文档库 最新最全的文档下载
当前位置:文档库 › 共轭梯度算法分析与实现

共轭梯度算法分析与实现

共轭梯度算法分析与实现
共轭梯度算法分析与实现

编号:_ 09

《最优化方法》

课程设计

题目:共轭梯度算法分析与实现

院系:数学与计算科学学院

专业:数学与应用数学

姓名学号:

指导教师:

日期:2013 年12 月23 日

摘要

在最优化计算中,共轭梯度法是非常重要的一种方法。共轭梯度法是一种改进的最速下降法,介于最速下降法与牛顿法之间的一种无约束优化算法,是为求解目标函数为二次函数的问题而设计的一类算法。它利用目标函数的梯度逐步产生共轭方向并将其作为搜索方向的方法,收敛速度快。共轭梯度法仅需利用一阶导数信息,避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,具有二次终止性。

关键词:共轭梯度法;牛顿法;二次函数;无约束优化

Abstract

In the calculation of optimization method, conjugate gradient method is a very important one. The conjugate gradient method is a unconstrained optimization method between the steepest descent method and Newton method, and sove the objective function for the original quadratic function problems and design for a class of algorithm. Conjugate gradient method using only first derivative information, to avoid the Newton method requires storage and computing the inverse Hesse matrix and shortcomings, this method has the quadratic termination.

Keywords: Conjugate gradient method; Newton method;Unconstrained optimization

目录

1、引言 (1)

2、共轭梯度算法的描述 (1)

2.1 无约束优化问题概述 (1)

2.2 共轭方向 (1)

2.3 共轭梯度法 (1)

2.4 共轭梯度算法的步骤 (2)

3、数值实验 (2)

3.1 代码实现 (2)

3.2 算法测试 (3)

3.3 结果分析 (5)

4、算法比较 (5)

4.1 最速下降法描述 (6)

4.1.1最速下降方向 (6)

4.1.2 最速下降法 (6)

4.2 最速下降法实现 (6)

4.3 最速下降法测试 (7)

4.4共轭梯度法与最速下降法比较 (8)

5、总结 (8)

5.1 总结概括 (8)

5.2 个人感言 (9)

6、参考文献: (9)

1、引言

共轭梯度法最早是由Hesternes 和Stiefle(1952)提出来的,用于解正定系数矩阵的线性方程组,在这个基础上,Fletcher 和Reeves(1964)首先提出了解非线性最优化问题的共轭梯度法。

在各种优化算法中,共轭梯度法(Conjugate Gradient )是非常重要的一种。是一种介于最速下降法与牛顿法之间的优化算法,是为求解目标函数为二次函数的问题而设计的一类算法。它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse 矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。可微的非二次函数在极小点附近的形态近似于二次函数,因此共轭梯度法也能用于求可微的非二次函数的无约束极小问题。

共轭梯度法是一个典型的共轭方向法,它在共轭方向法基础上增加了一些性质:计算当前方向计算当前方向只需用到前一方向,对其他方向则无要求;计算出来的当前方向自动与前面所有方向共轭,因此,不需耗费大量内存存储所有方向,也节省了计算时间。

2、共轭梯度法的描述

2.1 无约束优化问题概述

一个非线性规划问题的自变量x 没有任何约束,或说可行域既是整个n 维向量空间:r n x =,称这样的非线性规划问题为无约束问题:

)(min x f 或)(min x f R n x = 2.2共轭方向

无约束问题最优化方法的核心问题是选择搜索方向。

以正定二次函数为例,来观察两个方向关于矩阵A共轭的几何意义。

设有二次函数:

f(x) = 1/2 (x - x*)T A(x - x*) ,

其中A 是n ×n 对称正定矩阵,x*是一个定点,函数f(x)的等值面

1/2 (x - x*)T A(x - x*) = c

是以x*为中心的椭球面,由于

▽f(x*) = A(x - x*) = 0,

A 正定,因此x*是f(x)的极小点。

设x (1)是在某个等值面上的一点,该等值面在点x (1)处的法向量

▽f(x (1)) = A(x (1) - x*)。

又设d (1)是这个等值面在d (1)处的一个切向量。记作

d (2) = x* - x (1)。

自然,d (1)与▽f(x (1))正交,即d (1)T ▽f(x (1)) = 0,因此有

d (1)T Ad (2) = 0,

即等值面上一点处的切向量与由这一点指向极小点的向量关于A 共轭。

2.3共轭梯度法

共轭梯度法是最著名的共轭方向法,它首先由Hestenes 和Stiefel (1952)提出来作为解线性方程组的方法。由于解线性方程组等价于极小化一个正定二次函数,故1964年Fletcher 和Reeves 提出了无约束极小化的共轭梯度法,它是直接从Hestenes 和Stiefel 解线性方程组的共轭梯度法发展而来的。共轭梯度法的基本思想是把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点。根据共轭方向的基本性质,这种方法具有二次终止性。共轭梯度法就是使得最速下降方向具有共轭性,从而提高算法的有效性和可靠性。在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

2.4 共轭梯度算法的步骤

共轭梯度算法步骤如下:

Step1 给定迭代精度10<<≤ε和初始点0x .计算)(00x f g ?=.令0 :=k . Step2 若ε≤k g ,停算,输出k x x ≈*.

