文档库 最新最全的文档下载
当前位置:文档库 › 轮轨摩擦耦合热弹性有限元分析

轮轨摩擦耦合热弹性有限元分析

有限元分析复习内容汇总

1、有限元是近似求解一般连续场问题的数值方法 2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接 3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个. 4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩 . 5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角 6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。 7、在弹性和小变形下,节点力和节点位移关系是线性关系。 8、弹性力学问题的方程个数有15个,未知量个数有15个。 9、弹性力学平面问题方程个数有8,未知数8个。 10、几何方程是研究应变和位移之间关系的方程 11、物理方程是描述应力和应变关系的方程 12、平衡方程反映了应力和体力之间关系的 13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态 14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态 16、在进行节点编号时,同一单元的相邻节点的号码差尽量小. 17、三角形单元的位移模式为_线性位移模式_- 18、矩形单元的位移模式为__双线性位移模式_ 19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性 20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系 21、矩形单元边界上位移是连续变化的 1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. 梁单元和平面钢架结构单元的自由度由什么确定 答:由每个节点位移分量的总和确定 6. 简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量

轮轨接触力学

轮轨接触动力学报告 —关于轮轨接触动力学的思考 年级:2013级 专业:载运工具应用工程 姓名:刘新龙 学号:13217021

关于轮轨接触动力学的思考 提高机车运行速度和加大牵引能力是当今世界铁路发展的趋势,而达到这一目的就必须深入轮轨关系的理论研究,改善机车的粘着利用水平。轮轨关系则是机车车辆、轨道系统中最基本、最复杂的一个问题,是特殊的、典型的三维滚动摩擦接触问题。接触理论始于1882年, 由H. Hertz发表的经典论文《论弹性固体的接触》。他提出了椭圆接触面的假设, 把三维接触问题简化为弹性无限半空间问题。Hertz的研究成果为接触理论奠定了坚实的基础, 但Hertz理论仅局限于无摩擦表面及理想弹性固体, 对于轮轨这样复杂的三维滚动接触问题显然是不能准确求解的。 近几十年来,国内外在轮轨滚动接触问题的理论研究和实验研究方面都取得了很大进展,但随着铁路技术的不断提高,使用解析解法解决轮轨关系问题的局限性也愈加突出。在高速和重载的要求下,轮轨的波磨问题、疲劳损伤问题变得更加严重,而这些问题的产生都与轮轨间作用力有着直接的关系。因此,在现有轮轨滚动接触理论的基础上,使用有限元方法以精确模拟轮轨的几何形状及其相互接触关系,将是今后解决轮轨关系问题的主要途径。 不断增长的运输量, 要求铁路必须在保证安全的前提下, 增加货物列车的重量, 提高客运列车的速度和运行品质。因此, 新型机车车辆的设计、制造和线路的建设与维护, 都迫切需要预知轮轨之间的动力作用特性。而现在人类已经能够准确地模拟一个飞行体在宇宙空间的运动并进行精确控制, 但却不能精确摸拟铁路轮轨的相互作用。可见轮——轨关系及车辆——线路相互作用仍然是铁道车辆动力学的中心课题。机车车辆或者列车与铁道线路是一个整体系统, 在这个系统中, 它们相互关联, 相互作用。因此在研究机车车辆动力学性能时, 不能简单地视线路为外激干扰。换言之, 线路也并不存在独立于列车的激扰特性。引起系统产生振动和其它动力作用的是钢轨和车轮的滚动面上实际存在的不平顺和其它几何技术特性,当然还有列车中车辆与车辆之间, 机车与车辆之间的相互作用。

第18章 接触问题有限元分析技术

第18章接触问题的有限元分析技术 第1节基本知识 接触问题是一种高度非线性行为,需要较大的计算资源,为了进行准确而有效的计算,理解问题的特性和建立合理的模型是很重要的。 接触问题存在两个较大的难点:其一,在求解问题之前,不知道接触区域,表面之间是接触或分开是未知的、突然变化的,这些随载荷、材料、边界条件和其它因素而定;其二,大多数的接触问题需要计算摩擦,有几种摩擦和模型可供挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。 一、接触问题分类 接触问题分为两种基本类型:刚体─柔体的接触和半柔体─柔体的接触。在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触;另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。 ANSYS支持三种接触方式:点─点、点─面和平面─面。每种接触方式使用的接触单元适用于某类问题。 二、接触单元 为了给接触问题建模,首先必须认识到模型中的哪些部分可能会相互接触,如果相互作用的其中之一是一点,模型的对立应组元是一个节点。如果相互作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元。有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元。下面分类详述ANSYS使用的接触单元和使用它们的过程。 1.点─点接触单元 点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)。 如果两个面上的节点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面─与的接触问题的典型例子。 2.点─面接触单元 点─面接触单元主要用于给点─面的接触行为建模,例如两根梁的相互接触。 如果通过一组节点来定义接触面,生成多个单元,那么可以通过点─面的接触单元来模拟面─面的接触问题,面即可以是刚性体也可以是柔性体,这类接触问题的一个典型例子是

