文档库 最新最全的文档下载
当前位置:文档库 › 在非饱和线弹性土层中机器基础的简化模型

在非饱和线弹性土层中机器基础的简化模型

在非饱和线弹性土层中机器基础的简化模型
在非饱和线弹性土层中机器基础的简化模型

A simpli?ed model for the analysis of machine foundations

on a nonsaturated,elastic and linear soil layer

M.Z.As ??k a,*,C.V.G.Vallabhan b

a

Department of Engineering Sciences,Middle East Technical University,Ankara 06531,Turkey

b

Department of Civil Engineering,Texas Tech University,Lubbock,TX 79401,USA

Received 1March 2000;accepted 24July 2001

Abstract

A simpli?ed semi-analytical method,which considers advantages of analytical and numerical approaches,is devel-oped to compute the response of a rigid strip and circular machine foundations ±±subjected to a harmonic excita-tion ±±resting on a layer of soil deposit with a noncompliant rock or rock-like material at the base.The method is based on variational principles and minimization of energy using Hamilton's principle.Nondimensional equations are de-veloped for both type of footing resting on a soil layer.Dynamic response characteristics are plotted by using nondi-mensional parameters for both types of footing.ó2001Elsevier Science Ltd.All rights reserved.

Keywords:Vibration analysis;Layered medium;Machine foundation;Geometric damping;Strip footing;Circular footing

1.Introduction

Dynamic analysis of machine foundations has been a major research topic among geotechnical engineers for more than ?ve decades.Most of the analytical e orts were concentrated on footings resting on a semi-in?nite elastic medium though footings resting on a layered medium have a widespread application.The most im-portant problem in the vibration analysis of footings is to predict the frequency of the footing by determin-ing impedance and inertia characteristics of the overall medium and the amplitude of the footing at the opera-ting or resonant frequency by determining damping characteristics (geometric and material damping)of the soil medium.

The di culty in mathematical modeling of the overall problem presented in Fig.1arises from the fact that the model should represent the continuity of the medium,dissipation of energy (geometric damping)due to stress waves propagating away from the footing and dynamic interaction between the footing and the soil.

In general,the models developed so far are based on the improvement of the Winkler model [1]that considers footing supported by series of vertical springs repre-senting soil and the Lamb's model [2]that considers the foundation problem as a wave propagation problem.

2.Review of past research

The classical Winkler model [1]developed in 1867having the parameter k to represent the soil sti ness is far away to simulate the basic characteristics of the problem.Amplitudes of vibrations are directly related to the dissipation of the energy from the system.To simu-late the energy dissipation,Barkan and Ilyichev[3]added viscous dampers to the system parallel to the elastic springs.This procedure is called the ``Winkler±Voigt''model,and the dynamic tests are made to determine the dashpot constant.From the tests,it is observed that there is a discrepancy between the spring constants obtained from dynamic and static repeated loading tests.Barkan introduced an in-phase soil mass to polish this discrepancy regarding the size of founda-tion,properties of the medium,mode of vibration,

etc.

Computers and Structures 79(2001)

2717±2726

https://www.wendangku.net/doc/6511541565.html,/locate/compstruc

*

Corresponding author.

0045-7949/01/$-see front matter ó2001Elsevier Science Ltd.All rights reserved.PII:S 0045-7949(01)00149-3

The Winkler and Winkler±Voigt models are both com-pletely empirical.In static analysis,the Winkler model is known as a one-parameter model regarding the spring constant,k.

In1954,Pasternak[4]developed a two-parameter model in order to simulate the e ect of the continuity of the medium regarding a parameter,s,for the shear layer in addition to the spring constant,k.Vlasovand Leont'ev[5]deriv ed formulae which relate Pasternak parameters to the subgrade displacement pro?le by re-coursing to a virtual work principle.Vallabhan and Das [6]developed a new model that is mathematically con-sistent in determining the so-called``c''parameter and named their model the``modi?ed Vlasovmodel''.All of their studies are about static analysis[6±8].The model developed with three parameter is mathematically con-sistent and represents the basic characteristics of the static soil-footing problem.For dynamic analysis,the simulation of energy dissipation in the system is still a problem.Baranov[9]dev eloped a model by utilizing the wave propagation concept to de?ne the behavior of the system.His improvement was the integration of an in-ternal coupling mechanism by connecting the vertical thin soil strips with horizontal springs which work horizontally and vertically because of the displacement di erences in adjacent strips.But it is necessary to consider the stress waves emanating from the footing to introduce the damping to the problem for the complete simulation.

Lamb[2]was the?rst who solved the wave equations for the three-dimensional case in which a single con-centrated dynamic load is acting on the surface of a body,and the problem was called the``dynamic Bous-sinesq problem''.This solution formed the basis for the study of oscillation of footings resting on a surface of half space[10±13].Reissner[10],developed the?rst analytical solution for the vertically loaded cylindrical disk on an elastic half space.A state of uniform stress assumption by him under the footing shed light on ra-diation damping(or geometric damping)that had not been realized until then.

2718M.Z.A s??k,C.V.G.Vallabhan/Computers and Structures79(2001)2717±2726

During the mid-1950s,Quinlan[12]and Sung[11] derived equations for parabolic,uniform and rigid base static stress distributions and presented solutions for the vertically oscillating circular and rectangular founda-tions.Arnold et al.[14],Bycroft[15]and Warburton[16] developed similar models by assuming a static stress distribution under the footing.Bycroft was the?rst who presented the solution for vibration of a footing on a layered medium.As it is known,the stress distribution under the footing changes with the frequency of vibra-tion.

Lysmer[17]studied the vertical vibration of circular footings by discretizing the circular area into concentric rings,each having a frequency dependent uniform stress distribution.By modifying Reissner's solution,Hsieh [18],was the?rst who showed that a footing lying on an elastic medium can be represented as a single degree of freedom https://www.wendangku.net/doc/6511541565.html,ter,Lysmer introduced a frequency independent sti ness coe cient,K v,and dashpot co-e cient,C v,for the medium vibrating in the low fre-quency range,and his model is known as Lysmer's analog.

After Lysmer,similar studies were done by Hall[19], and Richart and Withman[20],for other modes of vibration.In their studies,they could not?nd good agreement between the resonant frequency of the actual system and the simple Lysmer mass-spring±dashpot system.Thus they suggested that a?ctitious soil mass be added to the foundation mass for each mode.

Luco[21]and Gazetas[22],developed analytical so-lutions for the same type of footings on the surface of a layered medium with rigid rock as the last layer or a layered medium lying on a half space.Further,they continued studies on the vibration of footings[23,24].

In this study,a simpli?ed model which is able to simulate the energy dissipation in the system by geo-metry is introduced to solve the problem of vibration of footings on layered media.

For strip and circular footings resting on an elastic soil layer,which in turn rests on the rigid rock or rock-like material,the governing di erential equations are derived using variational principles and Hamilton's ap-proach.Results are compared with the available pub-lished data to verify the present results for rigid strip and circular footings resting on a layer underlain by rigid rock.

3.Formulation of the strip footing problem

In this study footings placed on the surface are studied.For small deformations,soil deposit can be assumed to be elastic and linear.An idealization of this type of continuum can be represented by Fig.1.The model has following assumptions:soil layer is homoge-neous;plane strain conditions are valid;only the vertical displacements take place while the horizontal displace-ments are ignored;displacements at the bottom of the foundation layer are zero;the force is harmonic and applied at the center of the footing.

To derive the governing di erential equations for the present model with constant modulus,Hamilton's prin-ciple is employed.The principle is

d

t

2

t1

TàV d t 0; 1

where,T is the kinetic energy of the footing and soil,and V is the potential energy of the footing and soil.By assuming that the footing and soil experience only ver-tical vibration(i.e.,u x;y;z;t 0in the soil),de?ning vertical displacement in soil at any point W x;z;t W x;t / z ,where/ z 1at z 0and/ z 0at z H and taking the variations in W and/the fol-lowing?eld equations and boundary conditions are obtained through Hamilton's principle:

(1)ForàB6x6B(soil surface under the footing) q f h m

o2W

o t

kW q with boundary conditions BCs 2t

o W

o x

d W

B

àB

0: 2

(2)For x6àB and x P B(soil surface outside the footing)

m

o W

o t2

2t

o2W

o x

kW 0with BCs2t

o W

o x

d W

àB

àI

0 and2t

o W

o x

d W

I

B

0: 3

(3)For06z6H(inside the soil)and d/ 0

d2/

d z

à

c

H

2

/ 0with BCs m

d/

d z

d/

H

0: 4 In the above equations,

m

H

q s/2d z q s Hc t;

k

2 1àm

1à2m

H

G

d/

d z

2

d z G

2 1àm

1à2m

c k

H

;

2t

H

G/2d z GHc t;

in which

c k H

H

d/

d z

2

d z;c t

1

H

H

/2d z

;

M.Z.A s??k,C.V.G.Vallabhan/Computers and Structures79(2001)2717±27262719

and m

2 1àm

1à2m

I

àI

GW 2

d x ;

n

I

àI

G o W

o x 2d x

and

c H 2 n à I àI q s o W o t

2d x

m

:where W x ;t is the vertical displacement of the footing,q f ,the density of the footing,q s ,the density of the soil,B ,the half length of the footing,h ,the height of the footing (in the z direction),H ,the depth of the soil layer,q x ;t ,the external applied force,G ,the modulus of elasticity of the soil,m ,the Poisson's ratio of the soil.For a linear system and a harmonic force with a frequency X ,the steady state response of the system is W x ;t w x e i X t and

W

àX 2w x e i X t where W

o 2W =o t 2:Then Eq.(3)takes the following form:

o 2w o x 2à

k àm X 2

2t

w 0: 5

By applying the boundary conditions,for the vibra-tion of the surface of the soil outside the footing,the solution is as follows:W x ;t W 0e à a =B x àB e i X t B 6x

àI

6

where a =B 2 k àm X 2 =2t and W W 0(displace-ment at the surface of the soil under the footing).

