文档库 最新最全的文档下载
当前位置:文档库 › 乳酸脱氢酶

乳酸脱氢酶

乳酸脱氢酶
乳酸脱氢酶

乳酸脱氢酶

科技名词定义

中文名称:乳酸脱氢酶

英文名称:lactatedehydrogenase;LDH

定义:广泛存在的催化乳酸和丙酮酸相互转换的酶。L-乳酸脱氢酶(编号:EC 1.1.1.27)

作用于L-乳酸;D-乳酸脱氢酶(编号:EC 1.1.1.28)作用于D-乳酸,两者均以NAD +为氢受体。在厌氧酵解时,催化丙酮酸接受由3-磷酸甘油醛脱氢酶形成的NADH

的氢,形成乳酸。

应用学科:生物化学与分子生物学(一级学科);酶(二级学科)

本内容由全国科学技术名词审定委员会审定公布

催化机理

乳酸脱氢酶及其同工酶的简介

血清乳酸脱氢酶(LDH)同工酶测定及意义

乳酸脱氢酶高的原因

乳酸脱氢酶偏低的原因

乳酸脱氢酶(LDH)实验

展开

编辑本段基本信息

英文名称: LDH(lactate dehydrogenase)

序列信息:1 gsgcnldsarfrylmg

长度:16 aa{物种来源:Homo sapiens (human)}

正常范围:血清 135.0~215.0U/L;

尿 560~2050U/L;

脑脊液含量为血清的1/10。

编辑本段临床意义

(1)急性心肌梗塞发作后,早期血清中LDH1和LDH2活性均升高,但LDH1增高更早,更明显,导致LDH1/LDH2的比值升高。

(2)肝炎、急性肝细胞损伤及骨骼肌损伤时LDH5都会升高。

(3)患活动性风湿性心脏病、急性病毒性心肌炎、溶血性贫血、肾坏死等病LDH1也可升高。

编辑本段乳酸脱氢酶及其同工酶的简介

乳酸脱氢酶[1](LD)分子量为135~140KD,由两种亚单位组成:H(表示heart)和M(表示muscle)。它们按不同的形式排列组合形成含4个亚基的5种同工酶,即:LD1(H4)、LD2(H3M1)、LD3(H2M2)、LD4(HM3)、LD5(M4)。

LD催化丙酮酸与乳酸之间还原与氧化反应,在碱性条件下促进lactic acid向pyruvic acid方向的反应,而在中性条件下促进pyruvic acid向lactic acid的转化(为逆反应)。LD是参与糖无氧酵解和糖异生的重要酶。

由于LD几乎存在于所有体细胞中,而且在人体组织中的活性普遍很高,所以血清中LD的增高对任何单一组织或器官都是非特异的。在AMI时升高迟、达峰晚,故对早期诊断价值不大。由于半寿期长(10~163小时),多用于回顾性诊断,如对人院较晚的AMI病人、亚急性MI的诊断和病情监测医学教育`网搜集整理。

LD在组织中的分布特点是心、肾以LD1为主,LD2次之;肺以LD3.LD4为主;骨骼肌以LD5为主;肝以LD5为主,LD4次之。血清中LD含量的顺序是LD2>LD1>LD3>LD4>LD5.

编辑本段血清乳酸脱氢酶(LDH)同工酶测定及意义

人组织中的乳酸脱氢酶(LDH)用电泳法可以分离出5种同工酶区带,根据其

乳酸脱氢酶

电泳迁移率的快慢,依次命名为LDH1,LDH2,LDH3,LDH4,LDH5。不同组织的乳酸脱氢酶同工酶分布不同,存在明显的组织特异性,人心肌、肾和红细胞中以LDH1和LDH2最多,骨骼肌和肝中以LDH4和LDH5最多,而肺、脾、胰、甲状腺、肾上腺和淋巴结等组织中以LDH3最多。后来从睾丸和精子中发现了LDHx,其电泳迁移率介于LDH4和LDH5之间。LDH是由H(心肌型)和M(骨骼肌型)两类亚基组成,分别形成LDH1(H4)、LDH2(H3M)、

LDH3(H2M2)、LDH4(HM3)、LDH5(M4)。

正常参考值

琼脂糖电泳法:

LDH1(28.4±5.3)%;

LDH2(41.0±5.0)%;

LDH3(19.0±4.0)%;

LDH4(6.6±3.5)%;

LDH5(4.6±3.0)%。

醋酸纤维素薄膜法:

LDH1(25.32±2.62)%

LDH2(34.36±1.57)%

LDH3(21.86±1.38)%

LDH4(11.3±1.84)%

LDH5(7.97±1.59)%

聚丙烯酰胺法:

LDH1(26.9±0.4)%

LDH2(36.0±0.5)%

LDH3(21.9±0.4)%

LDH4(11.1±0.4)%

LDH5(4.1±0.3)%

总之,健康成人血清LDH同工酶有如下的规律:

LDH2>LDH1>LDH3>LDH4>LDH5。

临床意义

心肌细胞LD活性远高于血清数百倍,尤以LDH1和LDH2含量最高。急性心肌梗塞时,血清LDH1和LDH2显著升高,约95%的病例的血清LDH1和LDH2比值大于1,且LDH1升高早于LDH总活性升高。病毒性和风湿性心肌炎及克山病心肌损害等,病人的血清LDH同工酶的改变与心肌梗塞相似。LDH1/LDH2比值>1还见于溶血性贫血、恶性贫血、镰形细胞性贫血、肾脏损伤、肾皮质梗塞、心肌损伤性疾病、瓣膜病等。

脑干含LDH1较高。颇脑损伤仅累及大脑半球时,只有血清同工酶谱的绝对值增高,而不影响同工酶的相互比值,如果累及脑干时,病人血清LDH1的含量也增高。

急性心肌梗塞发病后12~24小时,血清LDH1业已升高。若同时测定LD总活性,可发现LDH1/总LDH的比值对急性心肌梗塞诊断的阳性率与可靠性优于单纯测定LDH1或CK-MB。

胚胎细胞瘤病人的血清LDH1活性升高。

肝细胞损伤或坏死后,向血流释入大量的LDH4和LDH5,致使血中LDH5/LDH4比值升高,故LDH5/LDH4>1可做为肝细胞损伤的指标。急性肝炎以LDH5明显升高,LDH4不增,LDH5/LDH4>1为特征;若血清LDH5持续升高或下降后再度升高,则可认为是慢性肝炎;肝昏迷病人的血清LDH5.LDH4活性极高时,常示预后不良;原发性肝癌以血清LDH4>LDH5较为常见。

肾皮质以LDH1和LDH2含量较高,肾髓质以LDH4和LDH5活性较强。患急性肾小管坏死、慢性肾盂肾炎、慢性肾小球肾炎以及肾移植排异时,血清LDH5均可增高。

肺含LDH3较多,肺部疾患时血清LDH3常可升高。肺梗塞时LDH3和LDH4相等,LDH1明显下降;肺脓肿病人的血清LDH3.LDH4常与LDH5同时升高。

血清LD总活性升高而同工酶谱正常(LDH1/LDH2<1)的病例,临床出现率依次为;心肺疾病、恶性肿瘤、骨折、中枢神经系统疾患、炎症、肝硬变、传染性单核细胞增多症、甲状腺机能低下、尿毒症、组织坏死、病毒血症、肠梗阻等。

肌营养不良病人肌肉中LDH1.LDH2明显增高,LDH5显著下降;而血清则相反,LDH1.LDH2明显减少,LDH4.LDH5显著,表明血清LDH同工酶主要来自肌肉组织。煤矿、钨矿矽肺病人的血清LDH1.LDH2下降,LDH4.LDH5升高。

(4)恶性病变时LDH3常增高。

编辑本段乳酸脱氢酶高的原因

至于乳酸脱氢酶高的原因,有以下方面:

1.当乙肝病毒携带者病情恶化成乙肝患者时,部分肝细胞受损,血清中LDH4和LDH5含量就会有不同程度的增高。

2.乙肝治疗方法特别是是用药不当,长期服用同一种药物时造成肾毒现象的产生。当肾毒现象出现时,血清中乳酸脱氢酶含量会迅速升高。

3.乙肝不进行合适积极的治疗,发展到一定程度时会造成肝脏代谢严重异常,导致肾脏功能衰竭,从而也会引起乳酸脱氢酶含量升高。

4.肺梗塞、恶性贫血、休克及肿瘤转移所致的胸腹水时,会引起乳酸脱氢酶的偏高[2]。

编辑本段乳酸脱氢酶偏低的原因

乳酸脱氢酶存在于机体所有组织细胞的胞质内,其中以肾脏含量较高。血清乳酸脱氢酶正常范围是100~300U/L,当出现乳酸脱氢酶偏低时,常见原因如下。

乳酸脱氢酶偏低的原因1:检查过程中出现误差;

乳酸脱氢酶偏低的原因2:内分泌失调;

乳酸脱氢酶偏低的原因3:过于劳累、睡眠不好、心情不好等。

总之,乳酸脱氢酶偏低一般不是很严重,经过调理即可恢复。但如果出现乳酸脱氢酶偏高就要引起重视了。因为肺梗塞、恶性贫血、休克及肿瘤转移所致的胸腹水时,会引起乳酸脱氢酶的偏高。[3]

编辑本段乳酸脱氢酶(LDH)实验

概述

乳酸脱氢酶(LDH)是催化乳酸和丙酮相互转化的同工酶,属于氢转移酶。该酶存在于所有动物的组织中,在肝脏中活性最高,其次为心脏、骨骼肌、肾脏,在肿瘤组织及白血病细胞中也能检测到。在大多数动物组织中,它是由两种肽链按一定比例组成的5种四聚体。它的每条肽链各由一个基因编码,经转录、翻译、修饰加工等过程,最后成为有生物学活性的物质。不同的动物,不同的组织或器官在不同的发育阶段或不同的生活周期均有其特异性的同工酶酶谱。自然界中存在L和D两种乳酸脱氢酶[4]。

实验原理

用纯化的抗体包被微孔板,制成固相载体,往包被抗D-LDH抗体的微孔中依次加入标本或标准品、生物素化的抗D-LDH抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,

并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的D-LDH呈正相关。用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。

试剂盒组成及试剂配制

1. 酶联板(Assay plate ):一块(96孔)。

2. 标准品(Standard):2瓶(冻干品)。

3. 样品稀释液(Sample Diluent):1×20ml/瓶。

4. 生物素标记抗体稀释液(Biotin-antibody Diluent):1×10ml/瓶。

5. 辣根过氧化物酶标记亲和素稀释液(HRP-avidin Diluent):

1×10ml/瓶。

6. 生物素标记抗体(Biotin-antibody):1×120μl/瓶(1:100)

7. 辣根过氧化物酶标记亲和素(HRP-avidin):1×120μl/瓶(1:100)

8. 底物溶液(TMB Substrate):1×10ml/瓶。

9. 浓洗涤液(Wash Buffer):1×20ml/瓶,使用时每瓶用蒸馏水稀释25倍。

10. 终止液(Stop Solution):1×10ml/瓶(2N H2SO4)。

需要而未提供的试剂和器材

1. 标准规格酶标仪

2. 高速离心机

3. 电热恒温培养箱

4. 干净的试管和Eppendof管

5. 系列可调节移液器及吸头,一次检测样品较多时,最好用多通道移液器

6. 蒸馏水,容量瓶等

操作步骤

实验开始前,请提前配置好所有试剂,试剂或样品稀释时,均需混匀,混匀时尽量避免起泡。每次检测都应该做标准曲线。如样品浓度过高时,用样品稀释液进行稀释,以使样品符合试剂盒的检测范围。

1. 加样:分别设空白孔、标准孔、待测样品孔。空白孔加样品稀释液100μl,余孔分别加标准品或待测样品100μl,注意不要有气泡,加样将样品加于酶标板孔底部,尽量不触及孔壁,轻轻晃动混匀,酶标板加上盖或覆膜,37℃反应120分钟。

为保证实验结果有效性,每次实验请使用新的标准品溶液。

2. 弃去液体,甩干,不用洗涤。每孔加生物素标记抗体工作液 100μl (取1μl生物素标记抗体加99μl生物素标记抗体稀释液的比例配制,轻轻混匀,在使用前一小时内配制),37℃,60分钟。

3. 温育60分钟后,弃去孔内液体,甩干,洗板3次,每次浸泡1-2分钟,350μl/每孔,甩干。

4. 每孔加辣根过氧化物酶标记亲和素工作液(同生物素标记抗体工作液) 100μl,37℃,60分钟。

5. 温育60分钟后,弃去孔内液体,甩干,洗板5次,每次浸泡1-2分钟,350μl/每孔,甩干。

6. 依序每孔加底物溶液90μl,37℃避光显色(30分钟内,此时肉眼可见标准品的前3-4孔有明显的梯度蓝色,后3-4孔梯度不明显,即可终止)。

7. 依序每孔加终止溶液50μl,终止反应(此时蓝色立转黄色)。终止液的加入顺序应尽量与底物液的加入顺序相同。为了保证实验结果的准确性,底物反应时间到后应尽快加入终止液。

8. 用酶联仪在450nm波长依序测量各孔的光密度(OD值)。在加终止液后15分钟以内进行检测。

计算

以标准物的浓度为横坐标(对数坐标),OD值为纵坐标(普通坐标),在半对数坐标纸上绘出标准曲线,根据样品的OD值由标准曲线查出相应的浓度;再乘以稀释倍数;或用标准物的浓度与OD值计算出标准曲线的直线回归方程式,将样品的OD值代入方程式,计算出样品浓度,再乘以稀释倍数,即为样品的实际浓度。

注意事项

1. 当混合蛋白溶液时应尽量轻缓,避免起泡。

2. 洗涤过程非常重要,不充分的洗涤易造成假阳性。

3. 一次加样时间最好控制在5分钟内,如标本数量多,推荐使用排枪加样。

4. 请每次测定的同时做标准曲线,最好做复孔。

5. 如标本中待测物质含量过高,请先稀释后再测定,计算时请最后乘以稀释倍数。

6. 在配制标准品、检测溶液工作液时,请以相应的稀释液配制,不能混淆。

7. 底物请避光保存。

8. 不要用其它生产厂家的试剂替换试剂盒中的试剂。

乳酸脱氢酶制备

乳酸脱氢酶制备 原理: 乳酸脱氢酶(LDH)(EC1.1.1.27)存在于具糖无氧代谢途径的细胞中,为水溶性酶,催化如下反应: L(+)—乳酸+NAD+ →丙酮酸 + NADH +H+ 乳酸脱氢酶最早从牛心中分离并获结晶。制备的方法为捣碎心肌组织用水抽提,磷酸钙胶吸附,硫酸铵分级盐析及有机溶剂沉淀,最后结晶出乳酸脱氢酶。 乳酸脱氢酶活力检测原理是在pH10.0的条件下,LDH催化NAD±还原生成NADH。NADH在340nm有最大吸收,摩尔消光系数为6.2×103,NADH的分子量为663.44。 LDH活力单位定义为:25℃、每分钟催化生成1微摩尔NADH的酶量为1个活力单位。用紫外分光光度计测定酶反应进程的OD340的增量,可求出制备样品中的LDH活力。 试剂: (1)CaCl2?6H2O (2)Na3PO4 (3)冰乙酸 (4)0.2mol/L磷酸盐缓冲液(pH7.2) (5)0.1mol/L磷酸盐缓冲液(pH7.2) (6)0.3饱和度的硫酸铵溶液(19.5g/100ml) (7)丙酮