稳态热传导问题的有限元法

6. 稳态热传导问题的有限元法 本章的内容如下: 6.1热传导方程与换热边界 6.2稳态温度场分析的一般有限元列式 6.3三角形单元的有限元列式 6.4温度场分析举例 6.1热传导方程与换热边界 在分析工程问题时,经常要了解工件内部的温度分布情况,例如发动机的工作温度、金属工件在热处理过程中的温度变化、流体温度分布等。物体内部的温度分布取决于物体内部的热量交换,以及物体与外部介质之间的热量交换,一般认为是与时间相关的。物体内部的热交换采用以下的热传导方程(Fourier 方程)来描述, Q z T z y T y x T x t T c +?? ? ??????+???? ??????+??? ??????=??z y x λλλρ (6-1) 式中ρ为密度,kg/m 3 ; c 为比热容,K)J/(kg ?;z y x λλλ,,为导热系数,()k m w ?;T 为温度,℃;t 为时间,s ;Q 为内热源密度,w/m 3 。 对于各向同性材料,不同方向上的导热系数相同,热传导方程可写为以下形式, Q z T y T x T t T c 222222+??+??+??=??λλλρ (6-2) 除了热传导方程,计算物体内部的温度分布,还需要指定初始条件和边界条件。初始条 件是指物体最初的温度分布情况, () z y,x,T T 00t == (6-3) 边界条件是指物体外表面与周围环境的热交换情况。在传热学中一般把边界条件分为三类。 1) 给定物体边界上的温度,称为第一类边界条件。 物体表面上的温度或温度函数为已知, s s T T = 或 ),,,(t z y x T T s s = (6-4) 2) 给定物体边界上的热量输入或输出,称为第二类边界条件。 已知物体表面上热流密度, s s z z y y x x q n z T n y T n x T =??+??+??)(λλλ

港口起重机小车轮轨接触的有限元分析(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 港口起重机小车轮轨接触的有 限元分析(新编版) Safety management is an important part of production management. Safety and production are in the implementation process

港口起重机小车轮轨接触的有限元分析 (新编版) 利用ANSYS10.0软件进行轮轨弹性接触有限元分析。文章分别对不同载荷条件下,小车轮轨接触在不同的初始接触位置处的应力进行分析,得出小车横向偏移对接触应力分布的影响。 随着世界贸易量大幅增长,世界各个港口之间的货物吞吐量逐年增加。世界各港口,特别是集装箱港及大型散货港在最近十几年发展迅猛,随着各个港口码头对装卸效率要求的大幅提高,桥式起重机正趋于大型化、高速化发展。起重量越来越大。工作速度越来越高,不可避免的小车运行速度也加快。小车运行速度的加快也使得小车车轮发生和横向移动,对小车运行的稳定性带来威胁。导向装置间隙引起的部分偏斜、轨道侧面或者水平轮的磨损引起的部分偏斜和轨道水平面上的直线性公差引起的部分偏斜都将造成车轮走

偏。 有限元模型的建立与数值分析 在实际接触中,由于车轮的横向移动导致初始位置发生改变。我们考虑了四种典型的横截面接触位置,将有限元方法求得的计算值与赫兹接触理论值做出比较。分析在不同的接触位置处应力的分布情况。 在本次模型中采用800t/h的卸船机小车运行轨道进行分析,小车轨道与主轨道相同。 由于车轮的横向运动,轮廓的每一处都可能发生接触。对于车轮和轨道接触的四个不同横截面位置处,建立了有限元模型。为了得到满意的接触结果,接近接触区的轮轨网格对四个模型中任何一个都是适用的。 将有限元计算结果与赫兹理论值进行比较,如下表所示: 表2-1加载100t时有限元计算结果与赫兹理论值 图形 a

