文档库 最新最全的文档下载
当前位置:文档库 › 原油含水率现状综述

原油含水率现状综述

原油含水率现状综述
原油含水率现状综述

作者张乃禄薛朝妹徐竟天张家田

西安石油大学电子工程学院

原油含水率直接影响到原油的开采、脱水、集输、计量、销售、炼化等,因此,在油田原油生产和储运的过程中,都要求检测原油含水率。原油含水率的在线检测,对于确定油井出水、出油层位,估计原油产量,预测油井的开发寿命,具有重要意义。同时,准确及时的原油含水率在线检测数据,能够反映出油井的工作状态,对管理部门减少能耗、降低成本,实现油田自动化管理,起着重要作用。

我国先后开发出多种不同形式的原油含水率测试仪,投入油田使用后,虽然取得了一定的效果,但由于工艺和技术水平原因,其稳定性、准确性、实时性、可靠性及成本情况,难以适应我国高含水油田生产实际的要求。

因此,针对我国原油生产的特点,研究原油含水率的测量技术,研制新型传感器,开发高品质的仪表,使我国原油含水率测量技术迈入一个新的台阶,具有重要的社会意义和经济意义。

原油含水率测量技术的现状

1人工测量

我国石油行业原油的生产、储运、加工等环节的原油含水率的测量方法很多,传统的人工测量方法主要是通过人工取样,采用蒸馏法和电脱法测定原油含水率。

电脱法虽操作简单;但误差较大。蒸馏法测量精度高;但存在许多缺点,

主要表现在

1 代表性差。每口井的取样量和油井产液量相比非常小,因此,取样的代表性差。

2人工取样所得到的流体,不能代表油井的全部流体组分。

3连续性差。目前人工取样通常是对正常生产的油井4~7天取一个样,对非正常生产的油井采取加密取样的方式,这就造成了非连续性变化。

4耗时。测量操作需要取样、稀释、缓慢加热等程序;分析一个样品约耗2小时。

因此,传统的人工方法取样的随机性大,取样不及时,不能及时反映原油含水率的变化,而且在油井较为分散或恶劣的天气情况下,化验的劳动强度更大。更为重要的是,传统的人工测量法无法进行在线精确测量,不能满足油田生产自动化管理的需要。

2在线测量

随着我国石油行业的技术发展,原油含水率在线测量技术在油田得到了越来越广泛的应用,许多单位先后开发出了各种形式的在线检测仪表。在线检测仪表投入使用后,大大降低了劳动强度,提高了测量精度和测量速度,使油田自动化水平迈上了一个新的台阶。

目前常用的在线检测方法有密度计法、射线法、电容法、射频法、短波法及微波法等。

(1)密度计法。原油含水率不同,其密度也不同。当确定了含水原油的密度值后,可根据纯油密度和纯水密度,计算出含水原油的含水

率。该法一般应用震动管液体密度计(或科氏力质量流量计)连续测量两相分离器排出的油水混合液的密度,再计算出原油含水率。

在应用密度法测原油含水率时,应注意以下问题

油井产纯油和矿化水的密度取值问题。

密度计的温度压力补偿问题。

补测介质的取样问题。

密度计结垢问题。

其中在高含水原油中,矿化水造成的密度计振动管内壁结垢的现象十分严重。因此,对容易引起结垢的高含水原油,不应采用振动管密度计测量含水。

采用振动管密度计测含水率,由于现场介质条件和环境限制,使用情况不够理想。其中,液中含气会造成混合液密度下降,造成含水偏低、含油偏高的假象,形成“气增油”现象:介质含砂会造成混合液密度上升,造成含水偏高、含油偏低的假象,形成“砂吃油”现象:振管内壁结垢产生的现象与含砂相同,形成“垢减油”现象。

另外振管式密度计安装时要求上下法兰同心,不能有扭曲现象,外界无振动干扰。实际应用中很难克服以上各种影响因素,测量准确率较低,不适合中转站高含水混合液的测量。

(2)射线法。放射线法测量含水率是应用低能。射线与物质相互作用的原理设计而成。采用非接触结构,放射线穿过被测管道到达接收器。由于碳元素与氧元素对射线的吸收不同,碳集中在油中,氧集中在水中,因此只要测得混合液中碳、氧含量就可计算出含水率。。射

线法所带来的主要测量误差及解决途径

标定误差:可用最小二乘法进行标定、通过严格标定来减少误差,γ射线计数的统计误差:误差由放射性衰变的统计涨落决定,可通过提高γ射线源的强度。增加测量时间和提高探测器的探测效率来减小它。

电子学误差:电子学误差主要是由于探测器脉冲的可能堆积。放大线路的频率特性。甄别器阈值的稳定性。计数死时间和高压电源的稳定性以及噪声等因素造成。

温度效应误差:对于低含水率的测量来说!温度对测量精度的影响是比较大的,一般来说,温度对电子学线路和探测器的影响可以通过合理的设计和认真的调试来减小,但温度对衰减系数的影响就必须采取在线补偿。

γ射线法用于在线检测、可提高生产过程和管理的自动化水平,但由于对60MeV的γ射线来说、油和水的吸收系数仅相差20%、因此测量精度不高、且存在射线辐射、造价高、使用和维修困难等问题。

国外一台同类产品的售价一般在1.2万美元左右

(3)电容法,电容法利用水和油介电常数相差很大的原理实现原油含水率检测,在20℃时、水的介电常数为80、油的介电常数为2~3、含水率的微小变化、会引起含水原油介电常数的较大变化、可将介电常数的变化反映为电容值的变化、通过测量电容值就得到了含水率。由于油田现场温度变化一般比较大,这样就引起了温度漂移,并且对不同的油样进行测量时也会引起误差。针对这些缺陷,从电容式传感

器的结构。测量电路以及数据处理等方面进行了相应改进,如采用差动容抗法,在电容传感器的内部,增加一个平板式电容温度补偿传感器,进行温度补偿:采用柱状的同轴电容传感器,在内导体外紧配合包裹着介质套的电容传感器,使原油不接触内导体,从而减小水矿化度对原油含水率的影响,克服杂散电容对原油含水率测量系统中电容值的影响,提高测量的准确度;有的电容式含水率测量仪,采用开关电容等效变换电路,完成电容到频率的变换,经单片机处理,在线检测0%~31%和60%~100%原油含水率,精度达到0.5%,在线测量含水率在60%~100%时的精度达到1%。

有研究证明:在低频条件下,油井水是一种导体,由此提出了高含水条件下,电容式含水率仪的测量模型,通过计算证明了电容与含水率之间的非线性关系。

电容法采用管道内所有混合流体的平均法测量,适合于工况条件下二相流流型复杂的要求,容易满足测量精度的要求,当有少量游离气体存在于管道时,不会带来含水率太大的附加误差,容易实现工况条件下的测量精度的要求,采用电容法研制的仪器,具有设备简单。安装方便、价格低廉、可靠性好、维护方便等优点,因此得到了广泛应用。但是,电容法的量程范围小,可调性差,仅适合于含水率低于30%的油田

(4)短波法,短波法是根据原油含水率不同吸收短波的能量也不同的原理来工作的。将电能以电磁波的形式辐射到以乳化状态存在的油水介质中,根据油水对短波的吸收能力不同来检测油水乳化液中的含

水量,设置标准吸收样,当取样器中原油含水有微量变化时,吸收的短波能量就会发生微小变化,将变化差值经放大计算、线性校准后直接显示出瞬时含水率,同时根据最小体积脉冲计算出平均含水率,这种含水率测量仪对高含水的适应性较强。