Similarly,the di erential equation (4)has the fol-lowing solution after application of the boundary con-ditions / z 1at z 0and / z 0at z H ;/ z

1

1àe e c =H z àe 2c e à c =H z : 7

For a massless rigid footing,Eq.(2)takes the fol-lowing form:m W

kW q : 8

Fig.2shows the forces and mathematical model equivalent of soil-footing system.Then from Fig.2,the equilibrium of forces can be written as:2Bq 2N R t :

9

In Eq.(9),N is the edge reactions and represents the e ect of the continuous medium on both edges of the footing,and R R 0e i X t is a line harmonic force per unit length of the strip footing.As a result of the variational formulation,N 2t o W =o x j x ?B and by recoursing the wave propagation [25,26],N takes the following form:

N i G H =B c t a 0W 0e i X t N 0e i X t ; 10

where a 0 X B =V s is the nondimensional frequency,N 0is the lumped form of all the shear stresses along the depth at x B at time t .It is assumed that these stresses are taking energy away from the system.Therefore,N represents a shear force which will be propagated out to in?nity because of the geometry of the problem which causes geometric damping or radiation,as mentioned before.In Fig.2,dashpots at the edges represent geo-metric damping mechanisms in the system.Then,the following nondimensional force±displacement relation-ship for a massless rigid footing without material dam-ping in the soil is obtained:

22 1àm 1à2m c k H =B

à2 H =B c t a 20 i2 H =B c t a 0 W 0G R 0

1: 11 By recoursing to the correspondence principle of vi-scoelasticity [27]and by de?ning b as material damping ratio and,k and c as frequency dependent dynamic sti ness and damping coe cients,respectively,then the impedance can be written as follows [28]:K K s k i ca 0 1 2i b

12

where K s is the static sti ness coe cient with a 0 0.The displacement functions are F K à1and f 1 Re F ,f 2 Im F .Where f 1and f 2are both functions of the dimensionless frequency,a 0,the soil depth to footing half-length ratio,H =B ,and Poisson's ratio,m .

The dynamic equilibrium equation of the system

in compact form can be written as M W

R t P t ,where P P 0e i X t is the harmonic excitation;R t is the soil reaction,and the third term is the inertia force of the footing.For a harmonic excitation,the reaction R t from the soil,will also be harmonic,i.e.,R t R 0e i X t ,in which X is the operational frequency of the machine and P 0is the amplitude of the force.In general,P 0can be assumed to be a constant or equal to m e e X 2which is created by the vibratory machine,where m e is the un-balanced mass and e is the radius of eccentricity.M is the total mass of the foundation and the machine(s)on this foundation.Following Refs.[10±12],the uniform harmonic displacement under the footing can now be written in terms of the soil reaction and

displacement

Fig.2.Soil-footing system,soil reactions and spring-dashpot

equivalence.

2720M.Z.A s ??k,C.V.G.Vallabhan /Computers and Structures 79(2001)2717±2726

functions,f 1and f 2is W R 0=G f 1 i f 2 e i X t .Then,

the following nondimensional amplitude of vibration is obtained:

e W 0 W 0G P 0

f 21 f 2

2 1àb 0a 20f 1 2 b 0a 20f 2 2231=2

; 13 where b 0is a dimensionless mass ratio,b 0 M =q s B 2 and e W

0is a function of c k ,c t ,H =B ,m and a 0.4.Numerical results for the strip footing

Fig.3is plotted to compare the results from the de-veloped simpli?ed model with those obtained from the wave propagation model of Gazetas and Roesset [24].This ?gure shows the nondimensional amplitude of vi-bration e W

0versus the nondimensional frequency a 0for di erent mass ratios b 0with ?xed parameters b 5%,m 0:4and H =B 2.It is observed that,for mass ratios greater than 5,the resonant frequencies of the two so-lutions are very close and the absolute error percentage changes from 0to 8.But the error percentage for the amplitude is high:it changes from 19to 35.The reasons for the occurrence of this important di erence are that di erent assumptions are made in the two models.In the current model,the horizontal displacement u is assumed to be zero in the entire soil medium.However,in Gaz-etas'solution,the horizontal displacement is assumed to be zero only along the interface,just under the footing.Assumption of the u displacement equal to be zero in the entire soil region makes the system sti er than the wave propagation model of Gazetas and Roesset [24].Also,the equations for the current model are derived by using variational and Hamilton's concepts.It is known that variational formulation with an assumed displacement

function makes the system sti er,too.If a system is sti er,it gives higher resonant frequencies and smaller amplitudes than the actual system.

The vertical decay function /created by the current model is presented in Fig.4for di erent c values.The function /given by Eq.(7)depends on the nondimen-sional frequency,a 0through the parameter c

H B 1à2m 2 1àm a 21 a

a 2

0&'s :Fig.5is a classical plot in vibration problems.It shows the e ect of the material damping ratio b .As is known,the amplitude of vibration decreases when the material damping ratio increases.The resonant fre-quency of the system is not a ected very much by the damping ratio.

The geometry of the system has an important e ect on the resonant frequency of the system.Fig.6shows the e ect of the ratio of the soil depth to the half length of the footing,H =B on the behavior of the system.This ratio has an especially strong e ect on the resonant frequency.As the H =B ratio increases,the resonant fre-quency of the system decreases.The amplitude of the vibration is not a ected very much by the H =B ratio in a shallow layer.For high H =B ratios,(deep soils),such as H =B equal to 10or more,the nondimensional amplitude versus the nondimensional frequency curves show the behavior of half-space response curves as expected.Fig.7shows the e ect of Poisson's ratio of the soil on the behavior of the system.The amplitudes are plotted for Poisson's ratio values up to 0.4since the

developed

https://www.wendangku.net/doc/6511541565.html,parison of results for di erent mass

ratios.

M.Z.A s ??k,C.V.G.Vallabhan /Computers and Structures 79(2001)2717±27262721

model is unrealistically sensitive to the values of Pois-son's ratio close to 0.5.It is observed from the curves

that Poisson's ratio a ects both the amplitude and the resonant frequency of vibration.The amplitude of vibra-tion decreases as Poisson's ratio increases,but the reso-nant frequency increases as Poisson's ratio increases.

5.Formulation of the circular footing problem

The procedure in deriving the equations for the cir-cular footing is same as the one for the strip footing.

Circular footing problem is assumed to be an axisym-metric problem.Therefore,Figs.1and 2can also be

used for the circular footing by considering R as the radius of a circular footing instead of B as the width of a strip footing and s rz instead of s xz .

By using Eq.(1),assuming that the footing and soil experience only vertical vibration (i.e.,u r ;h ;z ;t 0in the soil)W r ;z ;t W r ;t / z ,applying Hamilton's principle and taking the variations in W and /,the fol-lowing ?eld equations and boundary conditions are obtained:

(1)For 06x 6R (soil surface under the footing)with d W 0

q f h m W kW q with boundary conditions ;2t o W

o r d W R 0

0: 14 (2)For R 6r

m W

à2t r 2W kW 0with boundary conditions ;2t o W

o r

d W I R

0: 15 (3)For 06z 6H (inside the soil)and d / 0d 2/d z 2àc H

2

/ 0with boundary conditions ;m d /

d / H 0 0; 16

where

Fig.5.E ect of damping ratio on the response of strip

footing.Fig.6.E ect of H =B ratio on the response of strip

footing.

Fig.7.E ect of Poisson's ratio on the response of strip footing.

2722M.Z.A s ??k,C.V.G.Vallabhan /Computers and Structures 79(2001)2717±2726

m H

q s/2d z q s Hc t;

k 2 1àm

1à2m

H

G

d/

d z

2

d z G

2 1àm

1à2m

c k

H

;

2t H

G/2d z GHc t

where c k and c t are rede?ned as

c k H H

d/

d z

2

d z;c t

1

H

H

/2d z

and

m 2 1àm

1à2m

I

GW2r d r;

n I

G

o W

2

r d r;

c

2

I

q s o W

o t

2r d r

;

where W r;t is the vertical displacement of the footing, q f,the density of the footing,q s,the density of the soil, R,the radius of the footing(in the r direction),h,the height of the footing(in the z direction),H,the depth of the soil layer, q r;t ,the external applied force,G,the modulus of elasticity of the soil,m,the Poisson's ratio of the soil.

