) (三)细分驱动性能的改善 (6) (四)程序设计 (6) 六、仿真与测试结果分析 (10) 七、结论 (12) 参考文献 (12) 注释 (13) 附录 (14) 心得体会 (20)

摘要 在对步进电机细分驱动原理进行分析研究的基础上,提出一种基于FPGA 控制的步进电机细分驱动器。利用FPGA中的嵌入式EAB构成LPM-ROM,存放步进电机各相细分电流所需的PWM控制波形数据表,并通过FPGA设计的数字比较器,同时产生多路PWM电流波形,实现对步进电机转角进行均匀细分控制。实验证明,所研制的步进电机驱动器不仅体积小,简化了系统的设计,减少了延迟,改善了低频特性,有良好的适应性和自保护能力,提高了驱动器的稳定性和可靠性。 关键词 步进电机;细分驱动;脉宽调制;FPGA Abstract In this paper, a divided driving circuit for stepping motor controlled by FPGA is put forward, based on the analysis of the principle of stepping motor divided driving. Using embedded EAB in FPGA to compose LPM-ROM, store PWM control wave form data which stepping motor each phase subdivided driving current is needed.The magnitude comparator designed with FPGA generates several PWM current waveform synchronously, to realize the step angles even division control for three–phase stepping motor.Experimments have proved that the developed subdivision driver is not only smaller,sampler in system, can shorten the delay time,improve the stability in low frequency ,but has good self-adaptation and self-protection ability,and its stability and relibility are higher. Keywords stepping motor; divided driving;PWM; FPGA

步进电机细分驱动电路设计

前言 随着社会的进步和人民生活水平的不断提高及全球经济一体化势不可挡的浪潮,我国微特电机工业在最近10年得到了快速的发展。快速发展的显着标志是使用领域不断拓宽,用量大增,特别是在日用消费市场和工业自动化装置及系统的表现最为明显。与此同时,随着电力电子技术、微电子技术和计算机技术、新材料以及控制理论和电机本体技术的不断发展进步,用户对电机控制的速度、精度和实时性提出了更高的要求,因此作为微特电机重要分枝的控制电机也得到了空前的发展。步进电动机又称为脉冲电动机,是数字控制系统中的一种执行组件。其功用是将脉冲电信号变换为相应的角位移或直线位移,即给一个脉冲电信号,电动机就转动一个角度或前进一步。步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。现在比较常用的步进电机包括反应式步进电机、永磁式步进电机、混合式步进电机和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。步进电机和普通电机的区别主要在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。步进电机被广泛应用于数字控制各个领域:机器人方面,机器人的的关节驱动及行进的精确控制,需要步进电机;数控机床方面,如数控电火花切割机床要求刀具精确走步,减小加工件表面的粗糙度的同时提高效率,需要步进电机;办公自动化方面,如电脑磁盘驱动器中的磁盘进行读盘操作的精确位置控制,需要步进电机,在打印机、传真机中也需要步进电机对设备进行位置控制。步进电动机是经济型数控系统经常采用的电机驱动系统。这类电机驱动系统的特点是控制简单,适合计算机系统控制要求。步进电动机的细分驱动系统较以往的电机系统,消除了低频震荡问题,控制分辨率更高,使其应用领域更加广泛。

步进电机控制器说明手册

步进电机,伺服电机可编程控制器K H-01使用说明 一、系统特点 ●控制轴数:单轴; ●指令特点:任意可编程(可实现各种复杂运行:定位控制和非定位控制); ●最高输出频率:40KHz(特别适合控制细分驱动器); ●输出频率分辨率:1Hz; ●编程条数:99条; ●输入点:6个(光电隔离); ●输出点:3个(光电隔离); ●一次连续位移范围:—7999999~7999999; ●工作状态:自动运行状态,手动运行状态,程序编辑状态,参数设定状态; ●升降速曲线:2条(最优化); ●显示功能位数:8位数码管显示、手动/自动状态显示、运行/停止状态显示、步数/计数值/程序显示、编辑程序,参数显示、 输入/输出状态显示、CP脉冲和方向显示; ●自动运行功能:可编辑,通过面板按键和加在端子的电平可控制自动运行的启动和停止; ●手动运行功能:可调整位置(手动的点动速度和点动步数可设定); ●参数设定功能:可设定起跳频率、升降速曲线、反向间隙、手动长度、手动速度、中断跳转行号和回零速度; ●程序编辑功能:可任意插入、删除可修改程序。具有跳转行号、数据判零、语句条数超长和超短的判断功能; ●回零点功能:可双向自动回到零点; ●编程指令:共14条指令; ●外操作功能:通过参数设定和编程,在(限位A)A操作和(限位B)B操作端子上加开关可执行外部中断操作; ●电源:AC220V(电源误差不大于±15%)。 一、前面板图 前面板图包括: 1、八位数码管显示 2、六路输入状态指示灯 3、三路输出状态指示灯 4、CP脉冲信号指示灯 5、CW方向电平指示灯 6、按键:共10个按键,且大部分按键为复合按键,他们在不同状态表示的功能不同,下面的说明中,我们只去取功能之 一表示按键。 后面板图及信号说明: 后面板图为接线端子,包括: 1、方向、脉冲、+5V为步进电机驱动器控制线,此三端分别连至驱动器的相应端,其中: 脉冲————步进脉冲信号 方向————电机转向电平信号 +5V————前两路信号的公共阳端 CP、CW的状态分别对应面板上的指示灯 2、启动:启动程序自动运行,相当于面板上的启动键。 3、停止:暂停正在运行的程序,相当于面板上的停止键,再次启动后,程序继续运行。 4、(限位A)A操作和(限位B)B操作是本控制器的一大特点:对于步进电机,我们一般进行定量定位控制,如控制电机以一 定的速度运行一定的位移这种方式很容易解决,只需把速度量和位移量编程即可。但还有相当多的控制是不能事先定位的,例如控制步进电机从起始点开始朝一方向运行,直到碰到一行程开关后停止,当然再反向运行回到起始点。再例如要求步

步进电机驱动电路设计-参考模板

步进电机驱动电路设计 摘要 随着数字化技术发展,数字控制技术得到了广泛而深入的应用。步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。他们都是利用电和磁的相互作用来实现向机械能能的转换。 介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器) L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可靠,通过按键控制,操作方便,节省成本。 关键词:步进电机,单片机控制,AT89S52,L297,L298目录

步进电机 驱动器 控制器三者的关系

电机行业专业求职平台 1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况 下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机、交流电机在常规下使用。步进电机必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。它涉及到机械、电机、电子及计算机等许多专业知识。 提及此知识,希望能给予正在对电机选型的客户有所帮助。 2.力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度,则产生力 F与(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br为磁密,S为导磁面积 F与L*D*Br成正比 L为铁芯有效长度,D为转子直径 Br=N·I/R N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径 力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 一、混合式步进电机

电机行业专业求职平台1、特点: 混合式(又称感应子式步进电机)与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 混合式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运 行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C= A ,D=B . 一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相, 而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,更可以作二相电机绕组串联或并联使用。 2、分类 混合式步进电机可分二相、三相、四相、五相等,我公司混合式步进电机以相数可分为:二相电机、三相电机: TEB20H,TEB28H,TEB35H,TEB39H,TEB42H,TEB57H,TEB86H,TEB110 H,TEC57H,TEC86H,TEC110H,TEC130H. 3、步进电机的静态指标术语 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半 步)。 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

相关文档
相关文档 最新文档