短波法对原油的温度及含盐量不敏感,因此,温度漂移和水矿化度对测量精度的影响就非常小。同时短波法还具有测量范围宽的优点,但是采用微波技术,成本高、使用和维护困难、使其应用受到了一定的影响。

目前国内有些单位研制的原油含水监测仪多是属于用微波和短波方法测量原油含水的仪表,其测量原理属于对管内二相流体点线式的采样,不能正确全面反映混合两相流的情况,因而实验室条件下测量精度能达到要求,但在现场工况条件下尚不能满足精度要求。

(5)射频法。水和油两者的介电常数相差很大,因而所呈现的射频阻抗特性差异也很大,当射频信号经天线传到以油水混合液为介质的负载时,该负载阻抗随着混合液中不同的油水比而变化,通过电流互感器,检测出由阻抗变化引起的电流变化,从而测出原油含水率。射频电容法是测量油品含水率的新方法。该法基于射频阻抗理论,具有测量精度高、重复性好、体积小、响应快等特点。只要建立相应的标定表,该传感器同样可用于其它油品低含水率的测量。若在传感器探头内加入测量电导率线路,则可扩大其测量范围。

原油含水率测量存在的几个问题

油田原油计量中的一个关键问题是高含水原油含水率测量,多年来一

直是个难题。测量技术和测量仪表应用效果不好,这是由于原油介质、工况条件、测量技术原理、测量仪表等影响因素很多。目前,国内所设计的原油含水检测仪表,由于本身的设计缺陷和现场使用过程中不当等因素,造成了该类仪表使用过程中准确度低,稳定性差,没有真正发挥其作用。

1 测量的主要原因

(1)原油成分变化对测量结果的影响。含气量、产出水矿化度及油品成分变化对测量结果产生了一定的影响。实践证明,若流体中有1%的气体变化时,按照油水两相测量模型得到的油水比率的误差约为6%。

另外,油田产出水中通常都含有一定的盐分也就是矿化度,不同地区的矿化度常常差异很大(几倍至数十倍)。矿化度的变化将导致流体的密度、导电性、质量吸收系数、黏度等物性的相应变化,致使常规的含水测量仪表的测量精度大大下降。理论和实践都证明:1%的矿化度变化会给油水比率的测量带来百分之十几的影响。如此大的影响致使采用电容法、短波法及普通射线等方法的产品在这种场合应用受到限制。

我国的辽河、新疆、胜利等许多油田,油品的成分、密度及黏度等物性参数变化范围很大,给在线测量带来极为不利的影响。致使常规的含水测量仪表的测量精度大大下降。因此,在这些地区必须选择采用多相测量模型的在线测量仪表,才能满足对含水率测量精度的要求。(2)油水乳化液相转变对测量的影响。由于被测介质含量复杂,特

别是高含水原油,出现“油包水”、“水包油”的过渡状态,这时油水乳化液发生相变。即由油连续介质转向水连续介质,多数仪表的准确度就很难保证;低含水率时,测量精度高,在高含水率时,测量精度低,测量误差大,有时甚至出错。国内现有的含水仪大都存在一定的测量误差。给油田管理带来了一定的不便。

(3)温度、压力变化时对测量的影响,液体的介电常数受温度影响很大,例如水在20℃时介电常数为80.1,而在50℃时为69.91,在,100℃时为55.72.各品种的原油油品介电常数的温度系数也不相同,由于实际测量的条件与含水率测量仪标定时的条件相差很大,会导致乳化油介电常数改变,给测量含水率结果带来较大误差。同样,对密度法测量,当振动管内液体的温度和压力发生变化时,振动管的几何尺寸发生变化,从而影响含水率测量结果。因此,各油井产出液体温度和压力不尽相同,测量的状况也不相同,测量与标定的条件不相同,原油含水率测量仪表必须采用在线随机的温度和压力补偿。(4)原油中游离气变化对测量的影响。流体中若存在游离气,在测量过程中气体以气泡的形式存在,由于小气泡的介电常数为1,这会改变流体的介电常数,使含水率测量值偏低。对密度法测量进入游离气,流体中含有气泡使振动管振动减弱,周期增大,从而造成测量体密度值增大,使含水率偏高,对测量结果造成较大影响。因此,在油田实际测量应用中,应尽量消除或减少游离气,将仪表安装在分离后压力没有明显变化的地方。

2测量仪表存在的主要问题

(1)仪表测量模型不完善。国内许多公司的同类产品均采用油水两相的测量模型,也就是先测出流体的混合密度,再依据油含气变化影响水密度的差异计算出油水的各相比率,这种模型仅仅适合于油水密度差异大、流体中不含气体等其它物质、油品成分无变化、对测量精度要求不高的场所。而我们知道,产出的油水中通常都含有一定量的气体,含气量的微小变化,将对测量结果产生较大的影响。因此,该类测量模型的不准确,是国内许多检测仪表不能真正发挥作用的原因之一。

(2)仪表自身工作稳定性差。原油含水率的测量,要求仪表在线连续工作,环境与温度介质变化大。任何电子测量仪表都存在零漂、温漂和长时间漂移的问题,其长时间的“疲劳效应”不可忽视。目前国内检测仪表都存在着较严重的零漂、温漂及长时间漂移等问题,由此产生了安装标定初期能够正常工作,随时间的推移,测量误差逐渐增加,致使该类产品的工作稳定性差,不能满足连续在线监测的需要。(3)仪表传感器结垢严重。现场应用中表明,一些油田高含水原油中的矿化水造成传感器探头结垢现象十分严重。对电学探测的传感器探头,这种结垢(沉积水、蜡)引起严重测量误差,密度计振动管内壁结垢(结蜡)使振动管振动周期增大,测量的密度值偏高,测得的含水率值增大。因此,在油田的应用中,结垢和结蜡是很容易发生的,必须采取切实的措施,定期进行冲洗,清洗结蜡,延缓结垢。

(4)测量仪表标定影响。原油含水率测量仪表的标定通常是在标准状态下,依靠取样化验数据进行,虽然现有的化验水平和化验精度都

能满足仪表的标定要求。但是,由于取样的代表性受流态变化、被测介质成分变化、含气多少、取样方法及人为因素等各种各样因素的影响,使最终标定值不涵盖流体在管线中流动的各种状态,常常根据这种取值所标定的结果仅仅反映取样点的情况,不能代表整个实际现场的真实原油的情况,这种不正确标定也是当前所应用的原油含水率测量仪表不能有效保证在整个测量范围准确测量的一个重要因素。

油田含水变化规律

油田含水变化规律 在油藏注水开发过程中,随着注水工作的不断深入,油井逐渐见水,且含水率将不断升高,含水上升必然影响油田的产量和有关的开发技术政策,给油田开发带来一系列这样或那样的问题,因此研究含水上升规律,根据含水上升规律和特点,控制或延缓含水上升速度,对于保持油田稳产、降低开采成本非常重要。 (一)理论变化分析 1、理论特征3-7-1 含水率的变化受多种因素影响,如岩石的润湿性、储层的非均质性、原油性质、油藏类型、注采井网和注采条件等等,因而实际油藏含水率的变化非常复杂,只能进行宏观分析。 ⑴油藏类型影响:不同的油藏类型,含水上升规律不同。底水或边水活跃的油藏,在稳定开采、保持合理采油速度的情况下,无水采油期长、含水上升慢,但油井一旦见水,含水上升就比较快;人工切割注水开发的油藏,因受注采井距大小、油藏非均质性、注水和采油强度等多种因素影响,往往无水采油期短、早期含水上升速度要明显大于底水或边水活跃的油藏。 ⑵原油性质不同,含水上升规律不同:多数层状砂岩油藏,因原油性质的差异,油水粘度比不同,含水上升规律表现出不同的特点,一般来说都符合以上所描述的三种模式或者介于它们之间。 ⑶含水率与含水上升率的关系:含水率变化规律也就是随着地层中含水饱和度的增加,油井产水率的变化情况。含水上升率则指每采出1%的地质储量含水率变化的幅度。判断一个油藏在某一含水阶段开发效果的好坏,通过评价含水上升率指标是油藏开发中常用的方法之一。通常的做法是应用相对渗透率曲线求得