(8)硫酸铵粉末 (9)0.5mol/L DL-乳酸钠。 (10)2mmol/L NAD+溶液:称取133mg NAD+,溶于5ml蒸馏水中,加入约0.15ml 1mol/L NaOH 调pH为6.0,定容10ml,冰箱贮存。(11) 0.1mol/L pH10.0甘氨酸-氢氧化钠缓冲液 A液0.2mol/L甘氨酸溶液:称取15.01g甘氨酸用蒸馏水溶解,定容1L。 B液0.2mol/L NaOH溶液:称取8gNaOH用蒸馏水溶解,定容1L。 取100mlA液与64.0mlB液混合,蒸馏水定容200ml。 操作: 一、磷酸钙胶制备 (1)称取19.8g CaCl2?6H2O,溶于150ml蒸馏水中,用自来水稀释成1600ml。 (2)称取22.8g Na3PO4?12H2O溶于150ml蒸馏水中。 (3)将两溶液混合,用冰乙酸调pH至7.4,室温下放置,使磷酸钙胶沉淀。 (4)吸去上清液,4000r/min离心3min,收集胶体备用。 二、 LDH制备 1、LDH水提取 (1)取100g新鲜或短期冰冻保存的牛心,去除脂肪、血管,称重,切成小块,低温下绞碎。 (2)加入400ml冰冷的蒸馏水,冰浴中搅拌,提取20min。

血清乳酸脱氢酶同工酶测定

血清乳酸脱氢酶同工酶测定 (醋酸纤维素薄膜电泳法) [原理] 先将血清在醋酸纤维素薄膜进行电泳使乳酸脱氢酶的同工酶分离,然后在薄膜上进行酶反应,显色试剂中包括有底物(乳酸)、NAD+、吩嗪二甲酯硫酸盐(PMS)和碘硝基四唑蓝(INT),NAD+和PMS起递氢作用,INT最后接受氢被还原生成紫色的甲臜类化合物。其反应如下: LD 乳酸+NAD+丙酮酸+NADH2 NADH2+PMS NAD++PMSH2 PMSH2 +INT PMS+INTH2 [试剂] 1.PH8.6巴比妥缓冲液(离子强度0.05):称取巴比妥钠10.3g,巴比妥1.84g,溶于热的蒸馏水中,冷后加蒸馏水至1L。 2.0.1mol/LpH7.5磷酸缓冲液:称取磷酸二氢钾2.16g,磷酸氢二钠 (Na2 HPO4.2H2O)30.13g, 溶于蒸馏水中,并稀释至1L。 3.0.5mol/L乳酸钠溶液:吸取60%DL—乳酸钠溶液9.25ml,加蒸馏水至100ml。 4.显色试剂:临用前配制下列试剂: (1)1mg/ml吩嗪二甲酯硫酸盐(PMS)水溶液; (2)辅酶Ⅰ(NAD+)10mg,溶于pH7.5磷酸缓冲液1ml; (3)碘硝基四唑蓝[氯化2-(4-碘苯基)-3-(4-硝基苯基)-5-苯基四唑](INT)12mg,溶于pH7.5磷酸缓冲液3ml中; (4)0.5 mol/L乳酸钠溶液1ml。 其中(2)、(3)、(4)混合后为甲液,(1)为乙液;用时以甲液∶乙液=20∶1混合。应用前,将上述溶液充分混和;但PMS水溶液加入量为0.2ml,且应待其他三种溶液混和后再加。 4.洗脱液:正丙醇9份与二甲亚砜1份混匀即可。

乳酸脱氢酶LDH法操作说明

LDH法细胞毒性检测: 原理:乳酸脱氢酶在胞浆内含量丰富,正常时不能通过细胞膜,当细胞受损或死亡时可释放到细胞外,所以细胞死亡数目与细胞培养上清中LDH活性成正比,用比色法测定实验孔LDH 活性,并与靶细胞对照孔进行比较,可计算效应细胞对靶细胞的杀伤百分率 LDH(乳酸脱氢酶)是一种极为稳定的细胞质酶,存在于正常细胞的胞质中,一旦细胞膜受损,LDH 即被释放到细胞外;LDH催化乳酸形成丙酮酸盐,和INT(四唑盐类)反应转化成红色甲臢化合物,可通过酶标仪进行检测。颜色形成的量与裂解细胞的数目成正比。应用一个96-孔平板读数计收集可见光波长的吸收值数据。这个分析可用于测量在细胞介导的细胞毒性分析中细胞膜的完整性,这种情况下目标细胞被效应细胞裂解,可判断细胞受损的程度。 乳酸脱氢酶(LDH)在胞质内含量非常丰富,细胞处于正常状态下其不能通过细胞膜,但当细胞受到损伤或死亡时便可释放到细胞外,此时细胞培养液中LDH 的活性与细胞的死亡数目呈正比,通过用比色法测定并与靶细胞对照孔的LDH 活性进行比较,可计算出效应细胞对靶细胞的杀伤百分数。该实验方法操作简便、快速,可应用于CTL 和NK 细胞活性测定及药物、化学物质或放射所引起的细胞毒性,目前已有LDH 法测定CTL 活性的试剂盒。 同时设4个对照:靶细胞最大释放组、体积校正对照组、背景对照组和自然释放组 按5∶1、10∶1、20∶1(效应细胞∶靶细胞) 细胞过度生长、密度过高、离心速度过大、培养箱内外温差过大等因素会造成细胞自然释放乳酸脱氢酶

操作流程: 设立效应细胞孔(不同浓度的效应细胞设立效应细胞自发释放组):50μl效应细胞+50μl培养基 实验组:靶细胞不变,改变效应细胞:50μl效应细胞+50μl靶细胞 设立靶细胞自发释放组:50μl靶细胞+50μl培养基 设立靶细胞最大释放组:50μl靶细胞+50μl培养基+10μl裂解液(10×) 设立体积校正对照组:100μl培养基+10μl裂解液(10×) 设立背景对照组:100μl培养基 250g离心4分钟 37℃孵育4小时 离心前45分钟添加裂解液(10×)至靶细胞最大释放组 250g离心4分钟 取上清50μl转移至另一孔板 (可选)于独立的孔中加50μl LDH阳性对照(1:5000) 于每孔中添加50μl再次稀释的底物混合物 室温避光孵育30分钟 添加50μl终止溶液 490nm测吸收值 1.靶细胞接种数目的优化 1.1.设立检测板 1.1.1.准备靶细胞:调整细胞浓度0, 5,000, 10,000, 20,000/100μl,使用与细胞毒分析相同的培养 基及孔板终体积。例如,若以50μl/孔的靶细胞及50μl/孔的效应细胞接种,则以100μl/孔梯

LDH同工酶

LDH同工酶 定义1:具有相同底物,但电泳迁移率不同的酶。可来简介 用电泳方法将LDH同工酶分离,分析其酶谱,发现脊椎动物各组织中有五条酶带。每条酶带的酶蛋白都是由四条肽链组成的四聚体,LDH有两类肽链,A(M)或B(H),各有不同同工酶 的免疫性质,按排列组合可形成符合于电泳酶带数的五种同工酶。LDH1及LDH5分别由纯粹的4条B链(B4)和4条A链(A4)形成,称为纯聚体;而LDH2、LDH3和LDH4都是由两类肽链杂交而成的,分别可写成AB3、A2B2、A3B,称为杂交体。 编辑本段分类 基因性同工酶或原级同工酶 由不同基因产生的肽链而衍生的同工酶。这里所指的不同基因可以在不同染色体或在同一染色体的不同位点上,例如LDH中A、B两条肽链的基因分别在第11及第12对染色体上,唾液淀粉酶和胰淀粉酶的基因在第1对染色体的不同位点上。这类同工酶因分子结构差异较大,彼此间无交叉免疫。但同工酶的不同基因也可以是同源染色体的等位基因,这种成对的等位基因上两个基因结构不同的情况,在遗传学上称为杂合子。杂合子在同一个体中可合成同一种酶的两种不同

