文档库 最新最全的文档下载
当前位置:文档库 › 线粒体COI基因克隆

线粒体COI基因克隆

线粒体COI基因克隆
线粒体COI基因克隆

线粒体COI基因的分子克隆

一、试剂材料

1、500一800克重的活鲤鱼和1500一2500克重的活草鱼各五条

2、STE缓冲液(0.25mol/L蔗糖,10mmol/L Tris·HCI,1mmol/L EDTA,pH8.0) 1L

3、STM缓冲液(0.25mol/L蔗搪,10mM Tris·HCl,0.5mmol/L Mgcl2,PH8.0) 50mL

4、DNasel 2mg

5、0.5mol/L EDTA pH8.0 10mL

6、NTE缓冲液(20mmol/L NaCI,20mmol/L Tris·HCI,lmmol/L EDTA,pH8.0) 50mL

7、20% SDS

8、苯酚50ml

9、3mol/L NaAC (pH 4.8) 5mL

10、冷乙醇(100%) 50mL

11、95%乙醇200Ml

12、TE缓冲液(10mmol/LTrisHcl,1mmol/LEDTA,pH8·0),10mL

13、10mg/ml DNA一freeRNaseA溶液(溶解RNase A 于TE 缓冲液中,浓度为

10mg/mL,煮沸10~30min, 除去DNase 活性,-20℃贮存)40ul

14、氯仿:苯酚:异戊醇(Vl:V2:V3为24:24:l) 49ml(24+24+1)

1、引物1 、引物2

2、10×PCR 缓冲液(Buffer )

3、2mM dNTPmix:含dATP、dCTP、dGTP、dTTP各2mM

4、Taq酶

5、琼脂糖:1.0%;

6、电泳缓冲液(50 ×TAE 电泳缓冲液取Tris24.2g,冰醋酸5.7ml,0.25mol/L EDTA (pH8.0)20ml,加蒸馏水至100ml)

7、溴化乙锭EB:5 μl / 100 ml

8、溴酚蓝指示剂

14、限制性内切酶BamH I、EcoR I、Hind II、Hind III和Pst l,

16、氨苄青霉素(100ug/ml)的LB平板(胰蛋白胨10g ,酵母提取物5g,NaCl 10g ,加水至1000ml , 若配置固体培养基,则再加入15g Agar(琼脂) 。)

17、pUC19质粒DNA

19、杆菌HB101菌株,

20、感受态细胞HB101。

二、工具材料

1、剪刀5把不同大小

2、镊子5个不同大小

3、烧杯2个大的4个小的

4、移液管(一般用移液枪)

5、离心管10个最大的

6、培养皿5个小的10个大的

7、三角锥瓶4个

6、定容瓶2个50 m L 1个1L

7、试管架1个

三、设备材料

1、高压灭菌锅

2、无菌操作台

3、冰箱

4、水浴锅

5、离心机

6、玻璃匀浆器

7、凝胶电泳系统

8、紫外透射检测仪

9、PCR仪

9、缺口转译标记试剂盒,

10、质粒DNA限制酶消化分析及杂交探针系统

11、硝酸纤维素滤膜

13、同位素P32 标记的水稻线粒体Col探针

紫外透射检测仪

四、实验步骤

(一)鱼肝线粒体DNA 的分离与纯化

1、按上面所写准备实验材料

2、对实验器材灭菌

3、对鱼预处理

刮鳞消毒取鱼肝用STE缓冲液清洗

4、再加入STE缓冲液到玻璃匀浆器里冰浴中缓和匀浆

5、离心转头在3000g 离心30分钟

6、除去上层脂肪和管底细胞碎片取上清液

继续离心20000g 离心30分钟得到粗提的线粒体沉淀。

7、加入20ml STM缓冲液2mgNasel 25℃水浴中保温消化30分钟

8、取0.8ml 0.5mol/L EDTA pH8.0 溶液加到消化液中,使终浓度为20mmol/L,终止酶解反应。

9、然后再加入160ml STE缓冲液,20000g下离心20分钟,收集线粒体沉淀,重复用STE缓冲液漂洗线粒体二次,清除污染的核DNA

10、把离心所得的线粒体沉淀悬浮在20ml的NTE缓冲液,加入20% SDS溶液至终浓度为0.8%,放置在37℃水浴中保温10分钟。

11、用等体积的苯酚抽提脱蛋白二次,留水相,

12、用10分之1的3mol/L NaAC 和二倍体积的冷乙醇(100%),混匀后放在一20℃冰箱中沉淀过夜。

13、离心收集mtDNA,真空干燥后溶于2.0ml的TE缓冲液,

加入40ul(10mg/ml)的DNA一free RNaseA溶液置37℃水浴中保温60分钟。

14、消化液再用氯仿:苯酚:异戊醇抽提2一3次。水相加乙醇沉.淀DNA,并将离心收集的mtDNA经真空干燥后,溶于适量的TE缓冲液中,贮于-20℃冰箱备用。

(二)线粒体CO I 基因的克隆

1.PCR扩增

(1)在冰浴中,按以下次序将各成分加入一无菌0.5ml离心管中。

10×PCR buffer 5μl

dNTP mix(2mM )4μl

引物1(10pM)2μl

引物2(10pM)2μl

Taq酶(2U/μl)1μl

DNA模板(50ng-1μg/μl)1μl

加ddH2O至50μl

视PCR仪有无热盖,不加或添加石蜡油(防止PCR过程中蒸发)。

(2)调整好反应程序。将上述混合液稍加离心,立即置PCR仪上,执行扩增。一般:在93℃预变性3-5min,进入循环扩增阶段:93℃变性40s→58℃退火30s→72℃延伸60s,循环30-35次,最后在72℃保温7~10min。

2、1%的琼脂糖凝胶电泳:

(1)制胶(以60 mL为例)

A、称取0.6 g琼脂糖,加入60 ml的TAE缓冲液(pH 8.0),摇匀;

B、电炉加热,至琼脂糖完全溶解(要防止过热溢出三角瓶; 用东西盖上,防止挥发);

C、将制胶板放入制胶槽中,插入适当的梳子,将溶解的琼脂糖(约50℃)加入2ul EB 后,混均匀,倒入其中,直至厚度为4~6 mm(如有气泡要把气泡赶出),在室温下冷却凝固(约30~ 45 min);

D、将制胶板置于电泳槽中,小心垂直向上拔出梳子,以保证点样孔完好。

(2)点样

(如在反应管中加有石蜡油,需用100μL氯仿进行抽提反应混合液,以除去石蜡油;否则,直接取5-10μl电泳检测)

用移液枪将5 μl含溴酚蓝的扩增产物加入点样孔下部。

(3)电泳

打开电源开关,调节电压至3~5V/cm(约100V),可见到溴酚蓝条带由负极向正极移动,约30-40分钟后即可观察结果。

(4)观察

将电泳好的胶置于紫外透射检测仪上,打开紫外灯,可见到橙红色核酸条带,根据条带粗细,可粗略估计该样品DNA的浓度。如同时有已知分子量的标准DNA(mark)进行电泳,则可通过性DNA条带的相对位置初步估计样品的分子量。

3、大肠杆菌感受态细胞HB101的制备及转化

准备:

一. 材料

E. coli DH5α菌株: Rˉ,Mˉ,Ampˉ;pBS质粒DNA: 购买或实验室自制,eppendorf管。

二. 设备

恒温摇床,电热恒温培养箱,台式高速离心机,无菌工作台,低温冰箱, 恒温水浴锅, 制冰机, 分光光度计,微量移液枪。

三. 试剂

1.LB固体和液体培养基

2.Amp母液

3.含Amp的LB固体培养基:将配好的LB固体培养基高压灭菌后冷却至60℃左右,加入Amp储存液,使终浓度为50ug/ml,摇匀后铺板。

4.麦康凯培养基(Maconkey Agar):取52g麦康凯琼脂,加蒸馏水1000ml,微火煮沸至完全溶解,高压灭菌,待冷至60℃左右加入Amp储存液使终浓度为50ug/ml,然后摇匀后涂板。