By assuming that W r;t w r e i X t and W àX2w r e i X t,Eq.(15)takes the following form:

r2wà

kàm X2

2t

w 0: 17

By applying boundary conditions and by assuming W W0under the rigid footing,following solution to Eq.(17)are obtained:

W r;t

W0

K0 a

K0

a

R

r

e i X t R6r

Similarly,the di erential equation(16)has the fol-lowing solution after the application of the boundary conditions,which are assumed to be/ z 1at z 0 and/ z 0at z H:

/ z

1

1àe

e c=H z

à

àe2c eà c=H z

á

: 19

where a=R 2 kàm X2 =2t.

For a massless rigid footing,the displacement under the footing at time t is W W0which is a constant,and r2W 0,Eq.(14)takes the following form:

m W kW q; 20 where W stands for the second derivative of W with respect to time.Then,the equilibrium equation can be written for the axisymmetric case from Fig.2:p R2q 2p RN R t : 21 In Eq.(21),N is a circumferential reaction and repre-sents the e ect of the continuous medium along the edge (outer circle)of the footing,and it takes the following form:

N i G H=R c t a0W0e i X t N0e i X t: 22 N0is the lumped form of all the circumferential shear stresses along the depth at r R at time t.By combining Eqs.(20)±(22),the following nondimensional force±dis-placement relationship for a massless rigid circular footing without material damping in the soil is obtained: p

2 1àm

1à2m

c k

H=R

àp H=R c t a20 i2p H=R c t a0

W0GR

R0 1: 23 By resorting to the correspondence principle of vis-coelasticity[27],material damping can be included by using Eq.(2).

For the rigid footing with a harmonic applied load P t P0e i X t,a harmonic soil reaction R t R0e i X t,a total mass of M and an acceleration of W,dynamic equilibrium equation can be written as M W R t P t .The uniform harmonic displacement under the circular footing can be written in terms of soil reaction and the nondimensional displacement functions,f1and f2:W R0=GR f1 i f2 e i X t.Therefore,the following nondimensional amplitude of vibration for the axisym-metric case is obtained:

e W

W0GR

f21 f22

1àb0a20f1 2 b0a20f2 2

231=2

; 24

where b0 M=q s R3is a dimensionless mass ratio and a0 X R = G=q s 1=2 X R =V s is a dimensionless fre-quency.

As??k[29],in his thesis,has given detailed explanation about the derivation and the solution procedure for the equations.

6.Numerical results for the circular footing

As a more realistic approach to real problems,the circular foundation model is studied by plotting some of the results.At?rst,it is better to compare the results from the developed simpli?ed model with the results from Warburton's model[16].Results are presented in Fig.8.There are di erences between the two solutions due to di erent assumptions made in formulating these two models.As is known,Warburton assumed a stress distribution under the footing as for a static case, whereas the stress distribution under the footing

M.Z.A s??k,C.V.G.Vallabhan/Computers and Structures79(2001)2717±27262723

depends on the frequency as in the developed simpli?ed model.For H =R 1,the di erence is around 5%and for H =R 2,it is around 10%.Also,Warburton used a relaxed boundary condition,which is the assumption of zero secondary (horizontal)stress between the footing and the soil,whereas,in the present case,there is sec-ondary stress under the footing.

Fig.9is a plot of the response of the circular footing for di erent mass ratios,b 0 M =q s R 3.A result like this is not presented in the literature for the circular footings according to the knowledge of the author.General trends in the behavior,such as amplitude increases and

frequency decreases as the mass ratio increases,are ob-served.

Fig.10shows the e ect of the material damping ra-tio,b ,on the response of the circular footing.

Fig.11shows the e ect of Poisson's ratio on the re-sponse of the circular footing.Poisson's ratio a ects both the amplitude and the resonant frequency of vibration.The amplitude of vibration decreases as Poisson's ratio increases.But the resonant frequency increases as Pois-son's ratio increases.Both e ects are

substantial.

https://www.wendangku.net/doc/6511541565.html,parison of resonant

frequencies.

https://www.wendangku.net/doc/6511541565.html,parison of results for di erent mass

ratios.

Fig.10.E ect of damping ratio on the response of circular

footing.

Fig.11.E ect of Poisson's ratio on the response of circular footing.

2724M.Z.A s ??k,C.V.G.Vallabhan /Computers and Structures 79(2001)2717±2726

7.Summary and conclusions

A mathematical model for the response of strip and axisymmetric footing resting on a nonsaturated,elastic and linear soil layer is developed by using Hamilton's principle combined with a variational approach.This method is semi-analytical and uses an improved form of the classical Vlasovmodel for elastic foundations to solve steady-state dynamic https://www.wendangku.net/doc/6511541565.html,ing variational principles,the governing di erential equations are de-veloped for the surface disturbance(displacement) W x;t and vertical decay function,/,which are coupled through parameters k,2t,m,and n that describe the characteristics of the soil medium.Two additional pa-rameters a and c are introduced which are dependent on the properties of the overall system and the operating frequency,X.An iterative procedure is applied to?nd these a and c parameters.

Related equations and formulas for the required parameters are derived.Results from the developed simpli?ed model are compared for veri?cation with pre-viously published data.The e ects of some important ratios on the overall behavior of the system are investi-gated.

Geometric damping forces which are important in open systems experiencing the propagation of waves are represented by edge shear forces in the plane strain case and circumferential shear forces in the axisymmetric case.Edge shear forces are calculated from the elastic wave theory making them inversely proportional to the particle velocity.Therefore,edge shear forces in the plane strain case and circumferential shear forces in the axisymmetric case are considered as the viscous energy absorbing mechanisms.

Following are the important conclusions reached as a result of the present study:

1.A straightforward,simpli?ed model is developed to

determine the response of strip and axisymmetric footings resting on a soil layer:nonsaturated,elastic and linear.It is understandable and useful in educa-tion.

2.Nondimensional dynamic sti ness and geometric

damping are dependent on the frequency,Poisson's ratio of the soil and H=B ratio in the plane strain case (H=R ratio in the axisymmetric case).

3.The model is developed by using Hamilton's principle

with the assumption of zero displacements in the sec-ondary direction.This assumption makes the system sti er.

4.The errors in resonant frequencies and in amplitudes

are in the acceptable range for practical design con-ditions,which demand accurate values of the soil modulii.The errors in soil modulii are often higher than the errors in the frequency and amplitude.References

[1]Winkler E.Theory of elasticity and strength.Prague,

Czechoslovakia:H.Dominicus.

[2]Lamb H.On the propagation of tremors over the surface

of an elastic solid.Philos Trans Royal Soc Lond A 1904;203:1±42.

[3]Barkan DD,IlyichevVA.Dynamics of bases and founda-

tions.Proc9th ICSMFE Tokyo1997;2:630.

[4]Pasternak PL.On a new method of analysis of an elastic

foundation by means of two foundation constants.Gosu-darstvennogo Izatestvo Literaturi po Stroitelstvu i Archi-tekutre,Moskow,1954[in Russian].

[5]VlasovVZ,Leont'evNN.Beams,Plates and shells on

elastic foundations.Israel Program for Scienti?c Transla-tions,Jerusalem,Israel,1966.

[6]Vallabhan CVG,Das YC.Modi?ed Vlasovmodel for

beams on elastic foundations.J Geotech Engng ASCE 1991;117(6):956±66.

[7]Vallabhan CVG,Das YC.An improved model for beams

on elastic foundations.Proc of the ASME Pressure Vessel Piping Conf1988.

[8]Vallabhan CVG,Das YC.A Parametric study of beams on

elastic foundations.J Engng Mech ASCE1988;114(2): 2072±82.

[9]BaranovVA.On the calculation of an embedded founda-

tion.Voprosy Dinamiki Prochnosti Riga1967;14:195. [10]Reissner E.Stationare axialsymmetrische,durch eine

schut-telnde masse erregte schwingungen eines homogenen elastischen halbraumes.Ing Arch1936;7:381.

[11]Sung TY.Vibrations in semi-in?nite solids due to periodic

surface loadings.Symp Dyn Test Soils ASTM-STP1953;

156:35±64.

[12]Quinlan PM.The elastic theory of soil dynamics.Symp

Dyn Test Soils ASTM-STP1953;156:3±34.

[13]Richart FE,Woods RD,Hall JR.Vibrations of soils and

foundations.Englewood Cli s,NJ:Prentice-Hall;1970.

[14]Arnold RN,Bycroft GN,Warburton GB.Forced vibra-

tions of a body on an in?nite elastic solid.J Appl Mech ASME1955;22:391.

[15]Bycroft GN.Forced vibrations of a rigid circular plate on a

semi-in?nite elastic space and an elastic stratum.Philos Trans Royal Soc Lond A1956;248:327.