肽链,或亚基,这两种亚基尚可杂交,形成同工酶。在生物群体的不同个体中,有时同一基因位点上的一个(对杂合子来说)或一对(对纯合子来说)基因也可发生遗传变异,从而产生变异的酶,出现群体中的遗传多态。不同个体中这些遗传变异的酶也属于基因性同工酶。其在免疫学上常有交叉反应。由同一基因转录出前体核糖核酸(前体RNA),经过不同的加工剪接过程而生成多种不同的mRNA,再转译出多种肽链,从而组成同工酶。这类同工酶因发现较晚,在国际上尚无统一命名,彼此间也有交叉免疫。 次生同工酶或转译后同工酶 由同一基因、同一mRNA转译生成原始的酶蛋白,再经过不同的化学修同工酶试剂 饰,如酰胺基水解、磷酸化、肽链断裂、糖链上的糖基增减等形成不同结构的酶蛋白,它们的免疫性往往相同。国际生化协会命名委员会(CBN)建议只将原级同工酶列为同工酶,而将次生同工酶称为共合酶,但不少生化学家还是把上述各类酶的不同结构形式都包括在广义的同工酶概念中。 编辑本段功能 在动、植物中,一种酶的同工酶在各组织、器官中的分布和含量不同,形成各组织特异的同工酶谱,叫做组织的多态性,体现各组织的特异功能。大多数基因性同工酶由于对底物亲和力不同和受不同因素的调节,常表现不同的生理功能,例如动物肝脏的碱性磷酸酯酶和肝脏的排泄功能有关,而肠粘膜的碱性磷酸酯酶却参与脂肪和钙、磷

乳酸脱氢酶

乳酸脱氢酶 科技名词定义 中文名称:乳酸脱氢酶 英文名称:lactate dehydrogenase;LDH 定义:广泛存在的催化乳酸和丙酮酸相互转换的酶。L-乳酸脱氢酶(编号:EC 作用于L-乳酸; D-乳酸脱氢酶(编号:EC 作用于D-乳酸,两者均以NAD+为氢受体。在厌氧酵解时,催化丙酮酸接受由3-磷酸甘油醛脱氢酶形成的NADH的氢,形成乳酸。 应用学科:生物化学与分子生物学(一级学科);酶(二级学科) 本内容由全国科学技术名词审定委员会审定公布 求助编辑百科名片 催化机理 乳酸脱氢酶是一种糖酵解酶。乳酸脱氢酶存在于机体所有组织细胞的胞质内,其中以肾脏含量较高。乳酸脱氢酶是能催化乳酸脱氢生成丙酮酸的酶,几乎存在于所有组织中。同功酶有五种形式,即LDH-1(H4)、LDH-2(H3M)、LDH-3(H2M2)、LDH-4(HM3)及LDH-5(M4),可用电泳方法将其分离。LDH同功酶的分布有明显的组织特异性,所以可以根据其组织特异性来协用诊断疾病。正常人血清中LDH2,〉LDH1。如有心肌酶释放入血则LDH1〉LDH2,利用此指标可以观察诊断心肌疾病。 目录 基本信息 临床意义 乳酸脱氢酶及其同工酶的简介 血清乳酸脱氢酶(LDH)同工酶测定及意义 乳酸脱氢酶高的原因 乳酸脱氢酶偏低的原因 乳酸脱氢酶(LDH)实验 基本信息 临床意义 乳酸脱氢酶及其同工酶的简介

编辑本段基本信息 英文名称:LDH(lactate dehydrogenase) 序列信息:1 gsgcnldsar frylmg 长度:16 aa{物种来源:Homo sapiens (human)} 正常范围:血清~L; 尿560~2050U/L; 脑脊液含量为血清的1/10。 编辑本段乳酸脱氢酶及其同工酶的简介 乳酸脱氢酶[1](LD)分子量为135~140KD,由两种亚单位组成:H(表示heart)和M(表示muscle)。它们按不同的形式排列组合形成含4个亚基的5种同工酶,即:LD1(H4)、LD2(H3M1)、LD3(H2M2)、LD4(HM3)、LD5(M4)。 LD催化丙酮酸与乳酸之间还原与氧化反应,在碱性条件下促进lactic acid向pyruvic acid方向的反应,而在中性条件下促进pyruvic acid向lactic acid的转化(为逆反应)。LD是参与糖无氧酵解和糖异生的重要酶。 由于LD几乎存在于所有体细胞中,而且在人体组织中的活性普遍很高,所以血清中LD的增高对任何单一组织或器官都是非特异的。在AMI时升高迟、达峰晚,故对早期诊断价值不大。由于半寿期长(10~163小时),多用于回顾性诊断,如对人院较晚的AMI病人、亚急性MI的诊断和病情监测医学教育`网搜集整理。 LD在组织中的分布特点是心、肾以LD1为主,LD2次之;肺以LD3.LD4为主;骨骼肌以LD5为主;肝以LD5为主,LD4次之。血清中LD含量的顺序是LD2>LD1>LD3>LD4>LD5.

实验室检查正常值大全

实验室检查结果及正常值 (一)血常规 红细胞(RBC)成年男性:(4.0~5.5)×1012/L 成年女性:(3.5~5.0)×1012/L 新生儿:(6.0~7.0)×1012/L 血红蛋白(Hb)成年男性:120~160g/L 成年女性:1l0~150g/L 新生儿:170~200g/L 白细胞(WBC)成人:(4.0~10.0)×109/L;新生儿:(15.0~20.0)×109/L 中性杆状核粒细胞:1%~5% 中性分叶核粒细胞:50%~70% 嗜酸性粒细胞:0.5%~5% 嗜碱粒性细胞:O%~1% 淋巴细胞:20%~40% 单核细胞:3%~8% 血小板(PLT)(100~300)×109/L (二)尿常规 1.酸碱度(pH)5~8 2.比重(SG)1.015~1.025 3.尿蛋白(Pro)定性定量试验 Pro定性:阴性(neg),Pro定量≤O.15g/24h 4.葡萄糖(Glu)定性:阴性(neg)、糖定量:<2.8mmol/24小时(0.5g/24小时) 5.酮体(Ket)阴性(neg) 6.胆红素(Bil)和尿胆原(Ubg)均为阴性(neg) 7.亚硝酸盐(Nit)阴性(neg) 8.白细胞(Leu)<25/μl 9.红细胞或血红蛋白(潜血试验)(Ery或OB)≤l0/μl 10.尿沉渣镜检白细胞<5/HP(每高倍镜视野)红细胞<3/HP(每高倍镜视野)(三)粪常规 1.颜色黄褐色成型便 2.镜检 (1)白细胞:正常粪便不见或偶见; (2)红细胞:正常粪便无红细胞; (3)细菌:主要为大肠杆菌和肠球菌; (4)虫卵。 3.粪便潜血试验(occult blood test,OBT)正常粪便OBT阴性。 (四)痰液检验 一般性状检查正常人痰液呈无色或灰白色。 化脓性感染时呈黄色;