5、0.05mol/L CaCl2溶液:称取0.28g CaCl2(无水,分析纯),溶于50ml重蒸水中,定容至100ml,高压灭菌。

6.含15%甘油的0.05mol/L CaCl2: 称取0.28g CaCl2(无水,分析纯),溶于50ml重蒸水中,加入15ml甘油,定容至100ml,高压灭菌。

操作步骤:

(1)受体菌的培养

从LB平板上挑取新活化的E. coli DH5α单菌落,接种于3-5ml LB液体培养基中,37℃下振荡培养12小时左右,直至对数生长后期。将该菌悬液以1:100-1:50的比例接种于100ml LB 液体培养基中,37℃振荡培养2-3小时至OD600 =0.5左右。

(2)感受态细胞的制备( CaCl2 法)

A、将培养液转入离心管中,冰上放置10分钟,然后于4℃下3000g(离心力)离心10分钟。

B、弃去上清,用预冷的0.05mol/L的CaCl2 溶液10ml轻轻悬浮细胞,冰上放置15-30分钟后,4℃下3000g离心10分钟。

C、弃去上清,加入4ml预冷含15%甘油的0.05mol/L的CaCl2 溶液,轻轻悬浮细胞,冰上放置几分钟,即成感受态细胞悬液。

D、感受态细胞分装成200μl的小份,贮存于-70℃可保存半年。

(3)转化

A、从-70℃冰箱中取200μl感受态细胞悬液,室温下使其解冻,解冻后立即置冰上。

B、加入pBS质粒DNA溶液(含量不超过50ng,体积不超过10μl),轻轻摇匀,冰上放置30分钟后。

C、42℃水浴中热击90秒或37℃水浴5分钟,热击后迅速置于冰上冷却3-5分钟。

D、向管中加入1ml LB液体培养基(不含Amp),混匀后37℃振荡培养1小时,使细菌恢复正常生长状态,并表达质粒编码的抗生素抗性基因(Ampr )。

E、将上述菌液摇匀后取100μl 涂布于含Amp的筛选平板上,正面向上放置半小时,待菌

液完全被培养基吸收后倒置培养皿,37℃培养16-24小时。

同时做两个对照:

对照组1: 以同体积的无菌双蒸水代替DNA溶液,其它操作与上面相同。此组正常情况下在含抗生素的LB平板上应没有菌落出现。

对照组2: 以同体积的无菌双蒸水代替DNA溶液,但涂板时只取5μl 菌液涂布于不含抗生素的LB平板上,此组正常情况下应产生大量菌落。

(4)计算转化率

统计每个培养皿中的菌落数。

转化后在含抗生素的平板上长出的菌落即为转化子,根据此皿中的菌落数可计算出转化子总数和转化频率,公式如下:

转化子总数=菌落数×稀释倍数×转化反应原液总体积/涂板菌液体积

转化频率(转化子数/每mg质粒DNA)=转化子总数/质粒DNA加入量(mg) 感受态细胞总数=对照组2菌落数×稀释倍数×菌液总体积/涂板菌液体积感受态细胞转化效率=转化子总数/感受态细胞总数

[注意] 本实验方法也适用于其它E.coli受体菌株的不同的质粒DNA的转化。但它们的转化效率并不一定一样。有的转化效率高,需将转化液进行多梯度稀释涂板才能得到单菌落平板,而有的转化效率低,涂板时必须将菌液浓缩(如离心),才能较准确的计算转化率。

14、pUC19质粒DNA的制备

16、southern转移及杂交系统的制备

注意

(A)加人适量的DNasel处理粗提的线粒体,以消除粘附在线粒体颗粒表面的核DNA;

(B)用新鲜的而不是用冰冻的鱼肝组织提取mtDNA。因为我们在实验中注意到,用冰冻的肝组织往往得率低,而且核DNA的污染也更为严重,这可能同冰冻组织核膜容易破裂有关;

(C)选用疏松的玻璃匀浆器取代电动高速匀浆器作缓和的匀浆,一般上下匀浆3一4次即可。如此操作既可使细胞膜破裂释放出线粒体颗粒,又可避免或减少细胞核膜的破裂。这样便很好地解决了核DNA的污染问题,得到了纯化的草鱼和鲤鱼mtDNA。纯化的mtDNA酶切效果好,经琼脂糖凝胶电泳后,DNA谱带清晰,明显无背景核DNA的污染。此外,按我们发展的程序纯化鱼肝组织的mtDNA,通常每100克鲜肝组织的得率可达30一50微克mtDNA,而且避免了氯化艳密度梯度离心法药品昂贵、设备复杂、实验周期长等多方面的缺点。

琼脂糖凝胶电泳的制备

一、实验原理

溴化乙锭(EB)为扁平状分子,在紫外照射下发射荧光。EB可与DNA分子形成EB-DNA 复合物,其发射的荧光强度较游离状态EB发射的荧光强度大10倍以上,且荧光强度与DNA 的含量成正比。用肉眼观察,可检测到5ng以上的DNA。

1.影响DNA在琼脂糖凝胶中迁移速率的因素:

1)DNA分子大小迁移速率U与logN成反比(N为碱基对数目)。分子大小相等,电荷基本相等(DNA结构重复性)。分子越大,迁移越慢。等量的空间结构紧密的电泳快(超螺旋>线性DNA)

2)琼脂糖浓度:不同的凝胶浓度,分辨不同范围的DNAAgarose:0.5%:1-30 kb;0.7%:0.8-12 kb1.2%:0.4-7 kb;1.5%:0.2-3 kb.

3)DNA构象:一般迁移速率超螺旋环状>线状DNA>单链开环

4)所加电压:低电压时,线状DNA片段的迁移速率与所加电压成正比。使分辨效果好,凝胶上所加电压不应超过5V/cm

5)碱基组成与温度:一般影响不大4 -30℃

6)嵌入染料的存在:降低线性DNA迁移率,(不提倡加在电泳液中)

7)电泳缓冲液的组成及其离子强度影响DNA的迁移率,无离子存在时,核酸基本不泳动,离子强度过大产热厉害,熔化凝胶并导致DNA变性,一般采用1×TAE,1×TBE,1×TPE(均含EDTA pH8.0)。

2.溴化乙锭(EB)为致癌剂,操作时应戴手套,尽量减少台面污染。

3.电泳指示剂:核酸电泳常用的指示剂有两种,溴酚蓝呈蓝紫色;二甲苯晴呈蓝色,它携带的电荷量比溴酚蓝少,在凝胶中的的迁移率比溴酚蓝慢。

4、电泳缓冲液:TAE TBE

TAE与TBE不同之处在于TBE用硼酸代替了TAE中的冰醋酸。

植物基因组DNA提取方法

植物基因组DNA的提取通常采用机械研磨的方法,由于植物细胞匀浆含有多种酶类(尤其是氧化酶类)对DNA的抽提产生不利的影响,在抽提缓冲液中需加入抗氧化剂或强还原剂(如巯基乙醇)以降低这些酶类的活性。在液氮中研磨,材料易于破碎,并可减少研磨过程中各种酶类的作用。

十二烷基肌酸钠(sarkosyl)、十六烷基三甲基溴化铵(hexadyltrimethyl ammomum bromide,简称为CTAB)、十二烷基硫酸钠(sodium dodecyl sulfate,简称SDS)等离子型表面活性剂,能溶解细胞膜和核膜蛋白,使核蛋白解聚,从而使DNA得以游离出来。再加入苯酚和氯仿等有机溶剂,能使蛋白质变性,并使抽提液分相,因核酸(DNA、RNA)水溶性很强,经离心后即可从抽提液中除去细胞碎片和大部分蛋白质。上清液中加入无水乙醇使DNA沉淀,沉淀DNA溶于TE溶液中,即得植物总DNA溶液。