[16]Warburton GB.Forced vibration of a body on an elastic

stratum.J Appl Mech Trans ASME1957;24:55±8. [17]Lysmer J.Vertical motions of rigid footings,PhD thesis.

University of Michigan,Ann Arbor,1965.

[18]Hsieh TK.Foundation vibrations.Proc Inst Civil Engrs

1962;22:211.

[19]Hall JR.Coupled rocking and sliding oscillations of rigid

circular footings.Proc International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, Albuquerque,NM,1967.

[20]Richart FE,Whitman https://www.wendangku.net/doc/6511541565.html,parison of footing vibra-

tion tests with theory.J Soil Mech Fdn Engng DivProc ASCE931967;SM6:143±68.

[21]Luco JE.Impedance functions for a rigid foundation on a

layered medium.Nucl Engng Des1974;31:204.

[22]Gazetas G.Dynamic sti ness functions of strip and

rectangular footings on layered soil.SM thesis:MIT;1975.

M.Z.A s??k,C.V.G.Vallabhan/Computers and Structures79(2001)2717±27262725

[23]Gazetas G,Roesset JM.Forced vibrations of strip

footings on layered soils.Meth Struct Anal ASCE1976;

1:115.

[24]Gazetas G,Roesset JM.Vertical vibrations of machine

foundations.J Geotech Engng DivASCE1979;105:GT12.

[25]Lysmer J,Kuhlemeyer RL.Finite dynamic model for

in?nite media.J Engng Mech DivASCE951969;EM4: 859±77.

[26]Gazetas G.Simple physical methods for foundation

impedances.In:Banerjee PK,Butter?eld R,editors.

Dynamic behavior of foundations and buried structures,

Devp Soil Mech Found Engng,vol.3.London,New York: Elsevier;1987.p.45±93.

[27]Dobry R,Gazetas G.Dynamic sti ness and damping of

foundations by simple methods.In:Gazetas G,Selig ET, editors.Vibration problems in geotechnical engineering.

New York:ASCE;1985.p.75±107.

[28]Gazetas G.Analysis of machine foundation vibrations:state

of the art.J Soil Dyn Earthquake Engng1983;2(1):2±42.

[29]As??k MS.Vertical vibration analysis of rigid footings on a

soil layer with a rigid base.PhD thesis.Texas Tech University,Lubbock,Texas,1993.

2726M.Z.A s??k,C.V.G.Vallabhan/Computers and Structures79(2001)2717±2726

(完整版)《机械设计基础》答案

《机械设计基础》作业答案 第一章平面机构的自由度和速度分析1-1 1-2 1-3 1-4 1-5

自由度为: 1 1 19 21 1 )0 1 9 2( 7 3 ' )' 2( 3 = -- = - - + ? - ? = - - + - =F P P P n F H L 或: 1 1 8 2 6 3 2 3 = - ? - ? = - - = H L P P n F 1-6 自由度为 1 1 )0 1 12 2( 9 3 ' )' 2( 3 = - - + ? - ? = - - + - =F P P P n F H L 或: 1 1 22 24 1 11 2 8 3 2 3 = -- = - ? - ? = - - = H L P P n F 1-10

自由度为: 1 128301)221142(103')'2(3=--=--?+?-?=--+-=F P P P n F H L 或: 1 22427211229323=--=?-?-?=--=H L P P n F 1-11 2 2424323=-?-?=--=H L P P n F 1-13:求出题1-13图导杆机构的全部瞬心和构件1、3的角速度比。 1334313141P P P P ?=?ωω

1 1314133431==P P ω 1-14:求出题1-14图正切机构的全部瞬心。设s rad /101=ω,求构件3的速度3v 。 s mm P P v v P /20002001013141133=?===ω 1-15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,试用瞬心法求轮1与轮2的角速度比21/ωω。 构件1、2的瞬心为P 12 P 24、P 14分别为构件2与构件1相对于机架的绝对瞬心 1224212141P P P P ?=?ωω

粘弹性

粘弹性功能梯度有限元法 摘要:有效离散的问题域的能力,使一个有吸引力的仿真技术的有限元方法造型复杂的边界值问题,如沥青混凝土路面材料非均匀性。专门―分级元素‖已被证明是提供高效,准确的功能梯度材料的模拟工具。以前的研究一直局限于功能梯度材料数值模拟弹性材料的行为。因此,当前的工作重点是对功能梯度材料的粘弹性材料有限元分析。在执行分析,使用弹性-粘弹性对应原理,和粘弹性材料的级配占内的元素广义ISO参数化配方。本文强调粘弹性沥青混凝土路面和几个例子的行为,包括核查问题领域的大规模应用,提交证明本办法的特点。DOI: 10.1061/_ASCE_MT.1943-5533.0000006 CE数据库标题:粘弹性;沥青路面混凝土路面;有限元方法。 关键词:粘弹性功能梯度材料,沥青路面,有限元法;通信原则。 概况 功能梯度材料(FGMs_)的特点是空间创建非均匀分布的各种微观结构巩固阶段将具有不同属性的大小和形状、,以及,通过转乘的加固作用和连续的方式(Suresh 和莫滕森基质材料)。他们通常被设计成产生财产渐变旨在优化下不同类型的结构响应加载条件(thermal,机械、电气、光学、etc)。(Cavalcante et al.2007)。这些属性渐变是在生产几种方法,例如通过循序渐进的含量变化相对于另metallic),采用热的一个阶段ceramic障涂层,或通过使用数量足够多具有不同的属性(Miyamoto et al 的构成阶段。1999_可以根据定制设计器粘弹性FGMs (VFGMs)符合设计要求等作用下粘弹性柱轴向和热加载(Hilton 2005)。最近,Muliana(2009_)提出了黏弹性细观力学模型FGMs 的行为。除了设计或量身定制的功能梯度材料,几个土木工程材料的自然表现出梯度材料的性能。席尔瓦等人。(2006)已研究和仿真竹子,这是一个自然发生的梯度材料。除了自然发生,各种材料和结构呈现非均质物质的分布和构成属性层次生产或建设的做法,老龄化的结果,不同金额暴露恶化代理商,等沥青混凝土路面是一个这样的例子,即老龄化和温度变化产量连续分级的非齐次构性质。老化和温度引起的财产梯度已经有据可查的一些研究人员沥青路面1995年_garrick领域;米尔扎和witczak的1996年,2006年apeagyei; chiasson等。2008_。目前沥青路面粘弹性模拟状态限于要么忽视非均质财产梯度2002年_kim和buttlar;萨阿德等。2006年,2006年BAEK和AL-卡迪;戴夫等。,2007_或者他们考虑通过分层的方法,例如,在美国的关联模型国家公路和运输官员_aashto_机械经验路面设计指南_mepdg_ _araINC。,EC。2002_。精度从使用的重大损失沥青路面层状弹性分析方法有被证明_buttlar等。2006_。广泛的研究已经进行了高效,准确地模拟功能梯度材料。例如,cavalcante等人。_2007_,张和保利诺_2007_,arciniega雷迪_2007_,歌曲和保利诺_2006_都报道功能梯度材料的有限元模拟。然而,大多数的以前的研究一直局限于弹性材料行为。一各种土木工程材料,如聚合物,沥青混凝土,水泥混凝土等,表现出显著的速率和历史影响。这些类型的材料的精确模拟必须使用粘弹性本构模型。1postdoctoral副研究员,DEPT。土木与环境工程大学。伊利诺伊大学厄巴纳- 香槟分校,分校,IL 61801_corresponding author_。工程,系2donald BIGGAR威利特教授。公民权利和环境工程,大学。在厄巴纳香槟分校,伊利诺伊州,IL 61801。3professor和narbey哈恰图良的教师学者,部。民间 与环境工程,大学。位于Urbana-Champaign的伊利诺斯州,分校,IL 61801。 注意:这个手稿于2009年4月17日完成,2009年10月15日提交了批准,2010年2月5日在线发表。直到2011年6月1日,讨论期间打开,必须提交单独讨论个别文件。本文是在民事部分的材料杂志 工程,第一卷。23,没有。1,2011年1月1日起,。ASCE,ISSN 0899-1561 /2011/1-39-48 / $ 25.00。土木工程材料杂志?ASCE / 2011年1月/ 39到2012年,下载03 61.178.77.85。再分配受ASCE许可证或版权。访问https://www.wendangku.net/doc/6511541565.html,当前工作提出有限元_fe_的制定专为粘弹性功能梯度材料的分析,特别是沥青混凝土。Paulino和金_2001_探索elasticviscoelastic对应范围内的原则_cp_功能梯度材料。在目前已使用制定基于CP-结合广义的ISO参数制定的研究_gif_金保利诺_2002_。本文提出了有限元的制定,验证,和沥青的详情路面模拟的例子。除了模拟沥青人行道,目前的做法也可以被用于其他工程系统表现出梯度的粘弹性分析行为。这种系统的例子包括金属和在高温_billotte等金属复合材料。二零零六年; koric和托马斯的2008_;聚合物和塑料的系统,经过氧化和/或紫外线硬化_hollaender等。1995年海尔等。1997_和分级纤维增强水泥混凝土结构。分级粘弹性的其他应用领域分析包括精确的模拟接口层之间的接口,如粘弹性材料之间不同的沥青混凝土升降机或模拟的