酶的本质和特性

酶 一、酶的本质:酶是由活细胞产生的具有催化活性和高度选择性的特殊蛋白质。按其组成的不同,将酶分成单纯蛋白质和结合蛋白质两大类。例如,大多数水解酶属单纯由蛋白质组成的酶; 黄素单核苷酸酶则属由酶蛋白和辅助因子组成的结合蛋白酶。结合蛋白质中的酶蛋白为蛋白质部分,辅助因子为非蛋白质部分,两者结合成全酶,只有全酶才有催化活性 二、酶的形态结构 所有的酶都含有C、H、O、N四种元素。按照酶的化学组成可将酶分为单纯酶和复合酶两类。 单纯酶分子中只有氨基酸残基组成的肽链。 结合酶分子中则除了多肽链组成的蛋白质,还有非蛋白成分,如金属离子、铁卟啉或含B 族维生素的小分子有机物。结合酶的蛋白质部分称为酶蛋白,非蛋白质部分统称为辅助因子(cofactor),两者一起组成全酶;只有全酶才有催化活性,如果两者分开则酶活力消失。非蛋白质部分如铁卟啉或含B族维生素的化合物若与酶蛋白以共价键相连的称为辅基(prosthetic group),用透析或超滤等方法不能使它们与酶蛋白分开;反之两者以非共价键相连的称为辅酶(coenzyme),可用上述方法把两者分开。辅助因子有两大类,一类是金属离子,且常为辅基,起传递电子的作用;另一类是小分子有机化合物,主要起传递氢原子、电子或某些化学基团的作用。 结合酶中的金属离子有多方面功能,它们可能是酶活性中心的组成成分;有的可能在稳定酶分子的构象上起作用;有的可能作为桥梁使酶与底物相连接。辅酶与辅基在催化反应中作为氢(H+和e)或某些化学基团的载体,起传递氢或化学基团的作用。体内酶的种类很多,但酶的辅助因子种类并不多,常见到几种酶均用某种相同的金属离子作为辅助因子的例子,同样的情况亦见于辅酶与辅基,如3-磷酸甘油醛脱氢酶和乳酸脱氢酶均以NAD+作为辅酶。酶催化反应的特异性决定于酶蛋白部分,而辅酶与辅基的作用是参与具体的反应过程中氢(H+和e)及一些特殊化学基团的运载。 酶属生物大分子,分子质量至少在1万以上,大的可达百万。酶的催化作用有赖于酶分子的一级结构及空间结构的完整。若酶分子变性或亚基解聚均可导致酶活性丧失。一个值得注意的问题是酶所催化的反应物即底物(substrate),却大多为小分物质它们的分子质量比酶要小几个数量级。 酶的活性中心(active center)只是酶分子中的很小部分,酶蛋白的大部分氨基酸残基并不与底物接触。组成酶活性中心的氨基酸残基的侧链存在不同的功能基团,如-NH2。-COOH、-SH、-OH和咪唑基等,它们来自酶分子多肽链的不同部位。有的基团在与底物结合时起结合基团(binding group)的作用,有的在催化反应中起催化基团(catalytic group)的作用。但有的基团既在结合中起作用,又在催化中起作用,所以常将活性部位的功能基团统称为必需基团(essential group)。它们通过多肽链的盘曲折叠,组成一个在酶分子表面、具有三维空间结构的孔穴或裂隙,以容纳进入的底物与之结合并催化底物转变为产物,这个区域即称为酶的活性中心。 而酶活性中心以外的功能集团则在形成并维持酶的空间构象上也是必需的,故称为活性中心以外的必需基团。对需要辅助因子的酶来说,辅助因子也是活性中心的组成部分。酶催化反应的特异性实际上决定于酶活性中心的结合基团、催化基团及其空间结构。

乳酸脱氢酶教案资料

乳酸脱氢酶

乳酸脱氢酶 乳酸脱氢酶是一种糖酵解酶。乳酸脱氢酶存在于机体所有组织细胞的胞质内,其中以肾脏含量较高。乳酸脱氢酶是能催化丙酮酸生成乳酸的酶,几乎存在于所有组织中。同工酶有六种种形式,即LDH-1(H4)、LDH-2(H3M)、LDH-3(H2M2)、LDH-4(HM3)、LDH-5(M4)及LDH-C4,可用电泳方法将其分离。LDH同功酶的分布有明显的组织特异性,所以可以根据其组织特异性来协用诊断疾病。正常人血清中LDH2,〉LDH1。如有心肌酶释放入血则LDH1〉LDH2,利用此指标可以观察诊断心肌疾病。 基本信息 英文名称: LDH(lactate dehydrogenase) 序列信息:1 gsgcnldsar frylmg 长度:16 aa{物种来源:Homo sapiens (human)} 正常范围:血清135.0~215.0U/L; 脑脊液含量为血清的1/10。 乳酸脱氢酶A 简介 乳酸脱氢酶(LDH)分子量为130~140KDa,由两种亚单位组成:H(表示heart)和M(表示muscle)。它们按不同的形式排列组合形成含4个亚基的5种同工酶,即:LDH1(H4)、LDH2(H3M1)、LDH3(H2M2)、LDH4(HM3)、LDH5(M4)。 LDH催化丙酮酸与乳酸之间还原与氧化反应,在碱性条件下促进lactic acid向pyruvic acid方向的反应,而在中性条件下促进pyruvic acid向lactic acid的转化(为逆反应)。LDH 是参与糖无氧酵解和糖异生的重要酶。 由于LDH几乎存在于所有体细胞中,而且在人体组织中的活性普遍很高,所以血清中LDH的增高对任何单一组织或器官都是非特异的。在AMI时升高迟、达峰晚,故对早期诊断价值不大。由于半寿期长(10~163小时),多用于回顾性诊断,如对入院较晚的AMI病人、亚急性MI的诊断和病情监测。 LDH在组织中的分布特点是心、肾以LDH1为主,LDH2次之;肺以LDH3.LDH4为主;骨骼肌以LDH5为主;肝以LDH5为主,LDH4次之。血清中LDH含量的顺序是LDH2>LDH1>LDH3>LDH4>LDH5. 正常参考值 人组织中的乳酸脱氢酶(LDH)用电泳法可以分离出5种同工酶区带,根据其电泳迁移率的快慢,依次命名为LDH1,LDH2,LDH3,LDH4,LDH5。不同组织的乳酸脱氢酶同工酶分布不同,存在明显的组织特异性,人心肌、肾和红细胞中以LDH1和LDH2最多,骨骼肌和肝中以LDH4和LDH5最多,而肺、脾、胰、甲状腺、肾上腺和淋巴结等组织中以LDH3最多。后来从睾丸和精子中发现了LDHx,其电泳迁移率介于LDH4和LDH5之间。LDH是由H(心肌型)和M(骨骼肌型)两类亚基组成,分别形成LDH1(H4)、LDH2(H3M)、LDH3(H2M2)、LDH4(HM3)、LDH5(M4)。 正常参考值 (1)琼脂糖电泳法: LDH1(28.4±5.3)%; LDH2(41.0±5.0)%;

乳酸脱氢酶同工酶

乳酸脱氢酶同工酶 乳酸脱氧酶有5种同工酶形式,即LDH1、LDH2、LDH3、LDH4、LDH5,可用电泳法进行分离。人体心肌、肾、红细胞以LDH1和LDH2为最多。肝和横纹肌则以LDH4和LDH5为主。脾、胰、甲状腺、肾上腺中LDH3较多。乳酸脱氢酶同工酶是观察心肌疾病、肝胆疾病等的指标之一。 一、正常值 琼脂糖电泳法:LDH2>LDH1>LDH3>LDH4>LDH5 二、临床意义 (1)、乳酸脱氢酶同工酶结果要与临床症状结合才能做出准确判断。 (2)、LDH1和LDH2升高,且LDH1/LDH2>1见于:急性心肌梗死、溶血性贫血、急性镰刀型红细胞贫血、巨幼红细胞贫血等恶性贫血。急性肾皮质坏死及各种血管内外溶血症(若无LDH1升高,可排除溶血性贫血)。 (3)、LDH5升高:骨骼肌炎症、损伤及退化、肝损伤(肝硬变、肝炎、肝过度充血)、癌。 (4)、单纯LDH1升高:细菌性细胞瘤(如,畸胎瘤、睾丸细胞瘤及卵巢坏死性细胞瘤)。 (5)、总LDH升高而同工酶谱正常见于:心脏病、肝病、骨骼肌病、瘤及其他功能性失调症。对部分癌症患者LDH值越高,预后越不良。

(6)、LDH2、LDH3及LDH4均升高:大量血小板破坏(如:肺栓塞、大量输血等)、淋巴系统疾病(如:传染性单核细胞增多症、淋巴瘤及淋巴性白血病等)。 三、注意事项 (1)、溶血可使LDH1/LDH2失去意义。 (2)、LDH同工酶分布有组织差异性。 ①LDH1:心肌(占酶总量50%以上)>肾>胰腺>膈肌>红细胞。 ②LDH5:肝(占酶总量50%以上)>皮肤>骨髓>关节滑液>白细胞>血小板>胆汁。 ③LDH3:肺>脾>脑>肠>淋巴液>内分泌腺。 ④LDHX(或LD-C2)由成熟睾丸合成,为精子独有,据认为LDHX很可能是乙醇脱氢酶。 ⑤LDH的H亚基突变频度比M亚基高,黑人比白人高且有家族性。H1和M1与H、M性质不同,故电泳谱上可出现复带。