一.CTAB法

CTAB(十六烷基三乙基溴化铵)是一种去污剂,可溶解细胞膜,它能与核酸形成复合物,在高盐溶液中((0.7 mol/L NaCl)是可溶的,当降低溶液盐浓度到一定程度(0.3 mol/L NaCl)时,从溶液中沉淀,通过离心就可将CTAB-核酸的复合物与蛋白,多糖类物质分开。最后通过乙醇或异丙醇沉淀DNA,而CTAB溶于乙醇或异丙醇而除去。

1.试剂准备

(1)2×CTAB抽提缓冲溶液:

100 mmol/L Tris-HCl (pH8.0),20 mmol/L EDTA-Na2,1.4mol/LNaCl,2% CTAB,使用前加入0.1%(V/V)的β-巯基乙醇。

(2)TE 缓冲液:10mmol/L Tris-HCl, 1mM EDTA(pH8.0)。

(3)DNase-free RNase A: 溶解RNase A 于TE 缓冲液中,浓度为10mg/mL,煮沸10~30min, 除去DNase 活性,-20℃贮存。

(4)氯仿-异戊醇混合液(24:1,V/V):240mL 氯仿(A.R.)加10mL 异戊醇(A.R.)混匀。

(5)3mol/L 乙酸钠(NaAc,pH6.8):称取NaAc?3H2O 81.62g,用蒸馏水溶解,配制成200mL,用HAc 调pH 至6.5。

2. 实验步骤

(1)在2mL离心管中,加入500μl的2×CTAB和20 μl β-巯基乙醇, 65℃预热。

(2)称取新鲜叶片1-2g,用蒸馏水冲洗干净,再用无菌ddH2O冲洗2次,放入经液氮预冷的研钵中,加入液氮研磨至粉末状,用干净的灭菌不锈钢勺转移粉末到预热的离心管中,总体积达到1mL混匀后置65℃水浴中保温45-60min,并不时轻轻转动试管。

注:冻存材料直接研磨,绝对不能化冻。而且粉末应在化冻前转移否则内源性Dnase有可能降解基因组DNA。

(3)加入1/10体积的3mol/L的乙酸钠充分混匀,在冰浴中放置30 min中,4°C 12000 rpm 离心5 min,吸上清。

注意,对于幼嫩叶片此步可以省略。对成熟的老叶片需采用。

(4)加等体积的氯仿/异戊醇(24:1),轻轻地颠倒混匀,室温下12 000rpm离心10 min。

(5)移上清至另一新管中,用氯仿/异戊醇重复抽提一次。

(6)移上清至另一新管中,向管中加入1/10体积的RNase A溶液,置37℃20-30min。

(7)氯仿/异戊醇抽提后,加入2倍体积的100%乙醇或0.7倍体积异丙醇,会出现絮状沉淀,-20℃放置30 min,12 000rpm离心10-15min回收DNA沉淀。

(8)用70%乙醇清洗沉淀两次,吹干后溶于适量的灭菌TE缓冲液中。

(9)0.8%琼脂糖凝胶电泳检测基因组DNA的完整性。用紫外分光光度计测定DNA浓度。

二.SDS法

SDS法的基本原理是研磨的组织细胞用热的SDS裂解后,加入高浓度的KAc,0℃放置以除去蛋白和多糖类杂质,最后用乙醇或异丙醇沉淀。

1.试剂准备

(1)提取缓冲液

Tris-HCl 100mmol/L(pH8.0)

EDTA 50mmol/L (pH8.0)

NaCl 500 mmol/L

灭菌后加β-巯基乙醇至10 mmol/L

(2)裂解液20%SDS

(3)高盐溶液5mol/L KAc

(4)RNaseA 10mg/ml

2.实验步骤

(1)取幼嫩的组织材料1-2g,用蒸馏水冲洗干净,再用灭菌ddH2O冲洗2次,放入经液氮预冷的研钵中,加入液氮研磨至粉末状,用干净的灭菌不锈钢勺转移粉末到加有500μL提取

液的离心管中,轻轻混匀。

(2)向管中加入50μL 20%SDS溶液,混匀,不可过于强烈震荡以防基因组DNA断裂,65℃保温10min,并不时摇动。

(3)加入150μL 5mol/L KAc,混匀,置冰上20-30 min。

(4)4℃,15 000rpm离心15min,转移上清到另一离心管中,加入0.7倍体积的异丙醇,混匀,-20℃沉淀30 min 。

(5)12 000rpm离心10min回收基因组DNA沉淀,吹干后加入适量的灭菌ddH2O或TE溶解DNA。

(6)加入1/10体积的RNaseA,37℃保温20min,除去RNA。

(7)氯仿抽提后,加2倍体积乙醇,-20℃沉淀30 min 。12 000rpm离心10min回收基因组DNA沉淀。

(8)用400μL 70%乙醇洗两次后,吹干,加入适量的灭菌ddH2O或TE溶解DNA。

(9)琼脂糖凝胶电泳检测完整性。用紫外分光光度计测定DNA浓度。

PHS-3C型精密PH计安全操作规程

一.PH计使用前准备的工作

1.使用PH计之前先用三蒸水清洗电极,注意玻璃电极不要碰碎。

2.准备在平台PH计的旁边放至调节用的NAOH液和HCL液。

3.在冰箱中拿出定PH液(PH=7.0),放与平台上。

4.打开PH计,调定PH值,按︿﹀键选择PH和CAL选项,选择其中的CAL项,调节插入到PH液(PH=7.0)中,按< >键选择数据值到7.0处,出现小八叉即可。

5.将玻璃电极插入到待测的溶液中,再放入另一电极,适当的搅动液面(注意:不要碰碎玻璃电极)。

6.PH计的电子单元使用必须注意电路的保护,在不进行PH值测量时,要将PH计的输入短路,以避免PH计的损坏。

7.PH计的玻璃电极插座必须保持干净、清洁和干燥,不能接触盐雾和酸雾等有害气体,同时严禁玻璃电极插座上沾有任何的水溶液,以避免PH计高输入阻抗。

8.未到你需要的PH值时要小心的加如NAOH液和HCL液,(据调节范围不同可以选择不同浓度的调节液,浓度小时可以快加,浓度大时要加慢)。

9.加液时小心不要超过所需的定容量。

二.PH计使用方法

1.后盖打开,装入电池一块。

2.装上复合玻璃电极注意:

(1)复合电极下端是易碎玻璃泡,使用和存放时千万要注意,防止与其它物品相碰。

(2)复合电极内有KCl饱和溶液作为传导介质,如干涸结果测定不准必须随时观察有无液体,发现剩余很少量时到化验室灌注。

(3)复合电极仪器接口决不允许有污染,包括有水珠。

(4)复合电极连线不能强制性拉动,防止线路接头断裂。

3.打开电源开关后,再打到PH测量档。

4.用温度计测量PH6.86标准液的温度,然后将PH计温度补偿旋钮调到所测的温度值下。

5.将复合电极用去离子水冲洗干净,并用滤纸擦干。

6.将PH6.86标准溶液2~5ml倒入已用水洗净并擦干的塑料烧杯中,洗涤烧杯和复合电极后倒掉,再加入20mlPH6.86标准溶液于塑料烧杯中,将复合电极插入于溶液中,用仪器定

位旋钮,调至读数6.86,直到稳定。应该注意以下两点:(1)必须用PH6.86标准调定位。(2)调完后,决不能再动定位旋钮。

7.将复合电极用去离子水洗净,用滤纸擦干,用温度计测量PH4.00溶液的温度,并将仪器温度补偿旋钮调到所测的温度值下。

8.将PH4.00标准溶液2~5ml倒入另一个塑料烧杯中,洗涤烧杯和复合电极后倒掉,再加入20mlPH4.00标准溶液,将复合电极插入溶液中,读数稳定后,用斜率旋钮调至PH4.00。应该注意斜率钮调完后,决不能再动。

9.用温度计测定待测液温度,并将仪器温度补偿调至所测温度。

10.将复合电极插入待测溶液中,读取PH值,即为待测液PH值。应该注意以下两点:

(1)测定时温度不能过高,如超过40℃测定结果不准,需用烧杯取出稍冷。

(2)复合电极避免和有机物接触,一旦接触或沾污要用无水乙醇清洗干净。

11.注意事项:仪器在使用前必须进行校准,即以上4~8款操作。如果仪器不关机,可以连续测定,一旦关机就要校准。但12小时即使不关机也必须校准一次。

三.PH计使用时注意事项

1.一般情况下,ph计仪器在连续使用时,每天要标定一次;一般在24小时内仪器不需再标定。

2.使用前要拉下ph计电极上端的橡皮套使其露出上端小孔。

3.标定的缓冲溶液一般第一次用pH=6.86的溶液,第二次用接近被测溶液pH值的缓冲液,如被测溶液为酸性时,缓冲液应选pH=

4.00;如被测溶液为碱性时则选pH=9.18的缓冲液。

4.测量时,电极的引入导线应保持静止,否则会引起测量不稳定。

5.电极切忌浸泡在蒸馏水中。PH计所使用的电极如为新电极或长期未使用过的电极,则在使用前必须用蒸馏水进行数小时的浸泡,这样PH计电极的不对称电位可以被降低到稳定水平,从而降低电极的内阻。

6.PH计在进行PH值测量时,要保证电极的球泡完全进入到被测量介质内,这样才能获得更加准确的测量结果。

7.PH计使用时,要去除参比电极点解液加液口的橡皮塞,这样参比电解液就能够在重力的作用下,持续向被测量溶液渗透,避免造成读数上的漂移。

8.保持电极球泡的湿润,如果发现干枯,在使用前应在3mol/L氯化钾溶液或微酸性的溶液中浸泡几小时,以降低电极的不对称电位。

9.电极应与输入阻抗较高的pH计(≥1012Ω)配套,以使其保持良好的特性。

10.配置pH=6.86和pH=9.18的缓冲液所用的水,应预先煮沸(15"30)min,除去溶解的二氧化碳。在冷却过程中应避免与空气接触,以防止二氧化碳的污染。

11.复合电极的外参比补充液为3mol/L氯化钾溶液,补充液可以从电极上端小孔加入,复合电极不使用时,拉上橡皮套,防止补充液干涸。复合电极的外参比补充液为3mol/L氯化钾溶液(附件有小瓶一只,内装氯化钾粉剂若干,用户只需加入去离子水置瓶20ml刻线处并摇匀,此溶液即为3mol/L外参比补充液),补充液可以从上端小孔加入。

12.电极经长期使用后,如发现斜率略有降低,则可把电极下端浸泡在4%HF(氢氟酸)中(3"5)s,用蒸馏水洗净、然后在0.1mol/L盐酸溶液中浸泡,使之复新。

植物基因克隆技术的研究进展

植物基因克隆技术的研究进展 随着科学技术的不断发展,人类基因组计划的不断实施,世界生命科技工作者对于植物基因克隆技术的研究不断进步,近年来,我国在基因克隆技术领域也有了长足的进步,在玉米,小麦,大豆,水稻,拟南芥等植物中,已经克隆了许许多多与植物的产量、品质、抗性及农艺性状等相关的基因。文章主要从基因芯片技术,功能克隆、定位克隆、同源序列克隆、PCR擴增技术分别介绍基因克隆技术的现状以及研究进展。 标签:植物;基因克隆技术;研究 植物基因克隆技术在生命科学技术中扮演着越来越重要的角色,而植物基因克隆技术从传统意义上来讲可分为两种不同的方式。正向以及反向的遗传学方式,正向遗传学途径是一种很早的经典的克隆方法,通过研究突变表型性状进行克隆,包括了功能以及表型克隆等较为基本的克隆的方式;反向遗传学途径和正向遗传学途径截然不同,它是通过一些特殊的方法,获得遗传基因片段,然后经过一系列的定位,将之后所研究的基因逆向研究。如定位克隆,同源序列克隆等。除了这两种克隆技术外,随着社会发展,也有一些新的克隆技术产生。 1 基因芯片技术 基因芯片技术是电子克隆技术的典型代表,基因芯片又称DNA芯片、DNA 微阵列,是以预先设计的方式将大量的基因探针固定在玻片、硅片等固相载体上组成的密集分子阵列。基因芯片技术类似于计算机的电子芯片技术,其具有高通量、微型化、连续化、自动化、快速和准确等特点。是一种随着人类基因组计划的进行而发展出的产物,这一发展使得人类对越来越多的微生物和动植物基因组取得了更长远的认识,对其的研究,是全人类对于基因组认识做出的不断地努力的成果,其中不乏许多典型的实例,用cDNA芯片技术对草莓、矮牵牛其基因是如何进行表达的进行研究,进而实现对转基因植物进行形状的观察及控制,可以更好的获悉分子对于基因表达是如何作用以及影响的也有利于获得更为优异更为良好的作物[1]。 基因芯片技术是一种新型的克隆技术,是科技创新和生命科学的很好的结合,代表着人类在基因的克隆方面进展和成就,解决了很多传统克隆不能解决的问题,也讲基因克隆技术引向一种新的思维模式。 2 功能克隆 功能克隆是人类采用最早的基因克隆策略,功能克隆技术从已知蛋白质的功能着手进行研究,其方法原理是先测知基因的编码蛋白质,利用它的信使RNA 进行反转录成cRNA,再利用cDNA做探针,从基因组中获取基因本身,进而完成克隆。

植物基因克隆实验指导

植物基因克隆实验规则 一、植物基因克隆实验课的目标 根据基因克隆实验操作的整体性和连贯性特点, 将该实验设计为综合性实验课程,实验内容设计上完全抛弃了原来分散的、孤立的单纯学习某一实验技术的缺陷, 将单个实验综合为系统的、连贯的系列型大实验,注重科研成果在教学中的应用,我们从以往的科研项目中选取了部分研究内容用于学生的综合性实验教学,这是基于教学实验与实际科学研究实验之间的新的实验教学模式。 整套实验围绕洋甘菊倍半萜生物合成途径中关键酶基因HMGR的克隆这一研究课题进 行操作, 设计的实验内容具有极强的连续性和综合性,让学生在独立实践操作中学习基因克隆的基本研究方法和体会科学研究的严密逻辑和培养科研理念。 我们将实验内容设置为8个部分, 实验内容前后衔接紧密, 环环相扣, 不可分割, 前一个实验的结果是下一个实验的材料。该课程使学生获得了整个类似科研实践过程的训练和体验, 学习了从事科研工作的基本功, 对完成自己的毕业论文及将来从事生命科学研究奠定了科 研基础。 二、实验的进行程序和要求 1、预习学生在课前应认真预习实验指导以及教材有关章节,必须对该次实验的目的要求、实验内容、基本原理和操作方法有一定的了解。 2、讲解教师对该实验内容的安排及注意事项进行讲解,让学生有充分的时间按实验指导的要求进行独立操作与观察。 3、独立操作与观察除个别实验分组进行外,一般由学生个人独立进行操作和观察。在实验中要按实验指导认真操作,仔细观察,作好记录。有关基本技能的训练,要按操作程序反复练习,以达到一定的熟练程度。

4、演示每次的实验都备有演示内容,其目的是帮助学生了解某些实验中的难点,扩大在实验课有限时间内获得更多感性知识的机会。 5、作业实验报告参照硕士毕业论文的格式写,必须强调科学性,实事求是地记录、分析、综合。在实验结束时呈交。 6、小结每次实验结束后,由师生共同小结本次实验的主要收获及今后应注意的问题。 三、实验规则和注意事项 1、每次上课前,必须认真阅读实验指导,明确本次实验的目的要求、实验原理和注意事项,熟悉实验内容、方法和步骤。 2、上实验课时必须携带实验指导、记录本及文具等。进入实验室要按规定座位入座。 3、实验时要遵守纪律,听从教师指导,保持肃静。有问题时举手提问,严禁彼此谈笑喧或随意走动,也不得私自进行其他活动。 4、实验时要遵守实验操作规程,严格按照教师的安排和实验指导的要求进行。操作观察要认真仔细,边做、边看、边想,认真做好实验记录。 5、要爱护仪器和器材设备,注意节约实验材料、药品和水电。如有损坏器材应立即报告并主动登记、说明情况。 6、实验结束后,应清理实验台面,认真清理好仪器、药品及其他用品,放回原处,放好凳子,方可离开实验室。值日生要负责清扫地面,收拾实验用品,处理垃圾,关好水、电、门窗后再离开。