油藏的含水上升率理论曲线,然后与油藏的实际含水上升率比较,如果实际的含水上升率小于理论含水上升率,则认为油藏开发效果好,反之则认为开发效果不理想。理论含水上升率计算方法如下: 根据油田测得的相渗曲线,应用分流量方程计算含水率。 实际工作中为了便于应用,将油水相对渗透率的比值表示为含水饱和度的函数。 Sw b e a Kw Ko ?-?= 从而含水率可进一步表示为:bSw e a o w fw -??+= μμ11 用含水率对含水饱和度微分得:2 )1(Sw b Sw b e a o w e b a o w Sw fw ?-?-??+???=??μμμμ 含水率对含水饱和度微分结果表示的实际意义:当含水饱和度增加1%时,含水率变化的幅度,也就是说采出程度增加1%时含水率变化的幅度,即含水上升率。应用能代表油藏的相渗曲线,根据含水上升率的理论表达式,就可以计算 o w Kw Ko o Ko w Kw w Kw Qo Qw Qw fw μμμμμ?+= +=+= 11 ///

原油含水率分析仪

原油含水率分析仪 原油含水分析仪是我公司结合多年油田产品研制生产经验,于2005年底研发成功的放射性仪表替代产品,现已在大庆油田、新疆油田投入批量使用,用于单井和联合站原油含水率的在线测量。 2009年我们针对化工类市场,推出了微量含水测量产品,可测量成品油、苯类及其它有机液体中水份的含量,仪器的测量分辨率达到0.01%,温度稳定度达到0.002%水/℃。 1、数据表 2、适用范围: 原油含水率的在线测量,包括高含水、低含水原油和外输原油; 成品油、机油、润滑油微量水分在线测量; 其它腐蚀性极强的含水液体介质。 3、产品特点 采用微波原理,非接触测量,无活动部件,既保证了很高的测量分辨率,又具有很强的油品适应性; 仪器探头采用316不锈钢加F4的组合,可适应酸、碱性液体和包括甲苯等有机溶剂在内的绝大多数被测介质; 一次仪表为截断法兰式结构,可直接替换油田早期安装的放射性含水率仪表; 内置温度传感器,仪器无需外接温度变送器便可进行温度测量显示和对含水率测量结果进行温度补偿; 中文文字+数字就地显示,3键非接触式按键,极大方便了用户对隔爆类防爆表头仪表的操作;

智能通信,软件可现场升级。 产品无机械活动部件,加上防粘油的表面处理工艺,确保仪器长期工作可靠和免维护运行。 安装方便快捷,无前后直管段的要求,对流态流速不敏感。 4、性能指标: 工作电源:DC16~32V 信号输出接口:4~20mA电流或 RS485/MODBUS通信 电气连接:M20内螺纹 仪器分辨率达0.01%,测量精度如下: ①量程0~3%:实时精度±0.1%,累积精度±0.05%; ②量程3~10%:实时精度±0.5%,累积精度±0.1%; ③量程10~100%:精度±1.5% 介质温度:0~160℃;介质压力 < 6MPa 防爆等级:ExdⅡBT4 防护等级:IP65 安装方式:①浸入式:GB/JB/HB法兰标准可选, DN50/PN2.5MPa法兰或定制; ②管段式:垂直安装,DN50~DN350 标准法兰或定制。

1土的含水率烘干法的试验步骤

1土的含水率烘干法的试验步骤: 答: ①取具有代表性试样,细粒土15~30 g,砂类土.有机土50 g,砂砾石为1~2㎏放入称量盒内,立即盖好盒盖,称取湿土质量m,准确至 0."01g. ②揭开盒盖,将试样和盒放入烘箱内,在温度105~110℃恒温下烘干.烘干时间对细粒土不得少于8h,对砂类土不得少于6h.对含有机质超过5%的土,应将温度控制在65~70℃,的恒温下烘干,干燥12~15h为好. ③将烘干后的试样和盒取出,放入干燥器内冷却(一般只需 0."5~1h).冷却后盖好盒盖,称质量m s,准确至 0."01g。 ④含水率计算公式: w=(m- m s)/ m s×100% 本试验须进行二次平行测定,取两次平行试验的平均值作为含水率,允许平行差应符合规定。 2.简述密度测定(环刀法)的步骤 ①按工程需要取原状土或制备所需状态的扰动土样,整平两端,环刀内壁涂一薄层凡士林,刀口向下放在土样上。

②用修土刀将土样上部削成略大于环刀直径的土柱,然后将环刀垂直下压,边压边削,至土样伸出环刀上部为止。削去两端余土,使与环刀口面齐平,并用剩余土样测定含水率。 ③擦净环刀外壁,称环刀与土合质量,准确至 0."1g。 ④结果整理湿密度p=(m 1﹣m 2)/V.其中m 1为土样质量, m 2为剩余土样质量, V为环刀容积.干密度p d=p/(1+ 0."01 w)其中w为含水率(%). 本试验须进行两次平行测定,取其算术平均值,其平行差不得大于 0."03g/㎝3 3测定土的液塑限的试验步骤 (1)取有代表性的天然含水率或风干土样进行试验.如土中含有大于 0."5㎜的土粒或杂物时,应将风干土样用带橡皮头的研杵研碎或用木棒在橡皮板上压碎,过 0."5㎜的筛.取代表性土样200g,分开放入三个盛土皿中,加不同数量的蒸馏水,使土样的含水率分别控制在液限(a点)、略大于塑限(c点)和二者的中间状态(b点)附近。用调土刀调匀,密封放置18h以上。 将制备好的土样充分搅拌均匀,分层装入盛土杯中,试杯装满后,刮成与杯边齐平。给圆锥仪锥尖涂少许凡士林,将装好土样的试杯放在联合测定仪上,

原油含水率的检测以及原油计量的研究与实验

原油含水率的检测以及原油计量的研究与实验 摘要:在油田集输工艺中以沉降罐来说,可运用液位变送器和差压变送器进行检测。在通过计算机进行处理之后,完成了沉降罐中原油含水率的检测以及精确对原油进行计量。 关键词:原油含水率检测原油计量 对于原油来说在开采,脱水,计量,集输以及销售的过程中,原油产量以及原油的含水率是最为重要的指标。在油田生产中,检验原油含水率一直采用传统定时取样进行蒸馏化验的人工分析方法,这种方法不能够对测量原油含水率及时的反应出来。因此对于怎样能够提高检测原油含水率的效率,是但一直困扰油田工作检测人员的问题。此外在原油计量工作中应用翻斗流量计是较为常见的,其精度为3级而且能够对油水混合物的重量进行测量。面对这种现状,本组主要针对一个联合站中沉降罐,运用液位变压器和差压变压器进行检测,并通过计算机实时进行处理。通过深入探讨检测沉降罐中原油含水率以及原油计量得到良好的效果,从而进一步实现了沉降罐中原油含水率精确检测以及原油精确计量。 一、原油含水率的检测方法 对于原油含水率进行测量的方法包括,离线测量以及在线测量。 1.离线测量 进行离线测量主要是通过离线分析法进行的,主要分离出原油中的水分,再通过体积比形式表示出来。还能够再利用油水密度值,得出重量含水率。此种方法能够针对油水分离手段的不同选择相应的方法,方法主要包括:蒸馏法,离心法,点脱法以及卡尔-费休法。其中卡尔-费休法主要是在滴定卡尔-费休溶液时,使得水与卡尔费休溶液反应,从而对水分进行测定。通过原油含水分析能够可分析含水率为0.02%~0.2%原油,具有操作简单,误差小,原油乳化程度较小干扰测量结果,精度较高,具有广泛应用前景的特点。但是其不具有实时性,不能够及时对变化的数值进行反映,成为离线方法最大的缺陷。同时离线方法测量的缺点还包括:(1)测量结果会受到取样方式的影响。(2)处理的不够彻底的。(3)操作较为繁琐,效率较低,其中原油的乳化还会对分离效果造成一定的影响。(4)含水率不断改变的过程中,很难只能够依据取样的方式进行检验 2.在线测量 对原油含水率进行在线测量主要,控制原油中水分脱出,在运用一套微机化系统进行分析测量。在传感器的作用下实时采收样本。在线分析测量还包括直接或间接测量。在直接测量中,依据水和油的种种物理性质和化学性质的不同,应用相应的测量原理进行测量。现主要有电容法,短波法,密度法以及中子水分测试法等。运用在线测量的方法测量原油含水率的主要缺点是很难保障进行长期稳