基因工程改造秸杆发酵产氢的关键技术研究

课题类型:探索导向类申请受理编号: SQ2006AA05Z109513 国家高技术研究发展计划(863计划) 专题课题申请书 技术领域名称:先进能源技术领域 专题名称:氢能与燃料电池技术 申请指南技术方向:制氢技术 课题名称:基因工程改造秸杆发酵产氢的关键技术研究 申请人:程军 依托单位:XX大学 中华人民XX国科学技术部 2006-09-05

机物从而生产氢气的生物工程技术,它是一种符合可持续发展战略的可再生能源技术。它克服了常规制氢方法(如从煤、石油、天然气等化石燃料中提取或通过水电解法制取等)需要消耗大量化石燃料和能量、并且产生大量污染的弊病。目前在生物法制氢研究方面主要分为发酵法和光合法两大类,其中发酵法具有产氢细菌生长速率快、产氢能力高、反应无需光源、发酵底料来源广等优点,所以更容易实现连续产氢和工业化生产。因此,利用秸杆等生物质以微生物法制氢对发展清洁高效的可再生能源和减少环境污染具有重要意义,是一个处于国际学术前沿的十分活跃的热点课题,具有重要的学术价值和应用前景。 国内外许多学者关于发酵法产氢的研究X 围主要局限于反应机理相对简单的富含水溶性碳水化合物(尤其是葡萄糖)的有机废水,对于主要由复杂大分子有机质即不溶性的大分子碳水化合物、脂类物和蛋白质组成的生物质及固体有机废弃物的发酵产氢问题较少研究。后者的厌氧消化产氢过程可分为水解、酸化和产氢产乙酸三个阶段,由于其降解产氢过程的复杂性,国内外在该领域的研究方兴未艾,目前已逐步引起许多学者的高度重视。国外已有部分相关报道,如日本在90年代末到本世纪初,在暗发酵制氢方面的科研投入大大增加,尤其在2001-2004年产生了大量基础性的研究结果。日本东北大学曾将餐厅剩菜与粪便污泥混合配成培养基料,利用加热预处理的厌氧活性污泥和大豆粉仓中富含的产氢菌进行发酵制氢,发现底料的产氢潜力分别高达140ml/g 和180ml/g ,而厌氧活性污泥的接种产氢速率可高达45ml/(gVSS?h ),2004年日本产业技术研究所的废弃食物产氢项目已经进入中试阶段。另外,韩国、新加坡、印度在此领域的研究也比较活跃。而国内对于固体有机废弃物发酵产氢的研究才刚刚起步,如中国科学院、清华大学、中国科技大学、XX 大学、XX 工业大学、XX 大学等曾对固体废弃物发酵产氢进行了一些探索性研究,取得了一定的研究成果。众多专家一致认为:如何使生物质及固体废弃物高效降解成可资利用的还原糖是利用其发酵产氢的首要技术难点和重大关键点。而生物质发酵产氢能否获得产业化应用的瓶颈问题是过程的经济性,即如何降低发酵制氢的成本,使之可以和化石能源催化重整制氢的经济性相比拟,或者可以与其他生物能源过程(即生物制甲烷、燃料酒精、生物柴油)相竞争。其核心问题是如何提高氢气从葡萄糖的转化率、如何降低底物成本、以及如何在生物反应器水平上实现高效产氢。目前国际上最新的研究方向是从现有产氢纯菌的工艺优化中走出来,开发新的产氢菌种,通过基因工程改造产氢菌及氢酶,并开发高效的产氢反应器。 利用富含纤维素的秸杆等生物质大规模高效低成本地发酵转化为燃料乙醇、甲烷或氢气等清洁能源是目前国际上的一大热点课题。若能通过基因工程手段在目标植株细胞中成功表达降解不同生物体高分子的酶,如将纤维素酶基因片段植入水稻的基因组中,而在收获的水稻秸秆中获得大量纤维素酶,使得秸杆在后续的加热到90℃左右水解过程中不需要酸碱预处理和外加纤维素酶等,即能高效降解成产乙醇细菌或产氢细菌直接可资利用的小分子还原糖,则能大幅度降低秸杆水解糖化和发酵利用的处理成本,并大幅度提高其转化效率,取得巨大的经济和社会效益。目前美国麻省理工学院、密歇根州立大学、加州大学Davis 分校、杜邦公司和Syngenta 公司等正在加紧开展相关的研究探索,主要在玉米、甘蔗等植株生长过程中表达纤维素酶和半纤维素酶,以获得更有利于秸秆高效水解的农作物,但至今很少见到公开的文献报导[1]。 厌氧发酵产氢中起主要作用的是氢酶,氢酶分为放氢酶和吸氢酶,分别催化反应222H H e →++的正逆反应。作为一种有机金属酶类,氢酶对氢代谢至关重要,研究其基因结构和空间结构、催化中心、电子载体种类和传递顺序等具有很高的理论价值,深入发掘这些生物信息对于人们定向改进氢酶性能,获得高产氢菌种具有指导意义。目前已经有超过100种的氢酶基因序列可以在基因库上获得,但是仍然有大量已知产氢菌株的氢酶基因尚未克隆,获得更多的氢酶基因也是生物制氢研究的重要方向。Mishra [2]等分离出高产氢菌阴沟肠杆菌Enterobacter cloacae IIT BT08的氢酶基因进而进行了酶分子特性研究。大肠杆菌的氢酶基因都属于Ni .Fe 氢酶,梭菌属的氢酶都属于铁氢酶,目前其中3株所具有的铁氢酶得到测序,但是关于其附属基因、调控机制还不清楚。梭菌的铁氢酶已经成功的克隆,并异源表达到光合细菌内,强化了光合菌的产氢过程。虽然一部分氢酶基因得到解析,但是整体进展仍然比较缓慢而且不系统,有很大的研究探索空间。无论是纯种还是混菌培养,提高关键菌株产氢效率都是最重要的工作。单纯的条件优化手段已不能满足这一要求,

血液生化检查各指标及对应正常值列表

血液生化检查各指标及对 应正常值列表 Prepared on 22 November 2020

血液生化检查各指标及对应正常值列表 (二氧化碳结合力) 2O~30 mmol/L (一氧化碳定性)(—) (a羟丁酸脱氨酶) 90~22O IU/L (磷酸肌酶激酶) 25~170 mmol/L (乳酸脱氢酶) 40~100 mmol/L (激肌酸激酶同功酶) 0~16 (血清白/球蛋白)~2-3g (高密度脂蛋白〕~ mmol/L (低密度低蛋白)~ mmol/L (极低密度脂蛋白) 1~3 mmol/L (C反应蛋白)(—) (免疫球蛋白)~ mg/ml (免疫球蛋白) 9~23 mg/ml (免疫球蛋白)~ ml (铁蛋白) 20~200 ng/ml (蛋白电脉) 3~ % (蛋白电脉)~ % (蛋白电脉)~ % (蛋白电脉)~ % (纤维蛋白原) 2~4g/L () 44~133 µmol/L

(肌酐清除率) 80~120 ml/分 (血糖)~ mmol/L (血淀粉酶) 40~160 U (补体)~L (抗链O) 1:400以下 (类风湿因子)(—) (肥达氏反应)(—) (外裴氏反应)(—) (癌胚抗原)<5mg 血生化 项目结果 ----------参考值---------- 谷丙转氨酶-ALT 0 ~ 40 U 尿素~ 7 mmol/L 血肌酐 40 ~ 130 umol/L 血尿酸 180 ~ 410 umol/L 胆固醇~ mmol/L 甘油三脂~ mmol/L 葡萄糖~ mmol/L 总胆红素 3 ~ 24 umol/L 项目谷丙转氨酶-ALT 临床意义正常时,谷-丙主要存在于组织细胞内,以肝细胞含量最多,心肌细胞中含量其次,只有极少量释放血中。所以血清中此酶活力很低。当、心肌病变、