沥青混合料非线性粘弹性本构关系研究

沥青混合料非线性粘弹性本构关系研究 作者:梁俊龙, 高江平, LIANG Jun-long, GAO Jiang-ping 作者单位:长安大学公路学院,西安陕西,710064 刊名: 广西大学学报(自然科学版) 英文刊名:Journal of Guangxi University(Natural Science Edition) 年,卷(期):2012,37(4) 参考文献(15条) 1.詹小丽;张肖宁;王端宜改性沥青非线性粘弹性本构关系研究及运用 2009(04) 2.刘亚敏;韩森;徐鸥明疲劳试验中沥青混合料的弯拉劲度模量[期刊论文]-广西大学学报(自然科学版) 2010(01) 3.郑健龙Burgers粘弹性模型在沥青混合料疲劳特性分析中的运用 1995(03) 4.詹小丽基于DMA方法对沥青粘弹性性能的研究 2007 5.李德超沥青混合料动态模量实验研究 2008(01) 6.郑健龙;田小革;应荣华沥青混合料热粘弹性本构模型的实验研究[期刊论文]-长沙理工大学学报(自然科学版) 2004(01) 7.郑健龙;吕松涛;田小革沥青混合料粘弹性参数及其应用[期刊论文]-郑州大学学报(工学版) 2004(04) 8.KEMPFLE S;SCH FER I;BEYER H Fractional calculus viafunctional calculus:theory and applications 2002(01) 9.MAINARDI F;RABERTO M;GORENFLO R Fractional calculus and continuous-time finance:the waiting-time distribution 2002(3-4) 10.刘林超;张卫服从分数代数Maxwell本构模型的粘弹性阻尼材料性能分析[期刊论文]-材料科学与工程学报 2004(06) 11.张卫民;张淳源;张平考虑老化的混凝土粘弹性分数导数模型[期刊论文]-应用力学学报 2004(01) 12.张淳源;张为民非线性粘弹性理论及其应用研究进展[期刊论文]-湘潭大学自然科学学报 2003(04) 13.孙海忠;张卫分数算子描述的粘弹性材料的本构关系研究[期刊论文]-材料科学与工程学报 2006(06) 14.张为民一种采用分数阶导数的新流变模型理论[期刊论文]-湘潭大学自然科学学报 2001(01) 15.陈艳;陈宏善;康永刚分数Maxwell模型运用于PTFE松弛模量的研究 2006(11) 本文链接:https://www.wendangku.net/doc/6511541565.html,/Periodical_gxdxxb201204016.aspx

机械设计基础公式计算例题

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 3-2) 3-3) 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为:

(1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。 上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: 四、从动件位移s与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称? S曲线) -位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律

???? ? ?? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线 等速运动位移曲线的修正 ,两轮的中心距α=630mm ,主动带轮转速1n 1 450 r/min ,能传递的最大功率P=10kW 。试求:V 带中各应力,并画出各应力1σ、σ2、σb1、σb2及σc 的分布图。 附:V 带的弹性模量E=130~200MPa ;V 带的质量q=0.8kg/m ;带与带轮间的当量摩擦系数fv=0.51;B 型带的截面积A=138mm2;B 型带的高度h=10.5mm 。

机械设计基础课后习题答案全

7-1解:(1)先求解该图功的比例尺。 (2 )求最大盈亏功。根据图7.5做能量指示图。将和曲线的交点标注, ,,,,,,,。将各区间所围的面积分为盈功和亏功,并标注“+”号或“-” 号,然后根据各自区间盈亏功的数值大小按比例作出能量指示图(图7.6)如下:首先自向上做 ,表示区间的盈功;其次作向下表示区间的亏功;依次类推,直到画完最后一个封闭 矢量。由图知该机械系统在区间出现最大盈亏功,其绝对值为: (3 )求飞轮的转动惯量 曲轴的平均角速度:; 系统的运转不均匀系数:; 则飞轮的转动惯量:

图7.5图7.6 7-2 图7.7 图7.8 解:(1)驱动力矩。因为给定为常数,因此为一水平直线。在一个运动循环中,驱

动力矩所作的功为,它相当于一个运动循环所作的功,即: 因此求得: (2)求最大盈亏功。根据图7.7做能量指示图。将和曲线的交点标注, ,,。将各区间所围的面积分为盈功和亏功,并标注“+”号或“-”号,然后根据各自区间盈亏 功的数值大小按比例作出能量指示图(图7.8)如下:首先自向上做,表示区间的盈功; 其次作向下表示区间的亏功;然后作向上表示区间的盈功,至此应形成一个封闭区间。 由图知该机械系统在区间出现最大盈亏功。 欲求,先求图7.7中的长度。如图将图中线1和线2延长交于点,那么在中, 相当于该三角形的中位线,可知。又在中,,因此有: ,则

根据所求数据作出能量指示图,见图7.8,可知最大盈亏功出现在段,则 。 (3)求飞轮的转动惯量和质量。 7-3解:原来安装飞轮的轴的转速为,现在电动机的转速为,则若将飞轮 安装在电动机轴上,飞轮的转动惯量为: 7-4解:(1)求安装在主轴上飞轮的转动惯量。先求最大盈亏功。因为是最大动能与最小 动能之差,依题意,在通过轧辊前系统动能达到最大,通过轧辊后系统动能达到最小,因此: 则飞轮的转动惯量: (2)求飞轮的最大转速和最小转速。

机械设计基础复习题(完整资料).doc

此文档下载后即可编辑 一、 填空题 1. 机械是(机器)和(机构)的总称。 2. 机构中各个构件相对于机架能够产生独立运动的数目称为(自由度)。 3. 平面机构的自由度计算公式为:(F=3n-2P L -P H )。 4. 已知一对啮合齿轮的转速分别为n 1、n 2,直径为D 1、D 2,齿数为z 1、z 2,则其传动比i= (n 1/n 2)= (D 2/D 1)= (z 2/ z 1)。 5. 铰链四杆机构的杆长为a=60mm ,b=200mm ,c=100mm ,d=90mm 。若以杆C为机架,则此四杆机构为(双摇杆机构)。 6. 在传递相同功率下,轴的转速越高,轴的转矩就(越小)。 7. 在铰链四杆机构中,与机架相连的杆称为(连架杆),其中作整周转动的杆称为(曲柄),作往复摆动的杆称为(摇杆),而不与机架相连的杆称为(连杆)。 8. 平面连杆机构的死点是指(从动件与连杆共线的)位置。 9. 平面连杆机构曲柄存在的条件是①(最短杆与最长杆长度之和小于或等于其它两杆长度之和)②(连架杆和机架中必有一杆是最短杆)。 10. 平面连杆机构的行程速比系数K=1.25是指(工作)与(回程)时间之比为(1.25),平均速比为(1:1.25)。 11. 凸轮机构的基圆是指(凸轮上最小半径)作的圆。 12. 凸轮机构主要由(凸轮)、(从动件)和(机架)三个基本构件组成。 13. 带工作时截面上产生的应力有(拉力产生的应力)、(离心拉应力)和(弯曲应力)。 14. 带传动工作时的最大应力出现在(紧边开始进入小带轮)处,其值为:σmax=σ1+σb1+σc 。 15. 普通V带的断面型号分为(Y 、Z 、A 、B 、C 、D 、E )七种,其中断面尺寸最小的是(Y )型。 16. 为保证齿轮传动恒定的传动比,两齿轮齿廓应满足(接触公法连心线交于一定点)。

workbench建立橡胶的超弹性和粘弹性本构模型

10分钟教你Ansys workbench建立橡胶的超弹性和粘 弹性本构模型 Ansys workbench 橡胶-聚合物-天然橡胶-硅橡胶-聚氨酯等 粘弹性本构模型的建立 需要具体指导可以 重要截图如下:

补充: ANSYS 粘弹性材料 1.1ANSYS 中表征粘弹性属性问题 粘弹性材料的应力响应包括弹性部分和粘性部分,在载荷作用下弹性部分是即时响应的,而粘性部分需要经过一段时间才能表现出来。一般的,应力函数是由积分形式给出的,在小应变理论下,各向同性的粘弹性本构方程可以写成如下形式: ()()002t t de d G t d I K t d d d σττττττ?=-+-??(1) 其中 σ=Cauchy 应力 ()G t =为剪切松弛核函数 ()K t =为体积松弛核函数 e =为应变偏量部分(剪切变形) ?=为应变体积部分(体积变形) t =当前时间 τ=过去时间 I =为单位张量。 该式是根据松弛条件本构方程(1),通过将一点的应变分解为应变球张量(体积变形)和应变斜张量(剪切变形)两部分,推导而得的。这里不再敖述,可参考相关文献等。 ANSYS 中描述粘弹性积分核函数()G t 和()K t 参数表示方式主要有两种,一种是广义Maxwell 单元(VISCO88和VISCO89)所采用的Maxwell 形式,一种是结构单元所采用的Prony 级数形式。实际上,这两种表示方式是一致的,只是具体数学表达式有一点点不同。1.2Prony 级数形式 用Prony 级数表示粘弹性属性的基本形式为: ()1exp G n i G i i t G t G G τ∞=??=+- ??? ∑(2)()1exp K n i K i i t K t K K τ∞=??=+- ???∑(3) 其中,G ∞和i G 是剪切模量,K ∞和i K 是体积模量,G i τ和K i τ是各Prony 级数分量的松弛时间(Relative time)。再定义下面相对模量(Relative modulus) 0G i i G G α=(4)

机械设计基础习题..