常用原油含水率测试方法

常用原油含水率测试方法 1、原油含水率静态测试方法分析 原油含水率静态测试方法是通过人工取样后运用物理或化学方法实现油水分离后计算原油含水率。目前主要的静态测试方法有蒸馏法、电脱法、卡尔·费休法。 1.1、蒸馏法 蒸馏法的测试原理是通过加热原油将油和水分离,分别测试原油质量以及蒸发出的水分质量,并计算出水分的质量分数。蒸馏法的测试过程是在原油中加入与水不相溶的溶剂,在原油与溶剂混合以后并开始回流的条件下加热,此时原油、水分和溶剂在沸腾状态时会一起蒸发出来,溶剂因沸点最低第一个被气化,之后水分通过冷凝管进入水分接收器中,通过水分接收器的刻度读出水分的含量,从而计算出原油含水率。图1为实验装置的示意图。

图1 实验装置示意图 最初实验室通常采用蒸馏法测试原油含水率,但石油生产行业主要根据《原油水含量测定法一蒸馏法》(GB/T8929-1988)来测试,石油加工行业则按《石油产品水含量测定法一蒸馏法》(GB/T260-1988)测试。GB/T8929-1988使用有较大毒性的二甲苯做溶剂,对操作人员危害大,同时也污染样品和环境;GB/T260-1988则以直馏汽油80℃以上的馏分做溶剂,尽管毒性不大,但是测试的结果误差太大。 1.2电脱法 电脱法的测试原理是通过高压电场,利用电破乳技术使油水分离,来测试原油的含水率。这种方法适合一些仪器的设计开发,例如Dst-III石油含水电脱分析仪。电脱法的分析液量大、分析速度快,操

作简单、无“二次采样”误差以及安全可靠等优点使其备受青睐。但是电脱法同样存在着一些缺点,如在脱水过程中,油样需要加温,易使原油剧烈沸腾而外溢,与带电的内、外电极裸露的金属部分触碰,易引起电击危险。图2为原油含水电脱分析仪结构示意图。 图2 原油含水电脱分析仪结构示意图 1.3卡尔·费休法 卡尔·费休法是实验室中标准的微量水分测试方法,对于有机液体,是国际国标方法《原油水含量测定卡尔费休库仑滴定法(GB/T 11146-2009 )。它的测试原理是利用含碘、二氧化硫、吡啶及无水甲醇溶液(通常称为卡尔·费休溶液)与试样中的水进行定量反应,根据滴定过程中消耗的卡氏试剂的量,计算原油的含水率。卡尔·费休法是有水

原油含水率现状

作者张乃禄薛朝妹徐竟天张家田 西安石油大学电子工程学院 原油含水率直接影响到原油的开采、脱水、集输、计量、销售、炼化等,因此,在油田原油生产和储运的过程中,都要求检测原油含水率。原油含水率的在线检测,对于确定油井出水、出油层位,估计原油产量,预测油井的开发寿命,具有重要意义。同时,准确及时的原油含水率在线检测数据,能够反映出油井的工作状态,对管理部门减少能耗、降低成本,实现油田自动化管理,起着重要作用。 我国先后开发出多种不同形式的原油含水率测试仪,投入油田使用后,虽然取得了一定的效果,但由于工艺和技术水平原因,其稳定性、准确性、实时性、可靠性及成本情况,难以适应我国高含水油田生产实际的要求。 因此,针对我国原油生产的特点,研究原油含水率的测量技术,研制新型传感器,开发高品质的仪表,使我国原油含水率测量技术迈入一个新的台阶,具有重要的社会意义和经济意义。 原油含水率测量技术的现状 1人工测量 我国石油行业原油的生产、储运、加工等环节的原油含水率的测量方法很多,传统的人工测量方法主要是通过人工取样,采用蒸馏法和电脱法测定原油含水率。 电脱法虽操作简单;但误差较大。蒸馏法测量精度高;但存在许多缺点,

主要表现在 1 代表性差。每口井的取样量和油井产液量相比非常小,因此,取样的代表性差。 2人工取样所得到的流体,不能代表油井的全部流体组分。 3连续性差。目前人工取样通常是对正常生产的油井4~7天取一个样,对非正常生产的油井采取加密取样的方式,这就造成了非连续性变化。 4耗时。测量操作需要取样、稀释、缓慢加热等程序;分析一个样品约耗2小时。 因此,传统的人工方法取样的随机性大,取样不及时,不能及时反映原油含水率的变化,而且在油井较为分散或恶劣的天气情况下,化验的劳动强度更大。更为重要的是,传统的人工测量法无法进行在线精确测量,不能满足油田生产自动化管理的需要。 2在线测量 随着我国石油行业的技术发展,原油含水率在线测量技术在油田得到了越来越广泛的应用,许多单位先后开发出了各种形式的在线检测仪表。在线检测仪表投入使用后,大大降低了劳动强度,提高了测量精度和测量速度,使油田自动化水平迈上了一个新的台阶。 目前常用的在线检测方法有密度计法、射线法、电容法、射频法、短波法及微波法等。 (1)密度计法。原油含水率不同,其密度也不同。当确定了含水原油的密度值后,可根据纯油密度和纯水密度,计算出含水原油的含水