第三章 酶

第三章酶 思考题: 1、什么是酶?酶与化学催化剂有哪些相同点和不同点? 2、何谓酶作用的专一性?举例说明有哪几种类型? 3、解释单体酶、寡聚酶和多酶复合体。 4、什么是单纯酶和结合酶? 5、酶的辅助因子有哪些?什么是辅酶、辅基?二者是如何区分的? 6、什么叫全酶?全酶中酶蛋白和辅酶在催化反应中各有何作用? 7、什么是维生物?维生素与辅酶有何联系? 8、掌握TPP+辅酶、FMN和FAD辅酶、NAD+和NADP+辅酶、辅酶A的结构与功能。 9、何谓酶的活性中心?什么是酶的必需基团?必需基团有几类?它们的功能有哪些? 10、什么是酶原和酶原的激活?简述胰凝乳蛋白酶原的激活过程。 11、什么是过渡态和活化能? 12、中间产物学说和诱导契合学说的基本观点如何? 13、酶作用的高效性的机理有哪些? 14、什么是酶活力?测定酶活力的基本过程是什么? 15、什么是酶活力单位?什么是比活力? 16、影响酶促反应速度的因素有哪些? 15、底物浓度与酶促反应速度的关系如何?表示其关系的数学表达式是什么? 16、何谓Km?有何意义?怎样进行测定? 17、何谓抑制作用?抑制作用有几类?各有何特点? 18、何谓可逆抑制作用?可逆抑制作用有几类?各有何特点? 19、举例说明何谓竞争性抑制作用和非竞争性抑制作用?其动力学曲线有哪些特点? 20、温度和pH对酶反应速度有何影响? 21、何谓变构酶?何谓变构效应?变构酶动力学曲线有何特点? 22、以糖原磷酸化酶为例,说明何谓共价调节酶。 23、以哺乳动物乳酸脱氢酶为例,说明何谓同工酶。 24、酶命名的方式有几种?命名的原则是什么? 25、酶可分为几大类?分类的依据是什么? 练习题 一、名词解释 1、酶 2、酶作用的专一性 3、全酶 4、辅酶 5、辅基 6、单体酶 7、寡聚酶 8、多酶复合体 9、激活剂10、抑制剂11、别构酶12、同工酶13、酶的活性中心14、酶原及酶原激活15、酶活力16、酶的比活力17、米氏常数(K m值) 18、酶的抑制作用19、可逆抑制作用和不可逆抑制作用20、竞争抑制作用和非竞争性抑制作用21、核酶22、共价调节酶23、维生素 二、英文缩写符号 1、NAD+ 2、NADP+ 3、FAD 4、FMN 5、CoA 6、TPP 三、填空题 1、酶是产生的,具有催化活性的。 2、酶具有和两个最重要特征。 3、影响酶促反应速度的因素有、、、、

乳酸脱氢酶同工酶

乳酸脱氢酶同工酶 【临床意义】 (1)心肌细胞LDH活性远高于血清数百倍,尤以LDH1和LDH2含量最高。急性心肌梗塞时,血清LDH1和LDH2显著升高,约95%的病例的血清LDH1和LDH2比值大于1,且LDH1升高早于LDH总活性升高。病毒性和风湿性心肌炎及克山病,出现心肌损害时,病人的血清LDH同工酶的改变与心肌梗塞相似。LDH1/LDH2比值>1还见于溶血性贫血、恶性贫血、镰形细胞性贫血、肾脏损伤、肾皮质梗塞、心肌损伤性疾病、瓣膜病等。 (2)脑干含LDH1较高。颇脑损伤仅累及大脑半球时,只有血清同工酶谱的绝对值增高,而不影响同工酶的相互比值,如果累及脑干时,病人血清LDH1的含量也增高。 (3)急性心肌梗塞发病后12~24小时,血清LDH1也已升高。若同时测定LDH 总活性,可发现LDH1/总LDH的比值升高。早期血清中LDH1和LDH2活性均升高,但LDH1增高更早,更明显,导致LDH1/LDH2的比值升高。对急性心肌梗塞诊断的阳性率和可靠性优于单纯测定LDH1或CK-MB。 (4)胚胎细胞瘤病人的血清LDH1活性升高。 (5)急性肝炎,肝细胞损伤或坏死后,向血流释入大量的LDH4和LDH5,致使血中LDH5/LDH4比值升高,故LDH5/LDH4>1可做为肝细胞损伤的指标。急性肝炎以LDH5明显升高,LDH4不增,LDH5/LDH4>1为特征;若血清LDH5持续升高或下降后再度升高,则可认为是慢性肝炎;肝昏迷病人的血清LDH5.LDH4活性极高时,常示预后不良;原发性肝癌以血清LDH4>LDH5较为常见。 (6)肾皮质以LDH1和LDH2含量较高,肾髓质以LDH4和LDH5活性较强。患急性肾小管坏死(ATN)、慢性肾盂肾炎、慢性肾小球肾炎以及肾移植排异时,血清LDH5均可增高。 (7)肺含LDH3较多,肺部疾患时血清LDH3常可升高。肺梗塞时LDH3和LDH4相等,LDH1明显下降;肺脓肿病人的血清LDH3.LDH4常与LDH5同时升高。煤矿、钨矿矽肺病人的血清LDH1.LDH2下降,LDH4.LDH5升高。 (8)血清LDH总活性升高而同工酶谱正常(LDH1/LDH2<1)的病例,临床出现率依次为;心肺疾病、恶性肿瘤、骨折、中枢神经系统疾患、炎症、肝硬化、传染性单核细胞增多症、甲状腺功能减退、尿毒症、组织坏死、病毒血症、肠梗阻等。 (9)肌营养不良病人肌肉中LDH1.LDH2明显增高,LDH5显著下降;而血清则相反,LDH1.LDH2明显减少,LDH4.LDH5显著,表明血清LDH同工酶主要来自肌肉组织。 (10)恶性病变时LDH3常增高。

白细胞数偏高就一定是细菌感染吗

白细胞数偏高就一定是细菌感染吗血常规,俗称“血象”,是临床上最常见的一项血液检查。 血常规中的许多指标都是病理改变常用的敏感指标,通常白细胞、红细胞、血红蛋白和血小板最具诊断参考价值。其中临床常以白细胞数来大致判断感染是病毒性还是细菌性的。 白细胞:人体防御的卫士 白细胞是人体重要的防御细胞,对人体具有保护和防御功能。白细胞的正常参考值()×10^9个/L。 白细胞根据形态可以分为中性粒细胞、淋巴细胞、单核细胞、嗜酸性粒细胞和嗜碱性粒细胞。 中性粒细胞:在白细胞中所占百分率最高,达到(50%-70%),它能够吞噬和杀死细菌,防止细菌和有害物质侵入机体,是影响白细胞总数的关键。 淋巴细胞:与免疫有关,它是机体保护自己不受病原体侵袭的主要细胞,主要是通过体液免疫和细胞免疫来发挥作用的。 单核细胞:具有很强的吞噬功能,能够从血液中清除死亡和不健康的细胞、废物和碎片以及杀死入侵的细菌。 白细胞数量和功能异常多见于白细胞疾病。 病理性增多:常见于急性感染、中毒或严重组织损伤、白血病等。 病理性减少:常见于细菌或病毒感染、血液系统疾病(如低增生性白血病)以及免疫系统疾病等。 如果存在细菌感染的话,最明显的表现是白细胞的变化。细菌性感染第一看白细胞增高,跟感染程度有关系,感染程度越重,增高越大。如果是非常严重的感染,有可能白系跑还要降低,一般