《机械设计基础》习题 机械设计部分 目录 8 机械零件设计概论 9 联接 10 齿轮传动 11 蜗杆传动 12 带传动 13 链传动 14 轴 15滑动轴承 16 滚动轴承 17 联轴器、离合器及制动器 18 弹簧 19机械传动系统设计 8机械零件设计概论 思考题 8-1 机械零件设计的基本要求是什么? 8-2 什么叫失效?机械零件的主要失效形式有几种?各举一例说明。 8-3 什么是设计准则?设计准则的通式是什么? 8-4 复习材料及热处理问题。复习公差与配合问题。 8-5 什么是零件的工艺性问题?主要包含哪几方面的问题? 8-6 什么是变应力的循环特性?对称循环应力和脉动循环应力的循环特性为多少?8-7 什么是疲劳强度问题?如何确定疲劳极限和安全系数? 8-8 主要的摩擦状态有哪四种? 8-9 磨损过程分几个阶段?常见的磨损有哪几种? 8-10 常见的润滑油加入方法有哪种?

9 联 接 思 考 题 9-1 螺纹的主要参数有哪些?螺距与导程有何不同?螺纹升角与哪些参数有关? 9-2 为什么三角形螺纹多用于联接,而矩形螺纹、梯形螺纹和锯齿形螺纹多用于传动?为 什么多线螺纹主要用于传动? 9-3 螺纹副的自锁条件是什么?理由是什么? 9-4 试说明螺纹联接的主要类型和特点。 9-5 螺纹联接为什么要预紧?预紧力如何控制? 9-6 螺纹联接为什么要防松?常见的防松方法有哪些? 9-7 在紧螺栓联接强度计算中,为何要把螺栓所受的载荷增加30%? 9-8 试分析比较普通螺栓联接和铰制孔螺栓联接的特点、失效形式和设计准则。 9-9 简述受轴向工作载荷紧螺栓联接的预紧力和残余预紧力的区别,并说明螺栓工作时所 受的总拉力为什么不等于预紧力和工作载荷之和。 9-10 简述滑动螺旋传动的主要特点及其应用。 9-11 平键联接有哪些失效形式?普通平键的截面尺寸和长度如何确定? 9-12 为什么采用两个平键时,一般布置在沿周向相隔180°的位置,采用两个楔键时,相 隔90°~120°,而采用两个半圆键时,却布置在轴的同一母线上? 9-13 试比较平键和花键的相同点和不同点。 9-14 简述销联接、焊接、粘接、过盈联接、弹性环联接和成形联接的主要特点和应用场合。 习 题 9-1 试证明具有自锁性螺旋传动的效率恒小于50%。 9-2 试计算M24、M24×1.5螺纹的升角,并指出哪种螺纹的自锁性好。 9-3 图示为一升降机构,承受载荷F =150 kN ,采用梯形螺纹,d = 60 mm ,d 2 = 56 mm ,P = 8 mm ,线数n = 3。支撑面采用推力球轴承,升降台的上下移动处采用导向滚轮,它们的摩擦阻力近似为零。试计算: (1)工作台稳定上升时的效率(螺纹副当量摩擦系数为0.10)。 (2)稳定上升时加于螺杆上的力矩。 (3)若工作台以720 mm/min 的速度上升,试按稳定运转条件求螺杆所需转速和功率。 (4)欲使工作台在载荷F 作用下等速下降,是否需要制动装置?加于螺杆上的制动力矩是多少? 题9-3图 题9-4图 题9-5图 9-4 图示起重吊 钩最大起重 量F = 50 kN ,吊钩材 料为35钢。牵曳力F R F F 导向滚轮 齿轮 制动轮 推力球轴承

最全机械设计基础完整版.doc

答题: 1、此机构运动简图中无复合铰链、1局部自由度、1个虚约束。此机构中有6个自由杆件,8个低副,1个高副。自由度F=3n-2PL-Ph=3*6-2*8-1=1 2、此机构中编号1~9,活动构件数n=9,滚子与杆3联接有局部自由度,滚子不计入活动构件数,.B、C、 D、G、H、I、6个回转副(低副),复合铰链J,2个回转副(低副),A、K,各有1个回转副+1个移动副,此两处共4个低副,低副总数PL =6+2+4 =12,.两齿轮齿合处E,有1个高副,滚子与凸轮联接处F,有1个高副,高副总数PH =1+1=2. 自由度F =3n -2PL -PH =3*9-2*12-2=1 3、此机构有6个自由杆件,在C点有1个复合铰链,有1个虚约束、9个低副,没有高副。自由度 F=3n-2PL=3*5-2*7=1

答题: 1、不具有急回特性,其极位夹角为零,即曲柄和连杆重合的两个位置的夹角为0 2、(1)有急回特性,因为AB可以等速圆周运动,C块做正、反行程的往复运动,且极位夹角不为0°。 (2)当C块向右运动时,AB杆应做等速顺时针圆周运动,C块加速运动;压力角趋向0°,有效分力处于加大过程,驱动力与曲柄转向相反。所以,曲柄的转向错误。 3、(1)AB杆是最短杆,即Lab+Lbc(50mm)≤Lad(30mm)+Lcd(35mm),Lab最大值为15mm. (2)AD杆是最短杆,以AB杆做最长杆,即Lab+Lad(30mm)≤Lbc(50mm)+Lcd(35mm),Lab最大值为55mm. (3)满足杆长和条件下的双摇杆机构,机架应为最短杆的对边杆,显然与题设要求不符,故只能考虑不满足杆长和条件下的双摇杆机构,此时应满足条件: Lab<30mm且Lab+45>30+35即20mm<Lab<30mm

机械设计基础习题与答案

第一章 平面机构的自由度和速度分析 题1-1 在图示偏心轮机构中,1为机架,2为偏心轮,3为滑块,4为摆轮。试绘制该机构的运动简图,并计算其自由度。 题1—2 图示为冲床刀架机构,当偏心轮1绕固定中心A 转动时,构件2绕活动中心C 摆动,同时带动刀架3上下移动。B 点为偏心轮的几何中心,构件4为机架。试绘制该机构的机构运动简图,并计算其自由度。 题1—3 计算题1-3图a )与 图b )所示机构的自由度(若有复合铰链,局部自由度或虚约束应明确指出)。 A B C 1 2 3 4 a) 曲柄摇块机构 A B C 1 2 3 4 b) 摆动导杆机构 题解1-1 图

题1-3图a)题1-3图b) 题1—4计算题1—4图a、图b所示机构的自由度(若有复合铰链,局部自由度或虚约束应明确指出),并判断机构的运动是否确定,图中画有箭头的构件为原动件。 题1—5 计算题1—5图所示机构的自由度(若有复合铰链,局部自由度或虚约束应明确指出),并标出原动件。 题1—5图题解1—5图

题1-6 求出图示的各四杆机构在图示位置时的全部瞬心。 第二章 连杆机构 题2-1在图示铰链四杆机构中,已知 l BC =100mm ,l CD =70mm ,l AD =60mm ,AD 为机架。试问: (1)若此机构为曲柄摇杆机构,且AB 为曲柄, 求l AB 的最大值; (2)若此机构为双曲柄机构,求l AB 最小值; (3)若此机构为双摇杆机构,求l AB 的取值范围。 题2-2 如图所示的曲柄滑块机构: (1)曲柄为主动件,滑块朝右运动为工作 行程,试确定曲柄的合理转向,并简述其理由; (2)当曲柄为主动件时,画出极位夹角θ,最小传动角g min ; (3)设滑块为主动件,试用作图法确定该机构的死点位置 。 题2-3 图示为偏置曲柄滑块机构,当以曲柄为原动件时,在图中标出传动角的位置, 并给出机构传动角的表达式,分析机构的各参数对最小传动角的影响。 A C D 题2-1图

机械设计基础习题答案

平面机构及其自由度 1、如图a所示为一简易冲床的初拟设计方案,设计者的思路是:动力由齿轮1输入,使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。试绘出其机构运动简图(各尺寸由图上量取),分析其是否能实现设计意图?并提出修改方案。 解 1)取比例尺 绘制其机构运动简图(图b)。 l 图 b) 2)分析其是否能实现设计意图。 GAGGAGAGGAFFFFAFAF