原油含水分析仪技术发展现状

原油含水分析仪技术发展现状 王国庆 张健 (大庆油田工程设计技术开发有限公司) 11含水分析仪的分类 目前,在现场使用的含水分析仪有许多种类,根据其工作原理的不同,常用的原油含水分析仪主要可分为四种:射频法、微波法、电容法和射线法。虽然同种的含水分析仪也有不同,但其基本原理相差不大,下面对这些含水分析仪进行简要介绍。 (1)射频法含水分析仪。由于油水对电磁波的阻抗相差较大,通过发射器对测量介质发射高频电磁波,介质中含水量不同,所产生的电磁波频率也不同,通过测量电磁波的频率就可以测量出介质中的含水量。该类产品厂商主要有中国计量院和美国DE公司等。 (2)微波法含水分析仪。水的电导率和传导率要远高于原油,可以利用这个差异来测量油水混合物中的水的含量,含水测量仪表利用微波的共振特性进行测量,管道的自然振动频率受管道内部介质的密度影响。这就意味某一频率可以测量介质的密度。通过测量共振频率和波峰宽度,就可以测量腔体内部材料的导电特性。而且该含水分析仪在电子技术方面进行了改进,可连续进行温度和密度补偿,通过精确测量波峰的谐振频率,就可以精确测量出管道内部介质的含水值。该类产品厂商主要有挪威R oxar公司、美国Phase Dynamic公司等。 (3)电容法含水分析仪。由于油和水的介电常数差异较大,当介质中水含量增加会引起介电常数的增大,进而导致极板间电容增高,而电容的变化会引起振荡频率的变化,该振荡频率代表介质中的含水率,通过测量振荡频率就可以测量管道中介质的含水值。该类产品厂商主要有加拿大Delta公司、哈尔滨电子技术研究所等。 (4)低能源含水分析仪。利用γ射线放射源产生γ射线,用γ射线照射管道中的介质,由于油和水对γ光子的吸收率不同,介质中的含水量越高,透射的γ光子也就越少,这样探测器检测到的γ光子也就越少,通过对γ光子的计数检测,就可以对管道中介质的含水率进行检测。该类产品厂商主要有兰州科庆公司、西安思坦公司等。 (5)电磁波含水分析仪。通过发射电路发射高频电磁波信号,一路反馈至同轴线传感器,油水混合介质在同轴线传感器内流过,电磁波在其中传输后产生相位移和幅度衰减,然后经接收电路接收并放大处理后,送入混频器。另一路直接送入混频器。混频器对高频信号和本机振荡器产生的高频信号进行混频产生中频信号。最后将混频器产生的两路中频信号进入鉴相器进行鉴相,经鉴相器处理后,得到电磁波在同轴线中油水混合介质中传播时的相位。油水混合介质中含水率发生变化时,该相位也随着发生变化。通过对相位的测量,就可以得到油中的含水率。 21含水分析仪的使用现状 在含水分析仪应用方面,国内外有较大的不同。据不完全了解,国外在测量含水率较低时,主要采用电容法和微波法原理的含水分析仪,这两类仪表分辨率较高,并具有较高的测量稳定性,通过内置的温度传感器可实现实时温度补偿。在含水率较高时,则采用微波法原理的含水分析仪。这些仪表基本都可以通过RS232端口与计算机进行通讯和联机调试,人机界面采用菜单提示,因而其调试过程非常简单。 国外含水仪表虽然质量好、功能多、适用面广、有较好的在线补偿校准能力,但缺乏中文化、本地化,价格也较贵,同类产品的价格相当于国产的3倍以上。 而国内在含水分析仪应用方面,则显得比较多样化。在含水率较低时,采用的含水分析仪有电容法、射频法和低能源法。在含水率较高时,采用的含水分析仪主要为低能源法和短波吸收法。 这几种含水分析仪都是基于油水介电常数的不同,而含水原油的介电常数除受到含水率变化的影响外,还受介质温度密度变化的影响,因此要实现准确可靠的测量,这些含水分析仪必须经过温度、密度补偿。但国内这些仪表进行温度补偿时,都是采用在管道上安装温度变送器来测量介质的温度,因而其温度补偿有一定的滞后。 短波吸收法在含水测量时,可以对瞬时含水率进行测量,但这种原理的含水分析仪在介质状态从油包水转化为水包油时,其测量特性曲线有一个拐点。因而,在调试过程中需要找准这个拐点。另外,这种仪表不适合介质中含气较高的测量条件。此类仪表在现场调试时也比较麻烦,需要进行取样化验对比的含水取样点比较多。 低能源法含水分析仪测量原理主要与介质的密度有关,与介质的状态没有太大的关系,因此,其调试过程相对比较简单,一般需要两个测量点就可以完成仪表的调试,同时,此类仪表还可以对介质中的含气量进行测量。但由于内含放射源,虽然其能量强度较低,但一般情况下,大多数用户都不太愿意接受此类仪表。 国内含水仪表与国外仪表相比,虽然没有技术质量方面的优势,所能达到的测量准确度普遍较低,但产品开发针对性强,开发过程与用户现场结合得好,因而更切合国内的实际需要和操作习惯,现场服务也比较及时。 国内含水仪表与国外仪表可以说是相互补充的,这种互补性决定了两种产品将长期共存,共同发展,以满足国内不同层次的计量需要。我国加入WT O后,随着关税下调和仪表市场的国际化,这种差距将很快减小,含水分析仪市场将会迎来日趋激烈的竞争,从而进一步加快含水计量技术的发展进程, 为油田用户提供更多的选择机会和更好 的工业仪表,使我国含水计量水平再上新台阶。 31含水分析仪的未来发展趋势 结合国内外含水计量技术现状,未来国内含水分析仪 的应用将会逐渐与国际接轨。目前,已经有许多厂家开始 进行微波法和电磁波法等原理的含水分析仪的研制工作, 并将在不久的将来逐步取代低能源法含水分析仪,成为主 要的含水分析仪在线仪表。 (栏目主持 张秀丽) 33 油气田地面工程第23卷第5期(200415)

常用原油含水率测试方法

常用原油含水率测试方法

定过程中消耗的卡氏试剂的量,计算原油的含水率。卡尔·费休法是有水存在的条件下,样品中含有的水与卡尔·费休试剂中的产生化学反应。 但这个反应是可逆反应,如果想让化学反应一直向正方向发展,则需要加入适当的碱性物质以中和生成的硫酸,这就需要在溶液中加入吡啶来消耗己经生成的硫酸,其化学方程式为: C5H5NS03不稳定,会与原油中的水发生反应,消耗掉一些水从而影响测试结果,为了使它稳定,需加入无水甲醇,在无水环境中进行实验。 在整个实验过程中通过阴阳电极来判断原油中的水分是否被完全消耗,当原油中的水分被完全消耗掉之后,电极将不会导电,此时读出消耗的卡尔.费休试剂的体积,即可计算出原油的含水率。图3所示的检测仪器是由南京科环分析仪器有限公司生产的KF-1B型水分测定仪,就是使用卡尔·费休法。KF-1B型水分测定仪所使用的标准是GBlT11146-2009,目前己经可以进行工业化原油含水率的检测分析。 图3 KF一1B型水分测定仪 但是卡尔·费休法只适用于微含水量的分析,对于高含水率的分析就有些“力不从心”了,对于高含水率的原油会增加检测人员的工

作量。虽然卡尔·费休试剂可以多次使用,但是也存在失效问题,对同一样品进行的多次测试,结果难以相同,因此无法对测定的结果做出准确的判断,且测试所使用的溶剂也会污染电极的表面。同时,卡尔.费休法对于外界环境要求比较高,整个实验过程必须在完全密闭的空间中进行,否则空气中的水分会影响测试结果,因此也不适合野外作业。 2原油含水率动态测试方法分析 随着科技水平的提升,原油含水率动态测试方法在油田生产中得到了快速的发展,国内外先后开发出许多在线测试仪器,使用这些仪器后降低了劳动强度,节约了生产成本,提高了测试速度和测试精度,使油田自动化生产水平上升了一个新的高度。目前常用的动态测试方法有:电磁法、密度法、电容法、超声波共振法、红外光谱法以及过程层析成像法等。 2.1电磁法 近些年的研究中,学者们更倾向于从电磁波的角度来研究原油含水率的测试方法,做了大量的调查研究,并取得了不少成果。目前市场上也有很多种基于电磁波法测试原油含水率的仪器。依据不同的电磁波频率,目前市场上使用的电磁波主要有:微波、短波、红外线、x 一射线以及Y射线。基于电磁波测试原油含水率的方法主要有两大类,一是通过电磁波的共振技术来测试原油含水率;二是利用混合介质对电磁波的吸收特性来测试原油含水率。 1.γ射线法 γ射线法主要是运用.γ射线透射的有关性质以及不同厚度的介质衰减程度不同的原理。首先.γ射线源会产生射线,当.γ射线透射过介质时,会与介质原子发生光电效应、康普顿效应和电子效应。由于油和水对.γ光子的吸收率不相同,因此通过油水两种介质对同一.γ射线的线性吸收系数差别来计算原油的含水率。 γ射线与物质的一次碰撞中损失其部分能量,y射线穿过物质时,它的强度按指数规律衰减,如图4所示,当一束初始强度为风的.γ射线透射过厚度为x的介质时,其衰减强度为N X,则可由式子表示:

污泥含水率计算

(1)污泥含水率:污泥中所含水分的重量与污泥总重量之比的百分数称为污泥含水率。 1污泥中水的存在形式有: 空隙水,颗粒间隙中的游离水,约70%,可通过重力沉淀(浓缩压密)而分离; 毛细水,是在高度密集的细小污泥颗粒周围的水,由毛细管现象而形成的,约20%,可通过施加离心力、负压力等外力,破坏毛细管表面张力和凝聚力的作用力而分离; 颗粒表面吸附水和内部结合水,约10%。表面吸附水是在污泥颗粒表面附着的水分,起附着力较强,常在胶体状颗粒,生物污泥等固体表面上出现,采用混凝方法,通过胶体颗粒相互絮凝,排除附着表面的水分;内部结合水,是污泥颗粒内部结合的水分,如生物污泥中细胞内部水分,无机污泥中金属化合物所带的结晶水等,可通过生物分离或热力方法去除。 通常含水率在85%以上时,污泥呈流态;65%~85%时呈塑态;低于60%时则呈固态。 2污泥体积、重量及所含固体物浓度之间的关系: V1/V2=W1/W2=(100-p2)/(100-p1)=C2/C1(8-1) 式中:p1、V1、W1、C1——污泥含水率为p1时的污泥体积、重量与固体物浓度; p2、V2、W2、C2——污泥含水率为p1时的污泥体积、重量与固体物浓度; 说明:式(8-1)适用于含水率大于65%的污泥。因含水率低于65%以后,体积内出现很多气泡,体积与重量不在符合式(8-1)的关系。 例题8-1:污泥含水率从97.5%降低至95%时,求污泥体积。 解:由式(8-1) V2= V1(100-p1)/(100-p2)= V1(100-97.5)/(100-95)=(1/2)V1可见污泥含水率从97.5%降低至95%时,污泥体积减少一半。 (2)挥发性固体(或称灼烧减重)和灰分(或称灼烧残渣):挥发性固体近似地等于有机物含量;灰分表示无机物含量。 (3)可消化程度:表示污泥中可被消化降解的有机物数量。 消化对象:污泥中的有机物。一部分是可被消化降解的(或称可被气化,无机化);另一部分是不易或不能被消化降解的,如脂肪、合成有机物等。 消化程度的计算公式:R d=[1-(p V2p S1)/(p V1p S2)] ×100 (8-2) 式中:R d——可消化程度,%; p S1、p S2——分别表示生污泥及消化污泥的无机物含量,%; p V1、p V1——分别表示生污泥及消化污泥的有机物含量,%。 消化污泥量的计算公式:V d= V1(100-p1)/(100-p d)[(1- p V1/100)+ p V1/100(1- R d/100)] (8-3) 式中:V d——消化污泥量,m3/d; p d——消化污泥含水率,%,取周平均值; V1——生污泥量,m3/d; p1——生污泥含水率,%,取周平均值; p V1——生污泥有机物含量,%; R d——可消化程度,%,取周平均值; (4)湿污泥比重与干污泥比重: 湿污泥重量等于污泥所含水分重量与干固体重量之和。湿污泥比重等于湿污泥重量与同体积的水重量之比值。干固体物质包括有机物(即挥发性固体)和无机物(即灰分)。确定湿污泥比重和干污泥比重,对于浓缩池的设计、污泥运输及后续处理,都有实用价值。 经综合简化后,湿污泥比重(γ)和干污泥比重(γs)的计算公式分别为: γ=(100γs)/[γs p+(100-p)] (8-4)或γ=25000/[250p+(100-p)(100+1.5p V)] (8-8)γs=250/(100+1.5p V)(8-7) 式中:γ——湿污泥比重; γs——污泥中干固体物质平均比重,即干污泥比重; p——湿污泥含水率,%; p V——污泥中有机物含量,%; (5)污泥肥分:污泥中含有大量植物生长所必需的肥分(N、P、K)、微量元素及土壤改良

原油含水率检测电路设计

. . . . 分类号:TP212 单位代码:107 密级:一般学号:1072005014008 本科毕业论文(设计) 题目:原油含水率检测电路设计 专业:电子信息工程 姓名 指导教师: 职称: 答辩日期:

原油含水率检测电路设计 摘要:含水率是原油检测中一重要技术指标,在我国,原油的开采、生产、运输等环节的含水率测量水平还很低。本文主要介绍了一种基于电容式传感器,利用电荷转移法测量原油含水率的工作电路,本设计中含水率测量围可达到0~100%,误差<1%,线性度好,灵敏度高,稳定性好,漂移小。性能可靠的软件设计既保证系统尽量全的智能化测量功能,又保证宽测量围的线性化,以及系统的快速响应特性。 关键词:原油含水率;敏感探头;电容传感器;8051 The Detect Circuit Design of Moisture content in crude oil Abstract: Moisture content is an important technical indicators in Oil detection. In China, Crude oil extraction, production, transportation and other aspects of measuring moisture content is still very low. In this paper, Mainly Introduced a working circuit for Moisture content measurement of crude oil. In this paper, Moisture content measuring range up to 0 ~ 100%, p <1%, Good linearity, high sensitivity, good stability, and drift small. The design of reliable software systems as much as possible not only to ensure full functionality of the intelligent measurement and to ensure wide range of linear measurement, as well as the system's rapid response characteristics. Key words: water content in crude oil;Sensitive probe;Capacitance sensor;8051 石油化工行业中,原油含水率是原油生产和加工过程中的主要计量参数之一,含水率数据的测量是否准确和及时,对原油生产和管理具有极其重要的意义。 目前,检测原油含水率的方法很多,有传统的定时取样蒸馏化验的人工方法、射线法、短波法、微波法、电容法等。在原油含水率检测中,电容式传感器以其结构简单、响应快、灵敏度高等优点被广泛使用。运用电荷转移法可实现电容—电压的转换,再利用电压—频率转换电路,同时应用单片机进行数值转换,最终得到原油的含水率。1.测量元件的基本原理 1.1电容传感器的探头基本原理 电容传感器的敏感探头是一变介电常数式电容传感器。该探头对被测含水原油的介电常数敏感,而含水原油的介电常数随原油含水率变化而变化,敏感探头置于被测含水原油中,如果忽略原油中所含杂质的影响,可近似看作纯油和纯水的混合物。纯

电容法测试原油含水率实验分析

电容法测试原油含水率实验分析 1、水的介电常数 一般柴油的介电常数在2.0-3.0之间,温度对它的影响很小,基本可以忽略不计。所以这里就不讨论油的介电常数和温度的关系。通常在测试过程中都设定水的介电常数是常量,但是如图1所示,温度会对水的介电常数带来较大影响,从而影响原油含水率的测试结果。因此电容法测试原油含水率过程中必须进行温度补偿。 表1 不同温度下水的等效介电常数 图1 水的介电常数Ew随温度变化示意图 一般环境下地面的水温约为20℃,但是井下的温度可能达到30℃-130℃的范围内,在电容法测试的过程中,温度的变化导致水的介电