植物基因转化常用方法

一. 植物遗传转化的方法 植物遗传转化技术可分为两大类:一类是直接基因转移技术,包括基因枪法、原生质体法、脂质体法、花粉管通道法、电激转化法、PEG介导转化方法等,其中基因枪转化法是代表。另一类是生物介导的转化方法,主要有农杆菌介导和病毒介导两种转化方法,其中农杆菌介导的转化方法操作简便、成本低、转化率高,广泛应用于双子叶植物的遗传转化。 二.农杆菌介导的基因转化方法 (一)农杆菌的Ti质粒与T-DNA的整合机制 几乎所有双子叶植物都容易受到土壤农杆菌感染,而产生根瘤。它是一种革兰氏阴性土壤杆菌(A. tumefaciens)。其致瘤特性是由Ti(tumor-inducing)质粒介导的。农杆根瘤菌之所以会感染植物根部是因为植物根部损伤部位分泌出酚类物质乙酰丁香 酮和羟基乙酰丁香酮,这些酚类物质可以诱导Vir(Virulence region)基因的启动表达,Vir基因的产物将Ti质粒上的一段T-DNA单链切下,而位于根瘤染色体上的操纵子基因产物则与单链T-DNA结合,形成复合物,转化植物根部细胞。T-DNA上有三套基因,其中两套基因分别控制合成植物生长素与分裂素,促使植物创伤组织无限制地生长与分裂,形成冠瘿瘤。第三套基因合成冠瘿碱,冠瘿碱有四种类型:章鱼碱(octopine)、胭脂碱(nopaline)、农杆碱(agropine)、琥珀碱(succinamopine),使农杆菌生长必需的物质。 1. Ti质粒的结构 在发现根瘤农杆菌诱发冠瘿瘤的本质是Ti质粒后,Ti质粒便成为冠瘿瘤形成基因鉴定与分析的主要研究对象。 Ti质粒大约在160~240kB之间。其中T-DNA大约在15kb-30kb。Vir基因区在36kb 左右。除此之外,Ti质粒上还存在Con区(region encoding conjugation)和Ori区(origin of replication)。 T-DNA上共有三套基因和左右两个边界,LB和RB是长为25bp的末端反复重复顺序,在切除及整合过程具有重要意义。 tms由两个基因组成:tms1(iaaM)和tms2(iaaH) tmr由一个基因组成iptz: tmt由若干基因构成,合成稀有氨基酸衍生物,称为opines。它有三个成员: octopine=精氨酸与丙酮酸的缩合物 Napaline=精氨酸与-酮戊二酸的缩合物 Agropine=谷氨酸与二环糖的缩合物 据此可将Ti质粒分为三大类,感染的植物诱导合成这些有机碱,但不能利用它们,其分解酶基因在Ti质粒上,分解产物为氨基酸和糖类,供根癌农杆菌使用作为氮源及碳源。

植物基因的克隆|植物基因克隆的基本步骤

植物基因的克隆 08医用二班姚桂鹏0807508245 简介 克隆(clone)是指一个细胞或一个生物个体无性繁殖所产生的后代群体。通常所说的基因克隆是指基于大肠埃希菌的DNA片段(或基因)的扩增,主要过程包括目标DNA的获取、重组载体的构建、受体细胞的转化以及重组细胞的筛选和繁殖等。本文主要介绍植物基因的特点、基因克隆的载体、基因克隆的工具酶、基因克隆的策略以及植物目的基因的分离克隆方法等内容。 关键词 植物基因基因克隆载体工具酶克隆策略分离克隆方法 Plant gene cloning Introduction Cloning (clone) refers to a cell or an individual organisms asexual reproduction produced offspring. Usually said cloning genes means

based on escherichia coli segment of DNA (or genes), including the main course target DNA, restructuring of the carrier, transformation of receptor cells and reorganization of screening and reproductive cells. This paper mainly introduces the characteristics of plant gene and gene cloning and carrier, gene clone tool enzyme, gene cloning and plant gene strategy of separation cloning method, etc. Keywords Plant gene cloning tool enzyme gene cloning vector method of separation of cloning strategy 一、植物基因的结构和功能 基因(gene)是核酸分子中包含了遗传信息的遗传单位。一般来说,植物基因都可分为转录区和非转录的调控区两部分。 (一)植物基因的启动子 启动子(promoter)是指在位于结构基因上游决定基因转录起始的区域,植物积阴德启动子包括三个较重要的区域,一时转录起始位点,而是转录起始位点上游25~40bp的区域,三是转录起始位点上游-75bp处或更远些的区域。 (二)植物基因的增强子序列

4植物基因克隆的策略与方法

4植物基因克隆的策略与方法 基因的克隆确实是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的要紧目标是识不、分离特异基因并获得基因的完整的全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传操纵关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速进展,使人们把握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术差不多克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,19 97),为了克隆植物基因也探讨了其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。 1功能克隆(functional Cloning) 功能克隆确实是按照性状的差不多生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建cDNA文库或基因组文库,DNA文库中基因的选择按照情形要紧可用二种方法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针 从cDNA库或基因组文库中选择编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中选择相应克隆。功能克隆是一种经典的基因克隆策略,专门多基因的分离利用这种策略。 Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合物白藜芦醇的存在,能够提升对灰质葡萄孢(B otrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此克隆该基因通过转基因后,对有些植物产生对灰质葡萄孢的抗性专门有意义(H ain等,1985)。Kondo等1989年对编码水稻巯基蛋白酶抑制剂的基因组DN A做了克隆和序列分析(Kondo等,1989)。周兆斓等构建了水稻cDNA文库,分离了编码水稻巯基蛋白酶抑制剂的cDNA(周兆斓等,1996)。植物蛋白酶抑制剂是一类天然的抗虫物质,它可抑制摄食害虫对蛋白质的消化,使害虫因 缺乏所需氨基酸而导致非正常发育或死亡。胡天华等人从烟草中分离出流行于我国的黄瓜花叶病毒(Cucumber Mosaic virus)(CMV),并克隆了编码该

基因克隆、假病毒操作步骤

实验名称:基因克隆 实验器材:荧光定量PCR仪、摇床、离心机、生工PCR产物纯化试剂盒、恒温加热器、 NEB连接体系、灭菌纯水、JM109感受态、冰、LB培养基、酒精灯、涂棒、氨苄、氨苄抗性平板、甘油等; 操作步骤: 1、可通过PCR进行拼接获得目的基因的,过柱纯化(生工试剂盒根据说明书进行纯化, 在最后一步的洗脱可以用预热的灭菌纯水洗脱,在加灭菌纯水洗脱的时候一定要加在纯化柱子的膜中间); 2、选择合适的载体(EZ-T)用连接酶进行连接,NEB体系,16℃过夜连接 T4lages 1.0 10×T4buffer 2.0 EZ-T 1.0 目的基因8.0 DdH2O 8.0 _________ 20ul 3、取100μl摇匀后的JM109感受态细胞悬浮液(如是冷冻保存液,则需化冻后马上进行下 面的操作),加入10μl连接产物,轻轻摇匀,冰上放置30min后,于42度水浴中保温90s,然后迅速在冰上冷却2min; 4、加入500μl LB液体培养基,混匀于37℃振荡培养45min使受体菌恢复正常生长状态并 使转化体产生抗药性; 5、将恢复培养的菌体5000rpm离心3min,移去上层LB培养基,用余下的200μl重悬菌体, 并用灭菌玻璃推子(酒精灯上烧后冷却),均匀涂布于琼脂凝胶表面(氨苄抗性),37℃倒置培养12~16小时; 6、挑取多个单克隆菌落分别接种到1ml含有抗生素(氨苄)的LB液体培养基中,37℃振 荡培养3h; 7、培养1-2小时即可以利用PCR(定量或定性)进行鉴定; 8、选取初步鉴定阳性的菌液送测序,测序正确后甘油保存(甘油的浓度为30%-50%),充 分混匀,-80℃保存;