★★★装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析 模拟装配体的本质就是设置零件与零件之间的接触问题。 装配体的仿真所面临的问题包括: (1)模型的简化。这一步包含的问题最多。实际的装配体少的有十几个零件,多的有上百个零件。这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。 (2)零件之间的联接。装配体的一个主要特征,就是零件多,而在零件之间发生了关系。我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢? (3)材料属性的考虑。在一个复杂的装配体中所有的零件,其材料属性多种多样。我们在初次分析的时候,可以只考虑其线弹性属性。但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。(4)有限元网格的划分。我们知道,通过WORKBENCH,我们只需要按一个按钮,就可以得到一个粗糙的网格模型。但是如果从HYPERMESH的角度来看,ANSYS自动划分的网格,很多都是不合理的,质量较差而不能使用。那么对于装配体中的每个零件,我们该如何划分网格?对于每一个零件,我们是否要对之进行切割形成规则的几何体后,然后尽量使用六面体网格?如果

传热问题有限元分析

【问题描述】本例对覆铜板模型进行稳态传热以及热应力分析,图I所示的是铜带以及基板的俯视图,铜带和基板之间由很薄的胶层连接,可以认为二者之间为刚性连接,这样的模型不包含胶层,只有长10mm的铜带(横截面2mm×0.1mm)和同样长10mm的基板(横截面2mm×0.2mm)。材料性能参数如表1所示,有限元分析模型为实体——实体单元,单元大小0.05mm,边界条件为基板下表面温度为100℃,铜带上表面温度为20℃,通过二者进行传热。 图I 铜带与基板的俯视图 表1 材料性能参数 名称弹性模量泊松比各向同性导热系数 基板 3.5GPa 0.4 300W/(m·℃) 铜带110GPa 0.34 401W/(m·℃) 【要求】在ANSYS Workbench软件平台上,对该铜板及基板模型进行传热分析以及热应力分析。 1.分析系统选择 (1)运行ANSYS Workbench,进入工作界面,首先设置模型单位。在菜单栏中找到Units下拉菜单,依次选择Units>Metric(kg,m,s,℃,A,N,V)命令。 (2)在左侧工具箱【Toolbox】下方“分析系统”【Analysis Systems】中双击“稳态热分析”【Steady-State Thermal】系统,此时在右侧的“项目流程”【Project Schematic】中会出现该分析系统共7个单元格。相关界面如图1所示。

图1 Workbench中设置稳态热分析系统 (3)拖动左侧工具箱中“分析系统”【Analysis Systems】中的“静力分析”【Static Structural】系统进到稳态热分析系统的【Solution】单元格中,为之后热应力分析做准备。完成后的相关界面如图2所示。 图2 热应力分析流程图

轮轨接触力学

轮轨接触力学

轮轨接触动力学报告 —关于轮轨接触动力学的思考 年级:2013级 专业:载运工具应用工程 姓名:刘新龙 学号:13217021

关于轮轨接触动力学的思考 提高机车运行速度和加大牵引能力是当今世界铁路发展的趋势,而达到这 一目的就必须深入轮轨关系的理论研究,改善机车的粘着利用水平。轮轨关系则是机车车辆、轨道系统中最基本、最复杂的一个问题,是特殊的、典型的三维滚动摩擦接触问题。接触理论始于1882年, 由H. Hertz发表的经典论文《论弹性固体的接触》。他提出了椭圆接触面的假设, 把三维接触问题简化为弹性无限半空间问题。Hertz的研究成果为接触理论奠定了坚实的基础, 但Hertz理论仅局限于无摩擦表面及理想弹性固体, 对于轮轨这样复杂的三维滚动接触问题显然是不能准确求解的。 近几十年来,国内外在轮轨滚动接触问题的理论研究和实验研究方面都取 得了很大进展,但随着铁路技术的不断提高,使用解析解法解决轮轨关系问题的局限性也愈加突出。在高速和重载的要求下,轮轨的波磨问题、疲劳损伤问题变得更加严重,而这些问题的产生都与轮轨间作用力有着直接的关系。因此,在现有轮轨滚动接触理论的基础上,使用有限元方法以精确模拟轮轨的几何形状及 其相互接触关系,将是今后解决轮轨关系问题的主要途径。 不断增长的运输量, 要求铁路必须在保证安全的前提下, 增加货物列车的重量, 提高客运列车的速度和运行品质。因此, 新型机车车辆的设计、制造和线路的建设与维护, 都迫切需要预知轮轨之间的动力作用特性。而现在人类已经能够准确地模拟一个飞行体在宇宙空间的运动并进行精确控制, 但却不能精确摸拟铁路轮轨的相互作用。可见轮——轨关系及车辆——线路相互作用仍然是铁道车辆动力学的中心课题。机车车辆或者列车与铁道线路是一个整体系统, 在这个系统中, 它们相互关联, 相互作用。因此在研究机车车辆动力学性能时, 不能简单地视线路为外激干扰。换言之, 线路也并不存在独立于列车的激扰特性。引起系统产生振动和其它动力作用的是钢轨和车轮的滚动面上实际存在的不平顺和其它几何技术特性,当然还有列车中车辆与车辆之间, 机车与车辆之 间的相互作用。