常数发生改变从而影响了原油含水率的测试,因此温度造成原油含水率测试的误差绝对不可忽视,在实际测试过程中必须进行温度补偿。2含水率测试实验条件准备和实验结果 选择CA V424电容一电压转换芯片外接相关调整器件的参数为:参考电容34pf,振荡电容52.2pf,电位器数值12.76K,滤波电容9.2nf。表2为20℃原油含水率与电容传感器输出电压的关系。 表2 20℃原油含水率与电容传感器输出电压的关系 根据电容法测试原理,本文通过电容传感器输出电压与原油等效介电常数关系测试原油含水率,利用电容传感器分三次测试不同介质的电压U1、U2、U3,然后去平均值U,就可以得出介电常数与电容传感器输出电压的函数关系。表3是电容传感器测试不同介质的输出

电压。 表3 电容传感器测试不同介质下的输出电压 结合表3,用Excel软件对原油等效介电常数和电容传感器输出电压的关系进行曲线拟合,如图2所示: 图2 原油等效介电常数与电容传感器输出电压的关系 将上式编入数据处理程序中,输入单片机后便可通过测试的电压值计算原油等效介电常数,再通过温度确定水的等效介电常数和油的等效介电常数,就可以计算出原油含水率。 表4为不同含水率,不同温度下原油含水率与电容传感器输出电

蒸馏法测原油含水量操作规程

蒸馏法测原油含水量操作规程 一蒸馏装置和安装 常用的蒸馏装置,用标准磨口仪器装配,由圆底烧瓶、蒸馏头、温度计、冷凝管、接受管和接受瓶组成。当用普通玻璃仪器装配蒸馏装置时,通常使用带支管的蒸馏烧瓶,各玻璃仪器间用胶塞连接。 安装仪器之前,首先要根据蒸馏物的量,选择大小合适的蒸馏瓶。蒸馏物液体的体积,一般不要超过蒸馏瓶容积的2/3,也不要少于1/3。蒸馏瓶中加几粒沸石。仪器的安装顺序一般是先从热源开始,先在架设仪器的铁架台上放好煤气灯(或其它热源装置),再根据煤气灯火焰的高低依次安装铁圈(或三脚架)、石棉网(或水浴、油浴),然后安装蒸馏瓶。注意瓶底距石棉网1~2 mm,不要触及石棉网;用水浴或油浴时瓶底应距水浴(或油浴)锅底1~2 cm。蒸馏瓶用铁夹垂直夹好。安装冷凝管时,应先调整它的位置使与已装好的蒸馏瓶高度相适应并与蒸馏头的侧管同轴,然后松开固定冷凝管的铁夹,使冷凝管沿此轴移动与蒸馏瓶连接。铁夹不应夹得太紧或太松,以夹住后稍用力尚能转动为宜。完好的铁夹内通常垫以橡皮等软性物质,以免夹破仪器。在冷凝管尾部通过接液管连接接受瓶。当用不带支管的接液管时,接液管与接受瓶之间不可用塞子连接,以免造成封闭体系,使加热蒸馏时体系压力过大而发生爆炸。安装温度计时,要特别注意调整温度计的位置,使温度计水银球的上限和蒸馏头侧管的下限在同一水平线上。 安装仪器的顺序一般都是自下而上,从左到右。要稳妥端正,无

论从正面或侧面观察,全套仪器装置的轴线都要在同一平面内。 二蒸馏操作 三加料 将待蒸馏液通过玻璃漏斗小心倒入蒸馏瓶中,要注意不使液体从支管流出。加入几粒助沸物,安好温度计。再一次检查仪器的各部分连接是否紧密和妥善。 四加热 用水冷凝管时,先由冷凝管下口缓缓通入冷水,自上口流出引至水槽中,然后开始加热。加热时可以看见蒸馏瓶中的液体逐渐沸腾,蒸气逐渐上升。温度计的读数也略有上升。当蒸气的顶端到达温度计水银球部位时,温度计读数就急剧上升。这时应适当调小煤气灯的火焰或降低加热电炉或电热套的电压,使加热速度略为减慢,蒸气顶端停留在原处,使瓶颈上部和温度计受热,让水银球上液滴和蒸气温度达到平衡。然后再稍稍加大火焰,进行蒸馏。控制加热温度,调节蒸馏速度,通常以每秒1~2滴为宜。在整个蒸馏过程中,应使温度计水银球上常有被冷凝的液滴。此时的温度即为液体与蒸气平衡时的温度,温度计的读数就是液体(馏出物)的沸点。蒸馏时加热的火焰不能太大,否则会在蒸馏瓶的颈部造成过热现象,使一部分液体的蒸气直接受到火焰的热量,这样由温度计读得的沸点就会偏高;另一方面,蒸馏也不能进行得太慢,否则由于温度计的水银球不能被馏出液蒸气充分浸润使温度计上所读得的沸点偏低或不规范。 五观察沸点及收集馏液

第05章 云中含水量的计算

第5章云中含水量的计算 在云雾物理中,含水量的“水”字,往往泛指固态水及液态水,在纯水云或纯冰云中,则分别指含液水量及含冰水量。 §5.1 绝热比含水量 §5.1.1 表示云中含水量的参量 云中含水量往往用两种参量表示。一种是“比含水量”,或叫“质量含水量”;另一种是“体积含水量”或“含水量”。 1. 比含水量的定义 比含水量是指每单位质量湿空气中含有多少质量的固体或(和)液体水。一般是用(克/千克或kg g)为单位的。 2. 体积含水量的定义 体积含水量是指每单位容积湿空气中含有多少质量的固体或(和)液体水,一般单位取(克/米3或3 g)。与大气中含水汽量的概念对应,第一种类似于“比 m 湿”的概念,第二种类似于“绝对湿度”的概念。 §5.1.2 上升空气的“绝热比含水量” 1. 绝热比含水量随高度的分布 当饱和空气按湿绝热抬升或上升时,必有多余的水汽(即过饱和部分的水汽)凝结出来,成为云中含水的部分。以比含水量来说,设有当从云底按湿绝热上升的1kg湿空气,它在云底时,因水汽正好饱和,无多余水汽可凝结为液水,故比含水量为零。随着空气上升,出现了过饱和状态,于是有多余的水汽凝结出来,具有了比含水量。如果这些凝结出的液水滴始终是随着气块上升而上升(请注意这个是前提条件),那末它的比含水量值,就会随着高度的增大而增大,直到其中水汽全部凝结出来时,比含水量变得最大;再上升,比含水量就不变了。在云内,上升空气并不一定将空气带到其中水汽全部凝结出来的程度。但只要带到空气不再上升的地方,而且在带到该处以前,凝结水并无成为降水而下降现象,虽然此时空气中仍保存有水汽,那里仍属于空气上升轨迹中比含水量极大的地方。如果此后空气下沉,则被携带的液水又会蒸发,使比含水量减少。这时,如果在云内不同高度探测,则所得的各比含水量值,必然正好是由云底上升到各该高度的空气因绝热膨胀冷却所凝结出的总比含水量。该含水量称为“(湿)绝热比含水