植物基因克隆

来自dxy 22003luocong 植物基因全长克隆几种方法的比较 基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。 1 RACE技术 1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3?RACE和5?端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5?RACE 跟3?RACE原理基本一样,但是相对于3?RACE来说难度较大。 5'-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5'接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。 笔者主要介绍两种比较新的RACE技术,基于…模板跳转?的SMART RACE 技术和末端脱氧核苷酸转移酶( TdT)加尾技术。 1.1基于‘模板跳转’的SMART RACE技术[7,12]

实验六 基因克隆及序列分析

实验六、基因克隆及序列分析 1.目的片段回收 取5 μl PCR产物在1.2%琼脂糖凝胶上检测,如果扩增产物大小与原来一致,在紫外灯管下用刀片切下目标带,然后用UNIQ-10 Column DNA Collection Kit 试剂盒(上海生工)进行回收。具体回收过程如下:从琼脂糖凝胶中精确切下包含有目标片段的胶块,放入到1.5 ml离心管中,加入500 μl Binding Buffer II,50℃~60℃水浴锅中放置10 min,使胶彻底熔化,然后将熔化的胶溶液转移到套放于2 ml收集管的UNIQ-10柱中,室温放置2 min,8000 r/min离心1 min,倒去收集管中的废液,在UNIQ-10柱中加入500 μl Washing Solution,室温8000 r/min离心1 min,加入新鲜的Washing Solution重复一次,倒去收集管中的废液,室温12000 r/min离心15 s。在UNIQ-10柱中加入Elution Buffer 30 μl(直接滴到过滤膜上),37℃放置2 min,放到一个新的1.5 ml离心管后离心收集(12000 r/min,1 min),所得溶液用于连接反应。 2 片段连接反应 采用pGEM? -T Easy Vector试剂盒(Promega,A1360)进行目标片段的克隆。取1.5 μl PCR产物,加入0.5 μl T4 DNA ligase,0.5μl T Easy Vector,2.5 μl ligation buffer,短暂离心收集,轻轻混匀,置于室温连接1-2 h后,放于4?C冰箱过夜。 3大肠杆菌感受态细胞的制备及转化 取保存于-70℃的大肠杆菌菌株DH5α菌液,首先在LB固体培养基上分离单克隆,然后挑一个单克隆进行液体培养过夜。从中取1.0 ml菌液转接于装有100 ml LB液体培养基的250 ml三角瓶中,于摇床培养1.5~2 h(37℃,240 r/min),后转移至预冷的50 ml离心管中,冰浴10 min,低温离心10 min(4℃,4000 r/min)收集菌体,加入25 ml预冷的0.1 mol/L CaCl2重悬培养物,冰浴20-30 min,4℃4000r/min离心10 min,去上清液,倒立晾干,再加2 ml预冷的0.1 mol/L CaCl2(含15%的甘油)重悬细胞,分装于冰浴的0.5 ml无菌离心管中,放入-70℃冰箱保存。 取2 μl连接反应物转到1.5 ml离心管中,冰上保存待用。从-70℃冰箱中取出感受态细胞置于冰上,待其刚好融化时(约5 min)小心吸取30-50 μl转入到离心管中,冰上静置20 min。42℃水浴中热激90 s(不要摇动)。迅速放回冰上2 min,然后加入LB培养基(室温)400 μl,37℃摇床培养1.5 h(150 r/min)。

整个基因克隆实验流程(完整)

一、组织总RNA的提取 相关试剂:T rizol;氯仿;苯酚;异丙醇;75%乙醇;RNase-free水 相关仪器:制冰机;液氮&研钵/生物样品研磨仪;高速离心机;移液器(1ml、200μl、100μl/50μl);涡旋振荡仪;恒温金属浴。 相关耗材:解剖工具,冰盒,离心管,离心管架,吸头(1ml,200μl/300μl),一次性手套,实验手套。 实验步骤 1.取暂养草鱼,冰上放置一段时间,然后解剖,剪取肠道50~100mg,放入研钵中,加入 液氮迅速研磨,然后加入1ml 预冷TRIzol试剂,充分研磨至无颗粒物存在。 2.转移到离心管中,室温放置5min,使细胞充分裂解; 3.按1ml Trizol加入200μl氯仿,盖上盖子,迅速充分摇匀15s,然后室温放置3min; 4.4℃,,12000g 离心15min; 此时混合物分为三层,下层红色的苯酚氯仿层,中间层和上层无色水相;RNA存在于无色水相中; 5.小心吸取上清液,千万不要吸取中间界面,否则有DNA污染;转移至一个新的离心管, 加入等体积的异丙醇,轻轻混匀; 6.室温放置10min;4℃,,12000g 离心10min; 7.弃上清,加入1ml 75%乙醇洗涤;涡旋,悬浮沉淀;4℃,,12000g 离心5min; 8.弃上清;可以再次用75%乙醇洗涤沉淀; 9.弃上清;用移液器轻轻吸取管壁或管底的残余乙醇,注意不要吸取沉淀;室温放置5min 晾干沉淀;(RNA样品不要过于干燥,否则极难溶解) 10.沉淀中加入30μl RNase-free水,轻弹管壁,使RNA溶解。 RNA质量检测 相关试剂:溴酚蓝,TEB/TAE电泳缓冲液,溴乙锭(EB) 相关仪器:(超微量分光光度计,移液器(2.5μl 或2μl 规格,10μl规格),电子天平,电泳仪,电泳槽,凝胶成像仪,微波炉,制冰机) 相关耗材:(无菌无绒纸,吸头,离心管架,PCR管,PCR管架,锥形瓶,烧杯,一次性手套,实验手套,冰盒) (1)RNA纯度的检测:测定其OD260和OD280的值,根据其OD260/ OD280的比值,当其比值在1.9~2.1之间,说明提取的总RNA纯度比较高,没有蛋白质和基因组的污染。 (2)RNA完整性的检测:取2μlRNA,与2μl溴酚蓝混匀,用1%的琼脂糖进行凝胶电泳,20min后,在凝胶成像系统中观察效果。当28S与18S条带清晰,且亮度比大约是2:1时,5S条带若隐若现,而且没有其它条带时,说明完整性不错,可以用于下游逆转录实验。

植物基因克隆的策略与方法

植物基因克隆的策略与方法 基因的克隆就是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的主要目标是识别、分离特异基因并获得基因的完整的全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传控制关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速发展,使人们掌握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术已经克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,1997),为了克隆植物基因也探讨了其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。 1 功能克隆(functional Cloning) 功能克隆就是根据性状的基本生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建cDNA文库或基因组文库,DNA文库中基因的筛选根据情况主要可用二种办法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针从cDNA库或基因组文库中筛选编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中筛选相应克隆。功能克隆是一种经典的基因克隆策略,很多基因的分离利用这种策略。 Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合物白藜芦醇的存在,可以提高对灰质葡萄孢(Botrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此