GAGGAGAGGAFFFFAFAF 由图b 可知,3=n ,4=l p ,1=h p ,0='p ,0='F 故:00)0142(33)2(3=--+?-?='-'-+-=F p p p n F h l 因此,此简单冲床根本不能运动(即由构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架),故需要增加机构的自由度。 3)提出修改方案(图c )。 为了使此机构能运动,应增加机构的自由度(其方法是:可以在机构的适当位置增加一个活动构件和一个低副,或者用一个高副去代替一个低副,其修改方案很多,图c 给出了其中两种方案)。

GAGGAGAGGAFFFFAFAF 图 c 1) 图 c 2) 2、试画出图示平面机构的运动简图,并计算其自由度。 解:3=n ,4=l p ,0=h p ,123=--=h l p p n F 解:4=n ,5=l p ,1=h p ,123=--=h l p p n F 3、计算图示平面机构的自由度。

GAGGAGAGGAFFFFAFAF 解:7=n ,10=l p ,0=h p ,123=--=h l p p n F

完整版机械设计基础2套试题答案

《机械设计基础》试题七答案 一、填空(每空1分,共20分) 1、渐开线标准直齿圆柱齿轮传动,正确啮合条件是模数相等,压力角相等。 2、凸轮机构的种类繁多,按凸轮形状分类可分为:盘形凸轮、移动凸轮、圆柱凸轮__________ 3、V带传动的张紧可采用的方式主要有:调整中心距和张紧轮装置。 4、齿轮的加工方法很多,按其加工原理的不同,可分为范成法和仿形法。 5、平面四杆机构中,若各杆长度分别为a=30, b=50, c=80,d=90,当以a为机架,则该四杆机构为双曲柄机构。 6、凸轮机构从动杆的运动规律,是由凸轮轮廓曲线所决定的。 7、被联接件受横向外力时,如采用普通螺纹联接,则螺栓可能失效的形式为—拉断。 二单项选择题(每个选项0.5分,共20分) ( )1、一对齿轮啮合时,两齿轮的 c _________ 始终相切。 (A) 分度圆(B) 基圆(C) 节圆(D) 齿根圆 ()2、一般来说,__a ______________ 更能承受冲击,但不太适合于较高的转速下工作。 (A) 滚子轴承(B) 球轴承(C) 向心轴承(D) 推力轴承 ( )3、四杆机构处于死点时,其传动角丫为A _____________ 。 (A) 0°(B) 90 °(C)Y >90°( D) 0°

()5、如图所示低碳钢的曲线,,根据变形发生的特点,在塑性变形阶段的强化 阶段(材料恢复抵抗能力)为图上__C __________ 段。 (A) oab (B) bc (C) cd (D) de ()6、力是具有大小和方向的物理量,所以力是_d ____ 。 (A)刚体(B)数量(C)变形体(D)矢量 ()7、当两轴距离较远,且要求传动比准确,宜采用 (A)带传动(B)—对齿轮传动(C)轮系传动(D)螺纹传动 ()8、在齿轮运转时,若至少有一个齿轮的几何轴线绕另一齿轮固定几何轴线转动, 轮系称为 a ________________ 。 (A)行星齿轮系(B)定轴齿轮系(C)定轴线轮系(D)太阳齿轮系 ()9、螺纹的a ______________ 被称为公称直径。 (A)大径(B)小径(C)中径(D)半径 ()10、一对能满足齿廓啮合基本定律的齿廓曲线称为__D_____________ 。 (A)齿轮线(B)齿廓线(C)渐开线(D)共轭齿廓 (B )11、在摩擦带传动中 ________ 是带传动不能保证准确传动比的原因,并且是不可避 免的。 (A)带的打滑(B)带的弹性滑动(C)带的老化(D)带的磨损 (D )12、金属抵抗变形的能力,称为____ 。 (A)硬度(B)塑性(C)强度(D)刚度 (B )13、凸轮轮廓与从动件之间的可动连接是 B 。 (A)转动副(B)高副(C)移动副(D)可能是高副也可能是低副 (B )14、最常用的传动螺纹类型是_c _____ 。 (A)普通螺纹(B)矩形螺纹(C)梯形螺纹(D)锯齿形螺纹 ()15、与作用点无关的矢量是_c ______ 。 (A)作用力(B)力矩(C)力偶(D)力偶矩 ()16、有两杆,一为圆截面,一为正方形截面,若两杆材料,横截面积及所受载荷相同, 长度不同,则两杆的_c—不同。 (A)轴向正应力b (B)轴向线应变& (C)轴向伸长厶I (D)横向线应变

一种适合橡胶类材料的非线性粘弹性本构模型 (1)

第!"卷第#期应用力学学报$%&’!"(%’# +,-’)**! )**!年!)月!"#$%&%’()*$+,(-+..,#%/0%!"+$#!& !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !文章编号:!***.#/0/()**!)*#.**01.*2 一种适合橡胶类材料的非线性粘弹性本构模型" 安群力危银涛杨挺青 (华中科技大学武汉#0**1#) 摘要 借助非线性流变模型建立大变形情况非线性粘弹材料的本构关系,考虑到大多数橡胶类材料具有的几乎不可压缩性,以及体积响应和剪切响应的流变性能不同,将 变形梯度乘法分解为等容部分和体积变形部分,给出了一种适合橡胶类材料的非线 性粘弹性本构模型,并模拟了粘滞效应。对于极快或极慢的过程,该模型退化为橡胶 弹性理论;在小变形情况下退化为经典的广义3456,&&粘弹性材料。模型与热力学 第二定律相容,适合于大规模数值分析。 关键词:橡胶;粘弹性;有限变形;本构关系 中图分类号:70#2;8900文献标识码:: !引言 在橡胶结构的设计与分析中因橡胶类材料力学性能的复杂性使得数值方法起着越来越重要的作用[!]。目前,应用数值方法时缺乏适于大规模计算用的本构关系,本构模型成为解决问题的关键[);!*]。构造粘弹材料的本构模型,一种方法是从连续介质力学本构理论的基本原理出发,经过简化而得到[!*;!)]。另外一种常用的方法是基于内变量理论,借助于连续介质热力学和流变模型来确定材料的本构模型[#;/,!0;!<]。在通常的内变量理论中,自由能的构造、内变量的选取及演化方程的确定有一定的困难。 本文利用非线性流变模型,认为总应力等于弹性应力与非弹性应力的和,通过平衡应变能函数表述其演化方程,绕过了通常内变量理论的困难,在参考位形内建立了以=>%&4.?>@-AA%BB 应力和C@,,D应变表示的大变形非线性粘弹性本构关系,给出了一种适合橡胶类材料的非线性粘弹性本构模型,物理意义简明。在一定条件下模型可以退化为相应的弹性或线粘弹性模型,讨论了材料的粘滞现象。 "基金项目:国家自然科学基金资助项目(!/<0)*0*)来稿日期:)***.*#.*0修回日期:)***.!!.!1 万方数据 第一作者简介:安群力,男,!/<"年生,博士,华中科技大学力学系;研究方向:粘弹塑性理论及其应用E

机械设计基础习题及答案

机械设计基础复习题(一) 一、判断题:正确的打符号√,错误的打符号× 1.在实际生产中,有时也利用机构的"死点"位置夹紧工件。( ) 2. 机构具有确定的运动的条件是:原动件的个数等于机构的自由度数。( ) 3.若力的作用线通过矩心,则力矩为零。( ) 4.平面连杆机构中,连杆与从动件之间所夹锐角称为压力角。( ) 5.带传动中,打滑现象是不可避免的。( ) 6.在平面连杆机构中,连杆与曲柄是同时存在的,即只要有连杆就一定有曲柄。 ( ) 7.标准齿轮分度圆上的齿厚和齿槽宽相等。( ) 8.平键的工作面是两个侧面。( ) 9.连续工作的闭式蜗杆传动需要进行热平衡计算,以控制工作温度。( ) 10.螺纹中径是螺纹的公称直径。() 11.刚体受三个力作用处于平衡时,这三个力的作用线必交于一点。( ) 12.在运动副中,高副是点接触,低副是线接触。( ) 13.曲柄摇杆机构以曲柄或摇杆为原动件时,均有两个死点位置。( ) 14.加大凸轮基圆半径可以减少凸轮机构的压力角。( ) 15.渐开线标准直齿圆柱齿轮不产生根切的最少齿数是15。( ) 16.周转轮系的自由度一定为1。( ) 17.将通过蜗杆轴线并与蜗轮轴线垂直的平面定义为中间平面。( ) 18.代号为6205的滚动轴承,其内径为25mm。( ) 19.在V带传动中,限制带轮最小直径主要是为了限制带的弯曲应力。( ) 20.利用轴肩或轴环是最常用和最方便可靠的轴上固定方法。( ) 二、填空题 1.直齿圆柱齿轮的正确啮合条件是相等,相等。 2.螺杆相对于螺母转过一周时,它们沿轴线方向相对移动的距离称为 。 3.在V带传动设计中,为了限制带的弯曲应力,应对带轮的 加以限制。 4.硬齿面齿轮常用渗碳淬火来得到,热处理后需要加工。5.要将主动件的连续转动转换为从动件的间歇转动,可用机构。6.轴上零件的轴向固定方法有、、、等。7.常用的滑动轴承材料分为、、三类。8.齿轮轮齿的切削加工方法按其原理可分为和两类。9.凸轮机构按从动件的运动形式和相对位置分类,可分为直动从动件凸轮机构和凸轮机构。 10.带传动的主要失效形式是、及带与带轮的磨损。11.蜗杆传动对蜗杆导程角和蜗轮螺旋角的要求是两者大小和旋向。闭式蜗杆传动必须进行以控制油温。12.软齿面齿轮常用中碳钢或中碳合金钢制造,其中大齿轮一般经处理,而小齿轮采用处理。