离心法测定原油含水量

离心法测定原油含水量 目前我们化验室原油含水测定的方法为蒸馏法和电脱水法。这两种方法在油田生产中广泛应用,但同时他们也存在相应弊端,能否找到一种既高效又准确的测定方式用于原油的单井化验是油田生产中急需解决的问题。传统原油含水测定法是蒸馏法。蒸馏法测定设备采用高纤维加热,但电热套大面积包围烧瓶,又有一定厚度的保温材料,势必产生很大的温度惯性。化验人员一旦发现温度偏高,即使马上关掉电源,也难以达到立即降温的目的,无法遏止冲样。200毫升的热油突然从冷凝管上口喷出,给化验人员带来很大危险,热油一旦溅在电热套内,极易起火。该方法测定一支油样,最少要用45min,速度慢,又要大量耗电,同时需要100 mL稀释剂(200#汽油或二甲苯)。这种方法既没能摆脱危险,更难提高效率。现在海一生产管理区有120多口井,一个月三套样并且每天有重点井。一个月有500井次的样要作。做样密度大,要求含水精度高。蒸馏法不但耗费化验溶剂油、耗电量高、不环保而且操作过程中化验员的人为误差大、化验精度不高。油而且采油厂要求化验室做单井的原油含沙分析。现在化验室作油井单井含沙仍然是汽油清洗加滤膜过滤,不但费溶剂汽油而且操作员极易把清洗中的沙粒倒掉造成化验结果不准确。而离心法化验含水在测定含水的同时可以测定沉淀

物。试样进行离心时一般分三层:上面一层是油,中间是水,下面一层是沉淀物,读取离心管相应的刻度就分别知道油样所含水和沉淀物不但可以做含水测试还可以作含沙测试。离心法原理:原油与水是两种互不相溶的液体,其密度大小不同,在加入破乳剂后,油中的乳化水分离出来,利用离心机高速旋转产生的离心力,密度大的水被沉积在离心管的底部,实现油水分离,经读水液位刻度,计算出原油含水数值(公式同上)。(注:水在室温下的密度可视为1 g/cm3,因此可用水的体积作为水的质量)。 离心法测定原油含水的特点是速度快,批量大,安全系数高,适合高含水的油井。该方法不但避免了蒸馏法因加热带来的冲样和其他危险因素,而且节约了化验汽油和电能,十分环保。

原油含水率现状综述

张家田徐竟天张乃禄薛朝妹作者 西安石油大学电子工程学院原油含水率直接影响到原油的开采、脱水、集输、计量、销售、炼化都要求检测原油含水率。因此,等,在油田原油生产和储运的过程中,原油含水率的在线检测,对于确定油井出水、出油层位,估计原油产量,预测油井的开发寿命,具有重要意义。同时,准确及时的原油含对管理部门减少能能够反映出油井的工作状态,水率在线检测数据,耗、降低成本,实现油田自动化管理,起着重要作用。我国先后开发出多种不同形式的原油含水率测试仪,投入油田使用其稳定性、但由于工艺和技术水平原因,后,虽然取得了一定的效果,可靠性及成本情况,难以适应我国高含水油田生产准确性、实时性、实际的要求。因此,针对我国原油生产的特点,研究原油含水率的测量技术,研制使我国原油含水率测量技术迈入一新型传感器,开发高品质的仪表,个新的台阶,具有重要的社会意义和经济意义。原油含水率测量技术的现状1人工测量加工等环节的原油含水率的测量方我国石油行业原油的生产、储运、采用蒸馏法和电法很多,传统的人工测量方法主要是通过人工取样,脱法测定原油含水率。但存在许多缺点,;蒸馏法测量精度高但误差较大。;电脱法虽操作简单. 主要表现在取样每口井的取样量和油井产液量相比非常小,因此,1 代表性差。的代表性差。2人工取样所得到的流体,不能代表油井的全部流体组分。天取一个样,4~7连续性差。3目前人工取样通常

是对正常生产的油井对非正常生产的油井采取加密取样的方式,这就造成了非连续性变化。分析一个样品约缓慢加热等程序测量操作需要取样、稀释、;4耗时。2小时。耗因此,传统的人工方法取样的随机性大,取样不及时,不能及时反映化验原油含水率的变化,而且在油井较为分散或恶劣的天气情况下,传统的人工测量法无法进行在线精的劳动强度更大。更为重要的是,确测量,不能满足油田生产自动化管理的需要。在线测量2原油含水率在线测量技术在油田得到随着我国石油行业的技术发展,许多单位先后开发出了各种形式的在线检测仪了越来越广泛的应用,表。在线检测仪表投入使用后,大大降低了劳动强度,提高了测量精度和测量速度,使油田自动化水平迈上了一个新的台阶。目前常用的在线检测方法有密度计法、射线法、电容法、射频法、短波法及微波法等。)密度计法。原油含水率不同,其密度也不同。当确定了含水原1(计算出含水原油的含水可根据纯油密度和纯水密度,油的密度值后, 率。该法一般应用震动管液体密度计(或科氏力质量流量计)连续测量两相分离器排出的油水混合液的密度,再计算出原油含水率。在应用密度法测原油含水率时,应注意以下问题油井产纯油和矿化水的密度取值问题。密度计的温度压力补偿问题。补测介质的取样问题。密度计结垢问题。矿化水造成的密度计振动管内壁结垢的现象十其中在高含水原油中,对容易引起结垢的高含水原油,不应采用振动管密度分严重。因此,计测量含水。使用情由于现场介质条件和环境限制,采用振动管密度计测含水率,造成含水偏低、液中含气会

原油含水率现状

作者乃禄薛朝妹徐竟天家田 石油大学电子工程学院 原油含水率直接影响到原油的开采、脱水、集输、计量、销售、炼化等,因此,在油田原油生产和储运的过程中,都要求检测原油含水率。原油含水率的在线检测,对于确定油井出水、出油层位,估计原油产量,预测油井的开发寿命,具有重要意义。同时,准确及时的原油含水率在线检测数据,能够反映出油井的工作状态,对管理部门减少能耗、降低成本,实现油田自动化管理,起着重要作用。 我国先后开发出多种不同形式的原油含水率测试仪,投入油田使用后,虽然取得了一定的效果,但由于工艺和技术水平原因,其稳定性、准确性、实时性、可靠性及成本情况,难以适应我国高含水油田生产实际的要求。 因此,针对我国原油生产的特点,研究原油含水率的测量技术,研制新型传感器,开发高品质的仪表,使我国原油含水率测量技术迈入一个新的台阶,具有重要的社会意义和经济意义。 原油含水率测量技术的现状 1人工测量 我国石油行业原油的生产、储运、加工等环节的原油含水率的测量方法很多,传统的人工测量方法主要是通过人工取样,采用蒸馏法和电脱法测定原油含水率。 电脱法虽操作简单;但误差较大。蒸馏法测量精度高;但存在许多缺

点,主要表现在 1 代表性差。每口井的取样量和油井产液量相比非常小,因此,取样的代表性差。 2人工取样所得到的流体,不能代表油井的全部流体组分。 3连续性差。目前人工取样通常是对正常生产的油井4~7天取一个样,对非正常生产的油井采取加密取样的方式,这就造成了非连续性变化。 4耗时。测量操作需要取样、稀释、缓慢加热等程序;分析一个样品约耗2小时。 因此,传统的人工方法取样的随机性大,取样不及时,不能及时反映原油含水率的变化,而且在油井较为分散或恶劣的天气情况下,化验的劳动强度更大。更为重要的是,传统的人工测量法无法进行在线精确测量,不能满足油田生产自动化管理的需要。 2在线测量 随着我国石油行业的技术发展,原油含水率在线测量技术在油田得到了越来越广泛的应用,许多单位先后开发出了各种形式的在线检测仪表。在线检测仪表投入使用后,大大降低了劳动强度,提高了测量精度和测量速度,使油田自动化水平迈上了一个新的台阶。 目前常用的在线检测方法有密度计法、射线法、电容法、射频法、短波法及微波法等。 (1)密度计法。原油含水率不同,其密度也不同。当确定了含水原油的密度值后,可根据纯油密度和纯水密度,计算出含水原油的含水

相关文档