基于Cowper-Symonds本构关系的轮轨滚动接触行为有限元分析

基于Cowper-Symonds本构关系的轮轨滚动接触行为有限元分析铁路运输作为一种节能环保的交通运输方式,近年来受到了越来越广泛的关注。而轮轨间的接触和相互作用则一直是铁路领域内被众多学者所关注的重要课题,这是因为轮对和轨道担任着铁路系统中最重要的角色,严重的轮轨故障必然会导致灾难性事故的发生。 随着列车行驶速度的不断提升,轮轨的损伤也会加剧,尤其是在高速列车的运用中,惯性效应变得不容忽视,材料的应变率效应也将更加显著的体现出来。然而,由于轮轨接触问题中存在着材料、几何和接触非线性,导致高速轮轨系统的动态接触行为十分的复杂,同时这也是研究该问题的意义所在。 因此,建立了三维轮轨滚动接触模型,并采用显式有限元软件LS-DYNA进行仿真计算,模型中考虑了轮轨接触的材料、几何和接触非线性,并考虑了应变率相关的材料参数,以研究动态轮轨接触行为。为了给轮轨滚动接触行为仿真分析提供真实、可靠的应变率相关的力学参数,采用HTM5020型高速拉伸试验机开展了D1轮辋钢和U71Mn轨钢在中应变率范围内的动态拉伸力学性能试验,得到了不同应变率下的塑性流动应力-应变响应曲线,建立了基于Cowper-Symonds经验性模型的动态本构关系。 同时还将三维轮轨滚动接触有限元模型拓展运用到轮对通过曲线的工况,考虑了曲线轨道的超高、轮对的横移和侧滚角。在直道工况下,以列车速度、轴重和材料的应变率效应为影响因素,进行轮轨动态响应的分析;在弯道工况下,以轨道曲线半径、轴重和材料的应变率效应为影响因素,进行轮轨动态响应的分析。 对轮轨动态响应的分析,包含:轮轨接触力、von-Mises等效应力、等效塑性应变、车轴轴心垂向加速度、直道下车轮踏面与轨面初始接触点的横向位移和弯

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念2009-11-24 00:06:28 作者:jiangnanxue 来源:智造网—助力中国制造业创新—https://www.wendangku.net/doc/6711885919.html, CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis - cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

ABAQUS有限元接触分析的基本概念

CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS 建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis-cre-tization)和面对面离散方法(surface-to-surfacediscretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slavesurface)上的每个节点与该节点在主面(mastersurface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念 来源:机械工业出版社《ABAQUS有限元分析常见问题解答》 CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis- cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