机械设计基础公式计算例题

机械设计基础公式计算 例题 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 F =h l p p n --23=07253-?-?=1 二、在图所示的铰链四杆机构中,设分别以a 、b 、c 、d 表示机构中各构件的长度,且设a <d 。如果构件AB 为曲柄,则AB 能绕轴A 相对机架作整周转动。为此构件AB 能占据与构件AD 拉直共线和重叠共线的两个位置B A '及B A ''。由图可见,为了使构件AB 能够转至位置B A ',显然各构件的长度关系应满足 c b d a +≤+ (3-1) 为了使构件AB 能够转至位置B A '',各构件的长度关系应满足 c a d b +-≤)(或b a d c +-≤)( 即c d b a +≤+ (3-2) 或b d c a +≤+ (3-3) 将式(3-1)、(3-2)、(3-3)分别两两相加,则得 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为: (1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。

上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: (1)若机构满足杆长之和条件,则: ① 以最短杆为机架时,可得双曲柄机构。 ② 以最短杆的邻边为机架时,可得曲柄摇杆机构。 ③ 以最短杆的对边为机架时,可得双摇杆机构。 (2)若机构不满足杆长之和条件则只能获得双摇杆机构。 三、 k = 12v v =121221t C C t C C =21t t =21??= θ θ-?+?180180 即k = θ θ-?+?180180 θ=11 180+-?k k 式中k 称为急回机构的行程速度变化系数。 四、从动件位移s 与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称 ?-S 曲线)位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设 计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律 ???? ? ? ? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线 等速运动位移曲线的修正 六、凸轮等加等减速运动规律(抛物线运动规律)

新版《机械设计基础》课后习题参考答案

机械设计基础习题参考答案 机械设计基础课程组编 武汉科技大学机械自动化学院

第2章 平面机构的自由度和速度分析 2-1画运动简图。 2-2 图2-38所示为一简易冲床的初拟设计方案。设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构将使冲头4上下运动以达到冲压的目的。 4 3 5 1 2 解答:原机构自由度F=3?3- 2 ?4-1 = 0,不合理 ,

2-3 试计算图2-42所示凸轮—连杆组合机构的自由度。 b) a) A E M D F E L K J I F B C C D B A 解答:a) n=7; P l=9; P h=2,F=3?7-2 ?9-2 =1 L处存在局部自由度,D处存在虚约束 b) n=5; P l=6; P h=2,F=3?5-2 ?6-2 =1 E、B处存在局部自由度,F、C处存在虚约束2-4 试计算图2-43所示齿轮—连杆组合机构的自由度。 B D C A (a) C D B A (b) 解答:a) n=4; P l=5; P h=1,F=3?4-2 ?5-1=1 A处存在复合铰链 b) n=6; P l=7; P h=3,F=3?6-2 ?7-3=1 B、C、D处存在复合铰链 2-5 先计算如图所示平面机构的自由度。并指出图中的复合铰链、局部自由度和虚约束。

A B C D E 解答: a) n=7; P l =10; P h =0,F=3?7-2 ?10 = 1 C 处存在复合铰链。 b) n=7; P l =10; P h =0,F=3?7-2 ?10 = 1 B D E C A c) n=3; P l =3; P h =2,F=3?3 -2 ?3-2 = 1 D 处存在局部自由度。 d) n=4; P l =5; P h =1,F=3?4 -2 ?5-1 = 1 A B C D E F G G' H A B D C E F G H I J e) n=6; P l =8; P h =1,F=3?6 -2 ?8-1 = 1 B 处存在局部自由度,G 、G'处存在虚约束。 f) n=9; P l =12; P h =2,F=3?9 -2 ?12-2 = 1 C 处存在局部自由度,I 处存在复合铰链。

(完整版)《机械设计基础》试题

《机械设计基础》试题 一、选择题:本大题共10个小题,每小题1.5分,共15分。 1.通常情况下蜗杆传动中蜗杆和蜗轮的轴线交错角为()度。 a)20 b)30 c)60 d)90 2. 渐开线标准直齿圆柱齿轮(短齿)的齿顶高系数为(),顶隙系数为()。 a)1,0.1 b)0.8,0.2 c)0.8,0.3 d)1,0.25 3. 渐开线斜齿圆柱齿轮的正确啮合条件是() a)模数相等 b)压力角相等 c)模数和压力角分别相等且为标准值 d)a,b,c都不对 4.用齿条形刀具加工标准直齿圆柱齿轮,当压力角为20°,齿顶系数为1时,不根切的最少齿数是多少?() a) 15 b)16 c) 17 d)18 5.对于普通螺栓联接,在拧紧螺母时,螺栓所受的载荷是( )。 a)拉力 b)扭矩 c)压力 d)拉力和扭拒 6.调节机构中,如螺纹为双头,螺距为3mm,为使螺母沿轴向移动9mm,螺杆应转( ) 转。 a)3 b)4 c)5 d)1.5 7.根据()选择键的结构尺寸:b×h。 a)扭矩; b)单向轴向力;c)键的材料;d)轴的直径。 8.下列铰链四杆机构中,能实现急回运动的是( )。 a)双摇杆机构 b)曲柄摇秆机构 c)双曲柄机构 9.设计V带传动时,控制带的最大线速度不要过大,其主要目的是为了( )。 a)使带的拉应力不致于过大 b)使带的弯曲应力不致于过大 c)使带的离心应力不致于过大 10.带传动作减速传动时,带的最大应力等于( )。 a)σ1+σb1+σc b)σ1+σb2+σc c)σ2+σb1+σc d)σ2+σb2+σc 二、填空题:每空0.5分,共11分。 1.螺纹按照其用途不同,一般可分为________和________。 2.对于渐开线齿轮,通常所说的齿形角是指________上的吃形,该齿形角已经标准化了,

机械设计基础试题及答案

A卷 一、简答与名词解释(每题5分,共70分) 1. 简述机构与机器的异同与其相互关系 答. 共同点:①人为的实物组合体;②各组成部分之间具有确定的相对运动;不同点:机器的主要功能是做有用功、变换能量或传递能量、物料、信息等;机构的主要功能是传递运动和力、或变换运动形式。相互关系:机器一般由一个或若干个机构组合而成。 2. 简述“机械运动”的基本含义 答. 所谓“机械运动”是指宏观的、有确定规律的刚体运动。 3. 机构中的运动副具有哪些必要条件? 答. 三个条件:①两个构件;②直接接触;③相对运动。 4. 机构自由度的定义是什么?一个平面自由构件的自由度为多少?答. 使机构具有确定运动所需输入的独立运动参数的数目称机构自由度。平面自由构件的自由度为3。 5. 机构具有确定运动的条件是什么?当机构的原动件数少于或多于机构的自由度时,机构的运动将发生什么情况? 答. 机构具有确定运动条件:自由度=原动件数目。原动件数目<自由度,构件运动不确定;原动件数目>自由度,机构无法运动甚至构

件破坏。 6. 铰链四杆机构有哪几种基本型式? 答. 三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。7. 何谓连杆机构的压力角、传动角?它们的大小对连杆机构的工作有何影响?以曲柄为原动件的偏置曲柄滑块机构的最小传动角minγ发生在什么位置? 答. 压力角α:机构输出构件(从动件)上作用力方向与力作用点速度方向所夹之锐角;传动角γ:压力角的余角。α+γ≡900。压力角(传动角)越小(越大),机构传力性能越好。偏置曲柄滑块机构的最小传动角γmin发生在曲柄与滑块移动导路垂直的位置 8. 什么是凸轮实际轮廓的变尖现象和从动件(推杆)运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免? 答. 对于盘形凸轮,当外凸部分的理论轮廓曲率半径ρ与滚子半径 r T 相等时:ρ=r T ,凸轮实际轮廓变尖(实际轮廓曲率半径ρ’=0)。 在机构运动过程中,该处轮廓易磨损变形,导致从动件运动规律失真。增大凸轮轮廓半径或限制滚子半径均有利于避免实际轮廓变尖现象的发生。 9. 渐开线齿廓啮合有哪些主要特点? 答. ①传动比恒定;②实际中心距略有改变时,传动比仍保持不变(中

相关文档 最新文档