什么是克隆植物的克隆教案-浙科版高中生物选修3

第一节什么是克隆第二节植物的克隆 课标解读 重点难点 1.比较有性繁殖与无性繁殖,简述克隆的含义。 2.通过举例,概述克隆的基本条件。 3.结合单细胞培养成完整植株的示意图,理解细胞的全能性 及简述植物组织培养的程序。 4.联系植物克隆的实例,阐明植物克隆的概念、成就及应用 前景。 1.克隆的定义及其基本条 件。(重点) 2.植物细胞的全能性的含 义。(重点) 3.植物组织培养。(重难点) 无性繁殖与克隆 1.克隆就是无性繁殖,即只要不通过两个分子、两个细胞或两个个体的结合,只由一个模板分子、母细胞或母体直接形成新一代分子、细胞或个体。 2.在分子水平上,基因克隆是指某种目的基因的复制、分离过程。 3.在细胞水平上,细胞克隆技术应用在杂交瘤制备单克隆抗体的操作中。 4.在个体水平上,植物可由母体的特定部位或结构产生新个体,而动物的克隆较复杂,经历了由胚胎细胞克隆到体细胞克隆的发展过程。 5.克隆的基本条件:具有完整基因组的细胞核的活细胞;能有效调控细胞核发育的细胞质物质;完成胚胎发育的必要的环境条件。 1.克隆技术的发展经历了哪几个阶段?请尝试举例加以说明。 【提示】微生物克隆,如菌落的形成;遗传工程克隆,如DNA克隆或基因克隆;个体水平上克隆,如克隆动物。 植物细胞的全能性 1.基本含义:植物体的每一个生活细胞,都具有发育成完整植株的潜能。 2.全能性的原因:每个细胞都含有本物种所特有的全套遗传物质。 3.特点:不同植物或同种植物不同基因型个体间,细胞全能性的表达程度大不相同。 2.有人说只要找到秋海棠的一个细胞,就能再生出秋海棠,这依据的生物学原理是什么? 【提示】能让一个细胞发育成一个个体,依据的是细胞的全能性。

植物基因克隆技术及其发展方向

植物基因克隆技术及其发展方向 摘要:基因是染色体上具有一定座位的遗传单位,是DNA分子中一定长度的核苷酸序列。植物的生长发育是在多种代谢和生理过程基础上所发生的基因在时空上表达的综合现象,开发和分离潜在的各种有价值的基因并深入研究其表达机理,对作物品种的改良具有重要意义。因此对植物基因的克隆并发展与之相关的技术已引起人们的日益关注和投入,近年来其研究方法不断改进,新技术不断涌现,这为进一步研究诸如各种调节植物生长发育的基因、逆境与防御反应的基因、植物细胞凋亡的基因等提供了新的途径。 关键词:植物基因克隆基因植物基因转化 正文: 植物基因的克隆技术是生命科学研究的重要组成部分,是现代生命科学技术中最核心的内容,它是随着20世纪70年代初DNA体外重组技术的发明而发展起来的,其目标是识别和分离特异基因并获得基因完整序列,确定其在染色体上的位置,阐明其生化功能,并利用生物工程手段应用到生产实践中。 一、常用的目的基因克隆技术 1、1、通过已知基因产物的分析和鉴定 这类技术主要通过生物化学和病理学研究分离鉴定有关基因的蛋白产物,并对蛋白质氨基酸顺序进行分析,推断出编码该蛋白质的基因序列,然后通过抗体、寡聚核苷酸探针或PCR制备的探针对文库进行筛选来分离目的基因。如植物抗病虫基因工程中常用的苏云金杆菌杀虫晶体蛋白基因(Bt基因)、豇豆胰蛋白酶抑制基因(CpTI 基因)、病毒外壳蛋白基因(CP基因)等。当其他植物的同类基因已分离到并且核苷酸序列保守性较高时,也可直接用这些已知的基因片段作探针对未克隆到该基因的植物基因文库进行筛选,也可分离到未知的新基因。 2、通过遗传表型分析 (1)基因标鉴法。该法是利用转座子或T-DNA插入植物的基因组中引起某一基因失活产生一些突变体,然后用相应转座子或T-DNA 对突变体文库进行筛选,以选到的阳性克隆片段为探针,再筛选野生型植物因文库分离目的基因。如将一株带有功能的转位因子系统的植物与另一株在遗传上有差异的同种植物杂交,在杂交后代中筛选由于转位因子插入到某一特定基因序列中导致表型破坏或改变的突变株,用该纯合突变株构建基因文库,然后将转位因子用同位素标记作探针,从该文库中筛选出带有同源转位因子的目的基因。该法主要限于

植物基因克隆技术的发展与展望

植物基因克隆技术的发展与展望 摘要:基因克隆技术是生命科学技术领域里非常重要的部分,为了纵览植物基因克隆的理论和技术的发展创新历程.对各种技术体系、正向遗传学途径、反向遗传学途径(包含定位克隆和同源序列克隆及随后发展起来的电子克隆)进行了综述。随着后基因组时代的到来,植物基因克隆技术将发挥更加重要的作用。 关键词:基因克隆、定位克隆、转座子标簦法、基因芯片电子克隆 植物基因的克隆技术是生命科学研究的重要组成部分,是现代生命科学技术巾最核心的内容,它是随着20世纪70年代初DNA体外囊组技术的发明而发展起来的,其目标是识别和分离特异基因并获得基因完整序列,确定其在染色体上的位置,阐明其生化功能,并利用生物T程手段应用到生产实践巾去。一般来讲,基因克隆的策略町分为两种途径:正向遗传学途径和反向遗传学途径。现对在植物基因克隆过程巾运用的主要技术进行综述.以把握植物基因克隆技术的发展历程,并对未来的发展趋势进行展望。 1、定位克隆 定位克隆技术(positional cloning)又叫图位克隆(map—based cloning).是枞据目标基因在染色体上的位置进行基因克隆的一种方法,适合于克隆编码产物未知的基因、其基本原理是根据功能基因在基因组巾存在相对较稳定的基因座,在利用分子标记技术对目的基因进行精确定位的基础上,用与目标基因两侧紧密连锁的分子标记筛选含有大的插入片段的基因组义库(如BAC和YAC).用筛选到的阳性克隆构建目的基因区域的跨叠群,再通过染色体步行(chromosomewalking)逐步逼近候选区域或通过染色体登陆(chro—lnosolne landing)的方法获得含有目标基因的大片段克隆,将含有目标基因的大片段克隆进行亚克隆.或以大片段克隆作探针筛选cDNA义库:从而将目标基因确定在一个较小的DNA片段上并进行序列分析.通过遗传转化和功能互补试验分析,签定获得目的基因【1】。 植物巾运用图位克隆技术,从拟南芥、水稻、番茄、大麦、小麦、甜菜、马铃薯等植物巾分离了几十个重要的基因,并以抗病基因的克隆居多.如番茄的埘基因121.Hero基因;马铃薯的Cpa2基因?,拟南芥的RPW8基因?、PBSI基因?、Rppl3基因?和水稻的Pita、Xal、Pi —b等基因。随着比较基因组研究的兴起.利用同科异种植物问染色体的共线性进行比较作图.如以拟南芥、番茄和水稻为巾介来克隆其他十字花科、茄科和禾本科植物的基因,将成为一个新的发展方向 2、转座子标签法 转座子(Transposon)是口J从染色体的一个位置转移到另一位置的DNA片段,最早在玉米巾发现的.随后的研究表明,在生物界巾转座子是普遍存在的.并在生物的遗传进化方面有重要作用。转座子标签技术克隆基因的基本原理是.利用转座子插入到基因内部或邻近位点,会引起相火表型突变的特点.以转座子的已知序列为标签,克隆因转座子捕入而功能失活的基因,如果某基因的突变是巾于转座子插入而造成的,那么以转座子序列为探针就nr从变异株的基因组巾筛选出带有此转座子的部分基因.再以突变基因的部分序列作探针,即口J从野生型义库巾克隆m完整的基因,在植物中利用转座子的有玉米的Ac/Ds.En/Spm和金鱼草的Tn3等,其中应用最多的是AciDs双因子系统【2】。 利用转座子标记技术目前已克隆y-0的植物抗病基因有玉米抗网斑病基因Hml、Hm2“.番船抗叶霉病基因a之、a4d、cf巧、Cf-9、C}9B及cf一磁P型“。1?.烟草抗花叶病毒病基因

功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structural genomics)转向功能基因组学(functional genomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1 图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2 基因克隆[5]等)也通过图位克隆法获得。