轮轨接触关系仿真计算

西南交通大学 轮轨接触几何参数的仿真计算 学院:机械工程学院 专业:机车车辆 姓名:温朋哲 学号: 2015200312 2016年6月

1.引言 轮轨关系是轨道交通工程的重要研究课题。轮轨接触几何是轮轨关系研究的基本内容。高速铁路的车辆运行稳定性和曲线通过能力的矛盾激化,轮轨作用加剧。因此,高速铁路的发展提出许多轮轨关系研究的新问题。世界范围内,不同的国家采用的钢轨、车轮踏面和轮对内侧距不尽相同。国内外研究表明,车轮踏面形状和轮对内侧距直接改变轮轨接触几何关系,由此产生不同的轮轨作用,进而影响高速列车系统动力学性能。当今世界高速铁路主要存在三种主流踏面及与其对应的钢轨,即中国车轮踏面LMA与钢轨断面CHN60、日本新干线圆弧车轮踏面JP- ARC与钢轨JIS60和欧洲标准车轮踏面S1002和钢轨UIC60。本文以SIMPACK数据库中自带的踏面S1002与钢轨UIC60为例,应用SIMPACK动力学软件,对其接触几何关系进行了仿真计算。 2.求解方法 2.1基本假设 (1)刚体假定。假定车轮与钢轨均为刚体,他们不存在影响接触关系的弹性变形,或者说车轮表面上任一点不能嵌入钢轨内部。而且在各种条件下轮轨始终保持接触,轮轨的相对运动除纵向位移外还有横向位移和摇头角位移。轮轨几何参数与轮对在钢轨上的纵向位置无关,这些参数实际上是车轮相对轨道的横移和摇头角的函数。 (2)同一侧车轮上的接触点和钢轨上的接触点具有相同的空间位置。 (3)轮轨接触点处车轮与钢轨具有公切面。

2.2求解方法 文献[1]提出的采用迹线法思想来处理轮轨空间接触几何关系,目前已得到了较好的应用[2,3]。其基本思路是在求轮轨接触几何关系时,可以暂时抛开轨面的形状,仅由轮对的位置(摇头角y、侧滚角ψ)和踏面主轮廓线参数(滚动圆半径R、接触角W)确定可能接触点,每个滚动圆上有且仅有一个可能接触点,这些可能接触点的集合形成一条在踏面上的空间曲线。该方法具有精度高、速度快、稳定性好等优点。 3.建立模型 3.1创建文件 主窗口>>File>>Open File,弹出文件选择窗口。 选择建立的文件目录,点击New,输入文件名,回车。

基于ANSYS与ABAQUS的赫兹接触问题有限元分析对比

基于ANSYS与ABAQUS的赫兹接触问题 有限元分析对比 郭波 [长春设备工艺研究所,长春130012] [ 摘要] 分别应用ANSYS软件与ABAQUS软件求解某精密部件的赫兹接触问题,并通过实验结果验证有限元分析结果的计算精度,结果显示ANSYS软件在求解精密部件的赫兹接触问题方面具 有较高的求解精度。 [ 关键词]ANSYS,ABAQUS,赫兹接触,有限元 Finite element analysis of Hertz contact problem based on ANSYS and ABAQUS GUO Bo [Changchun Equipment &Technology Research Institute , Changchun 130012] [ Abstract ] Solve Hertz contact problem both using ANSYS and ABAQUS, then verificate the computational accuracy of the Finite element analysis. The result shows, it has higher calculation precision in terms of Hertz contact problem of ANSYS in solving precision components. [ Keyword ] ANSYS,ABAQUS, Hertz contact, Finite element analysis 1前言 接触分析能够解决典型的状态非线性问题,在工程中应用广泛。由于传统的赫兹接触理论是在许多假设的前提下推导的近似解,而且在许多场合这些假设的前提是不成立的,因此运用赫兹理论来解决接触问题存在一定的局限性。近年来,随着计算机技术的普及,各种商用有限元分析软件逐步发展,有限元方法已成为应用广泛并且实用高效的求解接触问题的数值分析方法。ANSYS软件和ABAQUS软件是工程中应用最广泛的商用有限元分析软件。ANSYS软件是融合结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。ABAQUS 是一套功能强大的工程模拟的有限元软件,其解决问题的范围从相对