上线是一万,孩子发烧、感冒血象一万二,一万五,高度怀疑孩子是不是呼吸道感染,可能需要抗生素了。 但有时候白细胞特别高,不见得就一定是细菌感染,白细胞内还有淋巴细胞和中性粒细胞。如果孩子患有传染性单核细胞增多症,他体内的淋巴细胞就特别高,所以白细胞总数也特别高,可能达到20000,甚至30000,实际上这里面大部分是淋巴细胞,而不是中性粒细胞。 常见支原体感染,不会让白细胞异常增高。看孩子感染性疾病,一定要把白细胞总数和分类联合在一起看,如果白细胞总数增高,分类里面以中性粒细胞为主,中性粒细胞增高的话,孩子是很有可能是一个细菌感染。一般在病毒感染的话,中性粒细胞不会增加的,除了白细胞不高以外,可能以淋巴细胞分类为主。 “血液白细胞总数与年龄呈反比。新生儿白细胞会高过20;6个月内婴儿白细胞可达15;2-3岁<12再正常不过了。所以,不要因为仅是白细胞偏高就认为是细菌感染,使用抗生素。细菌感染必然有感染灶,再有除了白细胞增高,中性粒细胞百分比至少应该超过80%,甚至更高;C反应蛋白也应高于30。” “与一位朋友谈及孩子生病。因咳嗽、流涕,到医院先要求查血。血常规示白细胞13,就果断选用抗生素。当问及是否考虑过不用抗生素时,家长疑惑地说“白细胞增高了,难道不应用抗生素吗”其实,普通细菌感染也未必用抗生素,只有严重细菌感染(白细胞超过至少15),才需考虑使用抗生素。” ——着名儿科专家崔玉涛 当然了也不需要谈抗生素色变,该用的时候必须用,但是不该用的时候还是尽量不要用了。

6、常用检验正常值

6、常用检验正常值

常用检验项目正常值 临床血液检查 检验项目符号 正常参考值 法定单位换算旧制单位 血红蛋白HB 男120~160g/L 女110~150 g/L 新生儿170~200 g/L 10 12~16g/dl 11~15 g/dl 17~20 g/dl 红细胞RBC 男(4.0~5.5)×1012 /L 女(3.5~5.0)×1012 /L 新生儿(6~7)×1012 /L 100 400万~550万/mm3 350万~500万/mm3 600万~700万/mm3 白细胞WBC 成人(4~10)×109 /L 儿童(5~12)×109 /L 新生儿(15~20)×109 /L 1000 4000~10000/ mm3 5000~12000/ mm3 15000~20000/ mm3 白细胞分类中性粒细胞 杆状核 分叶核 嗜酸粒细胞嗜碱粒细胞单核细胞 淋巴细胞DC N E B M L 0.01~0.05 0.50~0.70 0.005~0.05 0~0.01 0.03~0.08 0.2~0.4 新生儿~婴儿期 0.4~0.8 1%~5% 50%~70% 0.5%~5% 0%~1% 3%~8% 20%~40% 40%~80% 血细胞比容HCT 男0.42~0.49L/L;女0.37~0.43L/L 100 42%~49%;37%~43% 平均红细胞体积MCV 82~95fL 平均红细胞血红蛋白 含量 MCH 27~31pg 平均红细胞血红蛋白 浓度MCH C 320~360g/L 网织红细胞 百分计数绝对计数RC 成人0.005~0.015 儿童0.005~0.015 新生儿0.03~0.06 (24~84) ×10 9 /L 1000 24000~84000/ mm3 红细胞沉降血沉ESR 男0~15mm/h 女0~20mm/h 出血时间测定 测定器法Duke法BT 6.88±2.08min 1~3min

乳酸含量测定

在Tris-Hcl-水合肼缓冲液中(pH=9.2),利用乳酸在氧化型烟酰胺腺嘌呤二核苷酸(NAD)存在的条件下,由乳酸脱氢酶(L-LDH)催化生成丙酮酸和还原型烟酰胺腺嘌呤二核苷酸(NADH)。,利用NADH 是一种强荧光物质,而NAD+则无荧光的性质,通过测定NADH 在340nm 处吸光度的变化率,可得出酶促反应速度,并制得标准曲线,样品中的乳酸可由标准曲线求得。 由于酶促反应的专属性,可以避免试样中众多共存组分的干扰,减少繁杂的预处理过程。L-乳酸脱氢酶催化反应为可逆反应,且反应平衡偏向于丙酮酸转化为乳酸。因此,为了保证反应平衡偏向于正方向,需加水合肼截获丙酮酸而生成丙酮酸腙,以减少丙酮酸的积累,加快酶促反应的速度。而水合肼对乳酸脱氢酶又有抑制作用,过量的水合肼反而会降低酶促反应速度。反应溶液的pH 值会影响酶的稳定性,酶活性部位中重要基团的解离状态,酶-底物复合物以及底物的解离状态,从而影响酶促反应速度。最适pH 值为9.2。最适温度为37℃。发现Ni2+、Mn2+、Cu2+、Cr3+、Co2+对酶促反应速度有抑制作用 根据米氏方程,1/v~1/c 为直线关系,因此用双倒数作图法所绘1/v~1/c 线作为测定乳酸的标准曲线, 线性范围较宽: 1.2 ×10-4~ 2.0 ×10-3mol/L 。 步骤: 1. 配制50ml的甘氨酸缓冲液:甘氨酸3.75g,硫酸肼 2.6g.,E D T A?2 N a 0.1 g,加适量去离子水用10 mol/ L N aO H 溶液调整p H 至9.3,再加去离子水至50 ml 2. 配制5ml2.1mol/l的硫酸铵溶液,吸取0.8ml置于乳酸脱氢酶中进行稀释 3. 称量NAD 0.01658g(663.4)溶于5ml蒸馏水瓶中(5mM),4℃保存至少可用2周 4.在pcr小管中加入100μl的甘氨酸缓冲液,100μlNAD+,20μl不同浓度的乳酸锂,2μl的乳酸脱氢酶溶液,置于37℃中反应1小时后,用石英比色皿在340nm处测定吸光度,以乳酸锂浓度为横坐标,A340为纵坐标绘制标准曲线 4. 在pcr小管中加入100μl的甘氨酸缓冲液,100μlNAD+,20μl不同时间段的进行适当稀释的发酵液,2μl的乳酸脱氢酶溶液,置于37℃中反应1小时后,用石英比色皿在340nm处测定吸光度,利用标准曲线得出稀释后的发酵的乳酸根含量

乳酸脱氢酶

乳酸脱氢酶(Lactate dehydrogenase ,LDH)是存在于细胞浆内的一种酶,乳酸脱氢酶在生命体中糖代谢中扮演重要角色。 在我们培养的细胞中乳酸脱氢酶分别存在于以下三个地方: 1、存在于活细胞内。若你培养的是贴壁细胞(viable adherent cells),那么贴在壁上的就是活细胞,此时的乳酸脱氢酶就存在于细胞内,所以测得贴壁细胞中的乳酸脱氢酶(LDH)活力就代表培养细胞中活细胞的量,我们称之为LDHV。 2、存在于漂浮于培养液中的凋亡小体(Apoptotic bodies)。由于凋亡小体有细胞膜,因此凋亡小体中的乳酸脱氢酶也没有释放到胞外。此时测得凋亡小体中的乳酸脱氢酶(LDH)活力就代表培养细胞中凋亡细胞(apoptotic cell)的量,我们称之为LDHa。 3、存在于培养液中。坏死的细胞(Necrosis)胞膜破裂乳酸脱氢酶释放,分布于培养液中, 此时测得培养液乳酸脱氢酶(LDH)活力就代表培养细胞中坏死细胞(necrotic cell)的量,我们称之为LDHn。 那么我们就可以计算细胞中凋亡或坏死的比率来衡量细胞损伤的程度。 凋亡% = LDHa/(LDHa+LDHn+LDHv) × 100 坏死% = LDHn/(LDHa+LDHn+LDHv) × 100 死亡% = (LDHa +LDHn)/(LDHa+LDHn+LDHv) × 100 其中(LDHa+LDHn+LDHv)代表细胞总LHD。 因为即使我们每次埋板的细胞数相同,但是由于细胞生长受多方面影响,所得的细胞数量也不一样,所以每次测得胞内和胞外乳酸脱氢酶的量都会不一样,所以不能单纯通过测上清中LDH的量或测细胞总LHD来评估细胞受损的程度,而通过上清LDH/总LDH的比率来评估细胞受损程度是比较符合实际。 另附简要操作:吸取细胞培养瓶中液体置离心管中离心,离心后沉淀于管底的是凋亡小体,上清液中的就是坏死细胞的LDH,将凋亡小体和贴附于培养瓶壁上的细胞破膜即可测定凋亡小体和活细胞的LDH.

相关文档