五种常用的植物转基因技术

五种常用的植物转基因技术 杂粮作物2010 . 30(3):186~189RainFedCrops''…… 文章编号:1003—4803(2010)03—0186—04 五种常用的植物转基因技术 汪由,吴禹,王岩,李兆渡,王光霞 (1.辽宁省农业科学院创新中心,辽宁沈阳110161;2.沈阳市东陵区白塔街道办事处,辽宁沈阳110167) 摘要:从原理,基本步骤和优缺点等几个方面对农杆茵介导法,基因枪法,超声波介导法,子房注射法和花粉管 通道法等5种常用的植物转基因技术进行了简要介绍. 关键词:农杆菌介导法;基因枪法;超声波介导法;子房注射法;花粉管通道法;原理;基本步骤;优缺点 中图分类号:$336文献标识码:B 植物转基因技术是通过各种物理的,化学的和生物的 方法将从动物,植物及微生物中分离的目的基因整合到植 物基因组中,使之正确表达和稳定遗传并且赋予受体植物 预期性状的一种生物技术方法.1983年,首例抗病毒转 基因烟草的成功培育标志着人类开始尝试利用转基因技 术改良农作物.目前,植物转基因技术已在作物改良和育 种领域发挥了重要作用.通过植物转基因技术,一些来自 于动物,植物及微生物的有益基因如抗病/虫基因,抗非生 物胁迫性状基因及特殊蛋白基因已被转化到农作物中以 改良现有的农作物和培育新的农作物品种.以DNA重组 技术为基础的植物转基因技术极大地扩展了基因信息的 来源,打破了远缘物种间自身保持遗传稳定性的屏障.植

物转基因技术已应用到玉米,水稻,小麦,大豆和棉花等许多农作物.同时,该技术也正在被尝试用于茄子和草莓等其它的作物中"J.目前,根据转基因植物的受体类型, 植物转基因方法可以分为3大类:以外植体为受体的基因转化方法,如农杆菌介导法,基因枪法和超声波介导法;以原生质体为受体的基因转化方法,如聚乙二醇法,电击法, 脂质体法及磷酸钙?DNA共沉淀法;以种质系统为受体的基因转化方法,如子房注射法和花粉管通道法j.由于以 原生质体为受体的基因转化方法有原生质体培养难度大, 培养过程繁杂,培养工作量大且培养技术不易掌握;原生质体再生植株的遗传稳定性差,再生频率低并且再生周期长;相关的转化方法的转化率低,效果不理想等缺点,所以该类基因转化方法未被作为植物转基因的常规方法广泛使用.本文将对农杆菌介导法,基因枪法,超声波介导 法,子房注射法和花粉管通道法的原理,基本步骤和优缺点作以简要介绍. 1以外植体为受体的基因转化方法 1.1农杆菌介导法 农杆菌介导法是最早应用,最实用有效并且具有最多 成功实例的一种植物转基因方法J.农杆菌是一类普遍 存在于土壤中的革兰氏阴性细菌.目前,用于植物转基 因介导的农杆菌是根癌农杆菌和发根农杆菌.某些根癌 农杆菌和发根农杆菌分别含有大小为200—800bp的结构和功能相似的质粒和Ri质粒J.Ti质粒和Ri质粒含 有3个功能区:参与农杆菌侵染植物过程的vir区,参与农杆菌基因整合到宿主植物基因组过程的T-DNA区,在农杆菌中启动质粒复制的orj区.在vir区上的vir操纵子群作用下,rrj质粒和Ri质粒能将自身的T-DNA转入宿主植物细胞内,而后将T—DNA整合到植物基因组中J.T-

基因图位克隆的策略与途径拟南芥

基因图位克隆的策略与途 径拟南芥 Ting Bao was revised on January 6, 20021

拟南芥基因克隆的策略与途径 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序已经完成(The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植 物的一般特点,拟南芥研究中所取得成果很容易用于其它高等植物包括农作物的研究,产生重大的经济效益,特别是 十字花科中还有许多重要的经济作物,与人类的生产生活密切相关,因此目前拟南芥的研究越来越多地受到国际植物 学及各国政府的重视。 基因(gene)是遗传物质的最基本单位,也是所有生命活动的基础。不论要揭示某个基因的功能,还是要改变某个基因的 功能,都必须首先将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆 的几种常用方法介绍如下。 1、图位克隆 Map-based cloning, also known as positional cloning, first proposed by Alan Coulson of the University of Cambridge in 1986, Gene isolated by this method is based on functional genes in the genome has a relatively stable loci, in the use of genetic linkage analysis or chromosomal abnormalities of separate groups will queue into the chromosome of a specific location, By constructing high-density molecular linkage map, to find molecular markers tightly linked with the aimed gene, continued to narrow the candidate region and then clone the gene and to clarify its function and biochemical mechanisms.图位(map-based clonig)又称克隆(positoinal cloning),1986年首先由剑桥大学的Alan Coulson提出。用该方法分离基因是根据功能基因在中都有相对较稳定的基因座,在利用分离群体的遗传连锁分析或将基因伫到染色体的1 个具体位置的基础上,通过构建高密度的分子连锁图,找到与目的基因紧密连锁的分子标记,不断缩小候选区域进而克隆该基因,并阐明其功能和生化。 用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力已经大大减少了(图1)。

常用的植物目的基因克隆技术

常用的植物目的基因克隆技术 常用的植物目的基因克隆技术 1、通过已知基因产物的分析和鉴定 这类技术主要通过生物化学和病理学研究分离鉴定有关基因的蛋白产物,并对蛋白质氨基酸顺序进行分析,推断出编码该蛋白质的基因序列,然后通过抗体、寡聚核苷酸探针或PCR制备的探针对文库进行筛选来分离目的基因。如植物抗病虫基因工程中常用的苏云金杆菌杀虫晶体蛋白基因(Bt基因)、豇豆胰蛋白酶抑制基因(Cp TI基因)、病毒外壳蛋白基因(CP基因)等。当其他植物的同类基因已分离到并且核苷酸序列保守性较高时,也可直接用这些已知的基因片段作探针对未克隆到该基因的植物基因文库进行筛选,也可分离到未知的新基因。 2、通过遗传表型分析 (1)基因标鉴法。该法是利用转座子或T-DNA插入植物的基因组中引起某一基因失活产生一些突变体,然后用相应转座子或T-DNA对突变体文库进行筛选,以选到的阳性克隆片段为探针,再筛选野生型植物因文库分离目的基因。如将一株带有功能的转位因子系统的植物与另一株在遗传上有差异的同种植物杂交,在杂交后代中筛选由于转位因子插入到某一特定基因序列中导致表型破坏或改变的突变株,用该纯合突变株构建基因文库,然后将转位因子用同位素标记作探针,从该文库中筛选出带有同源转位因子的目的基因。该法主要限于二倍体的自花授粉作物如玉米、金鱼草等。应用该法已分离出与玉米种子发育有关的Viviparious-1基因及与金鱼草花发育有关的一些基因等。 (2)激发子的寄主受体基因克隆技术。该技术是利用病菌无毒基因(avrgene)编氲募し⒆佑爰闹骺共』 虮嗦氲氖芴逯 浯嬖诓磺缀偷幕プ鞴叵担 圆≡ し⒆拥鞍孜 咚鞣掷牒涂寺〕鲆恍┘付≈士共』 颍 绶 延胛薅净 騛vr9对应的抗病基因cf9,与avrPto对应的抗病基因pto;拟南芥菜与avrRPS2对应的抗病基因rpS2等。 3、以图谱为基础的定位克隆技术 以图谱为基础的定位克隆技术在分离未知产物的基因方面有广阔的应用前景。该法的基本前提是基因定位,然后以紧密连锁的分子标记如RFLP等为起点,通过染色体步移逐步向目标基因靠近,最终克隆基因。其主要步骤包括:(1)将目标基因定位在高密度的分子标记连锁群上;(2)利用PFGE将连销标记的遗传图谱距转换成物理距离;(3)构建YAC文库,找到含连锁标记的YAC克隆,并通过克隆的排序获得目标基因的DNA片段;(4)通过转化和功能互补试验证实基因所在的DNA片

相关文档
相关文档 最新文档