轮轨接触几何关系及滚动理论

第三节轮轨接触几何关系及滚动理论 轨道车辆沿钢轨运行,其运行性能与轮轨接触几何关系和轮轨之间的相互作用有着密切的关系。同时,由于轮轨的原始外形不同和运用中形状的变化,轮轨之间的接触几何关系和接触状态也是不同和变化的。 米用车轮轴承、滚动是车辆获取导向、驱动或制动力的主要方式,轨道车辆中地铁、轻轨常采用钢轮钢轨方式,而独轨、新交通系统及部分地铁则采用充气轮胎走行在硬质导向路面上。车轮与导轨间的滚动接触关系决定了它们间的作用力、变形和相对运动。因此滚动接触直接影响城市轨道车辆的性能、安全、磨耗与使用寿命。 一轮轨接触参数和接触状态 当车辆沿轨道运行时,为了避免车轮轮缘与钢轨侧面经常接触和便于车辆通过曲线,左右车轮的轮缘外侧距离小于轨距,因此轮对可以相对轨道作横向位移和摇头角位移。在不同的横向位移和摇头角位移的条件下,左右轮轨之间的接触点有不同位置。于是轮轨之间的接触参数也出现变化。对车辆运行中动力学性能影响较大的轮轨接触几何参数如下(图5一8): 1左轮和右轮实际滚动半径r L ,r R。当轮对为刚性轮对,轮对绕其中心线转动时,各部分的转速是一致的,车轮滚动半径大,在同样的转角下行走距离长。同一轮对左右车轮滚动半径越大,左右车轮滚动时走行距离差就加大,车轮滚动半径的大小也影响轮轨接触力。 2左轮和右轮在轮轨接触点处的踏面曲率半径和 3左轨相石轨在稚轨接触点处的矶头截曲曲率半径和轮轨接触点处的曲率半 径大小将会影响轮轨实际接触斑的大小、形状和轮轨的接触应力。 4左轮和右轮在接触点处的接触角s:和6R,即轮轨接触点处的轮轨公切面与轮对中心。 线之间的夹角。轮轨接触角的大小影响轮轨之间的法向力和切向力在垂向和水平方向分量的大小。 5轮对侧滚角小w。轮对侧滚角会引起转向架的侧滚和车体侧滚。 6.轮对中心上下位移Z w。该量的变化会引起转向架和车体的垂向位移。 研究轮轨接触关系时应特别注意轮轨间的接触状态。车轮与钢轨之间的接触状态可能有

有限元接触分析

第五章接触问题的非线性有限元分析 5.1引言 在工程结构中,经常会遇到大量的接触问题。火车车轮与钢轨之间,齿轮的啮合是典型的接触问题。在水利和土木工程中,建筑物基础与地基,混凝土坝分缝两侧,地下洞室衬砌与围岩之间,岩体结构面两侧都存在接触问题。对于具有接触面的结构,在承受荷载的过程中,接触面的状态通常是变化的,这将影响接触体的应力场。而应力场的改变反过来又影响接触状态,这是一个非线性的过程。由于接触问题对工程实践的重要性,本章将作为专门问题进行研究。 最早对接触问题进行系统研究的是H. Hertz,他在1882年发表了《弹性接触问题》一书中,提出经典的Hertz弹性接触理论。后来Boussinesg 等其他学者又进一步发展了这个理论。但他们都是采用一些简单的数学公式来研究接触问题,因而只能解决形状简单(如半无限大体)、接触状态不复杂的接触问题。 二十世纪六十年代以后,随着计算机和计算技术的发展,使应用数值方法解决复杂接触问题成为可能。目前,分析接触问题的数值方法大致可分为三类:有限元法、边界元法和数学规划法。 数学规划法是一种优化方法,求解接触问题时,根据接触准则或变分不等式建立数学模型,然后采用二次规划或罚函数方法给出解答。 边界元方法也被用来求解接触问题,1980年和1981年,Anderson先后发表两篇文章,用于求解无摩擦弹性接触和有摩擦弹性接触问题。近年来虽有所发展,但仍主要用于解决弹性接触问题。 就目前的发展水平来看,数学规划法和边界元法只适合于解决比较简单的弹性接触问题。对于相对复杂的接触非线性问题,如大变形、弹塑性接触问题,还是有限元方法比较成熟、比较有效。 早在1970年,Wilson和Parsons提出一种位移有限元方法求解接触问题。Chan和Tuba,Ohte等进一步发展了这类方法。它的基本思想是假定接触状态,求出接触力,检验接触条件,若与假定的接触状态不符,则重新假定接触状态,直至迭代计算得到的接触状态与假定状态一致为止。具体做法是: 对于弹性接触的两个物体,通过有限元离散,建立支配方程 1 1 1 R δ K=(5.1) 式中, 1 K为初始的整体劲度矩阵,它与接触状态有关,通常根据经验和实 际情况假定。 1 δ是结点位移列阵, 1 R为结点荷载列阵。 求解式(5.1),得到结点位移 1 δ,再计算接触点的接触力 1 P,将 1 δ和1 P代入与假定接触状态相应的接触条件,如果不满足接触条件,就要修改 接触状态。根据修改后新的接触状态,建立新的劲度矩阵 2 K和支配方程 2 2 2 R δ K=(5.2) 再由式(5.2)解得 2 δ,进一步计算接触力 2 P,将 2 δ和 2 P代入接触条件, 验算接触条件是否满足。这样不断的迭代循环,直至 n δ和 n P满足接触条件为止,此时得到的解答就是真实接触状态下的解答。

轮轨接触问题的弹塑性分析

文章编号:100128360(2000)0320016206 轮轨接触问题的弹塑性分析 张 军1, 吴昌华2 (1大连理工大学工程力学系,辽宁大连 116023; 2大连铁道学院机械工程系,辽宁大连 116028) 摘 要:用有限元参数二次规划法,针对不同的轮径、轴重、牵引力和摩擦系数的各种工况分别进行了弹性和弹 塑性计算,得出了轮轨间接触状态和接触内力的分布情况,并对其随各种参数变化的规律进行了分析,从而提出 了改善机车粘着利用水平的途径。 关键词:有限元法;弹塑性理论;轮轨关系;摩擦;轮轨接触力 中图分类号:U260.11 文献标识码:A Elasto-plastic analysis of wheel-ra il con tact problem ZHAN G Jun1, W U Chang2hua1 (1D ep t.of Engineering M echanics,D alian U niversity of techno logy,D alian116023,Ch ina;  2D ep t.of M echanical Engineering,D alian R ail w ay Institute,D alian116028,Ch ina) Abstract:U sing the fin ite elem en t p aram etric quadratic p rogramm ing m ethod,the com p u tati on of elastic and e2 lasto2p lastic ro lling con tact p rob lem s betw een w heel and rail is carried ou t fo r vari ou s cases such as differen t w heel diam eters,differen t ax le loads,differen t tractive fo rces and differen t fricti on facto rs.T he con tact states and the con tact in ternal fo rces betw een w heel and rail are ob tained,and their changing law s co rresponding w ith every above m en ti oned p aram eter are analyzed in th is p ap er. Keywords:fin ite elem en t m ethod;elasto2p lastic theo ry;w heel2rail relati on sh i p;fricti on;con tact fo rces be2 tw een w heel and rail 提高机车运行速度和加大牵引能力是当今世界铁路发展的趋势,而达到这一目的就必须深入轮轨关系的理论研究,改善机车的粘着利用水平。轮轨关系则是机车车辆、轨道系统中最基本、最复杂的一个问题,是特殊的、典型的三维滚动摩擦接触问题。 接触理论始于1882年,由H.H ertz发表的经典论文《论弹性固体的接触》。他提出了椭圆接触面的假设,把三维接触问题简化为弹性无限半空间问题。 H ertz的研究成果为接触理论奠定了坚实的基础,但H ertz理论仅局限于无摩擦表面及理想弹性固体,对于轮轨这样复杂的三维滚动接触问题显然是不能准确求解的。 在轮轨滚动接触力学研究方面作出重大贡献的是荷兰学者Kalker J J教授,他的一系列研究成果是当今各国铁路公认的权威之作。1967年Kalker在吸取了众多学者理论的基础上,在其博士论文中用多项式收稿日期:1999212207;修回日期:2000202220 基金项目:国家自然科学基金资助项目(19672017) 作者简介:张 军(1972—),辽宁沈阳人,博士研究生级数表达了具有椭圆接触斑的滚动接触问题的解,从而把二维理论发展成为三维理论。从60年代到80年代他不断地对其理论进行发展,并且先后研制出了DU VO ROL程序和CON TA CT程序,可以对H ertz 和非H ertz的三维弹性体滚动接触问题进行求解。 Kalker的三维非H ertz滚动接触理论在其数值实现过程中,引入了弹性力学中的弹性半空间假设,即将轮轨视为两个无限弹性半空间,因而根本无法精确模拟车轮踏面与钢轨的几何形状,而当列车轮缘与钢轨贴靠形成共形接触或两点接触时,计算模型与实际情况将相差甚远。另外,基于这种假设的计算对轮轨接触塑性分析更是无能为力。 近几十年来,国内外在轮轨滚动接触问题的理论研究和实验研究方面都取得了很大进展,但随着铁路技术的不断提高,使用解析解法解决轮轨关系问题的局限性也愈加突出。在高速和重载的要求下,轮轨的波磨问题、疲劳损伤问题变得更加严重,而这些问题的产生都与轮轨间作用力有着直接的关系。因此,在现有轮 第22卷第3期铁 道 学 报V o l.22 N o.3 2000年6月JOU RNAL O F TH E CH I NA RA I LW A Y SOC IET Y June 2000

相关文档