Step3 计算搜索方向k d :

???≥+-=-=--1, ,,0 ,11k d g k g d k k k k k β

其中当1≥k 时,1

11---=k T k k T k k g g g g β确定1-k β. Step4 利用精确(或非精确)线搜索方法确定搜索步长k α.

Step5 令k k k k d x x α+=+ :1,并计算)(11++?=k k x f g .

Step6 令1 :+=k k ,转步Step1.

3、数值实验

3.1 代码实现

共轭梯度法的Matlab程序如下:

分别新建Conjugate_Gradient_Method.m、grad_obj.m、line_search.m、obj.m文件

Conjugate_Gradient_Method.m文件如下:

function [x,iter,val] = Conjugate_Gradient_Method(x,eps)

k = 0;

x_mat(:,1) = x;%存储每一次迭代得到的点x

x_old = x;

dy_old = grad_obj(x_old);

d_old = -dy_old;

while norm(dy_old)>eps

lambda = line_search(x_old,d_old);%步长

x_new = x_old + lambda*d_old;

dy_new = grad_obj(x_new);

coef = norm(dy_new)/norm(dy_old);

d_new = -dy_new + coef^2*d_old; % 搜索方向

k = k + 1;

x_old = x_new;

dy_old = dy_new;

d_old = d_new;

x_mat(:,k) = x_new;

%防止死循环

if k > 100

break;

end

end

x = x_new;%目标函数极值点

iter = k;%迭代次数

val = obj(x_new);%目标函数在极值点处的函数值

end

line_search.m文件如下:

function lambda = line_search(xk,dk)

%作线搜索,求步长

%phi(lambda) = obj( xk + lambda*dk )

%d_phi(lambda) = dk'*grad_obj( xk + lambda*dk )

syms eqn lambda

eqn = dk'*grad_obj(xk+lambda*dk);

lambda = solve(eqn); %用符号计算命令solve求方程d_phi(\lambda)=0的根lambda = eval(lambda);%将符号计算的结果转化为数值类型

end

3.2 算法测试

我们通过求解两个无约束优化问题来验证算法的稳定性和准确性。

问题一: 求解无约束优化问题121222122

123)(min 2x x x x x x f R x --+=∈,该问题的有精确解1)()1,1(**-==x f x T ,。

问题二:

找出如下方程的极小值点:21222121342)(m in

x x x x x x x f -++-=

其中初始点为()01,1T x =

obj.m 文件

function y = obj(x)

%目标函数

y = 3*x(1).^2/2+x(2).^2/2-x(1).*x(2)-2*x(1);%问题一目标函数

%y = x(1).^2-2*x(1).*x(2)+4*x(2).^2 + x(1)- 3*x(2);%问题二目标函数 end

grad_obj.m 文件如下

function dy = grad_obj(x)

%目标函数的梯度

dy = [3*x(1)-x(2)-2; x(2)-x(1)];%问题一目标函数的梯度

%dy = [2*x(1) - 2*x(2) + 1; -2*x(1) + 8*x(2) - 3];%问题二目标函数的梯度

end

结果如下:

问题一:

问题二:

3.3 结果分析

共轭梯度法是一种很有效求解无约束优化的方法,共轭梯度法是根据共轭方向去搜索,可以由较快的收敛速度找到最优解求得极小值,并且计算结果比较稳定,误差在忽略范围内。

4、算法比较

4.1 最速下降法的描述

4.1.1 最速下降方向 函数f(x)在点x 处沿方向d 的变化率可用方向导数来表示。对于可微函数,方向导数等于梯度与方向的内积,即:

Df(x;d) = ▽f(x)T d,

因此,求函数f(x)在点x 处的下降最快的方向,可归结为求解下列非线性规划:

min ▽f(x)T d

s.t. ||d|| ≤ 1

d = -▽f(x) / ||▽f(x)||

时等号成立。因此,在点x 处沿上式所定义的方向变化率最小,即负梯度方向为最速下降方向。

4.1.2最速下降法

最速下降法又称为梯度法,是1847 年由著名数学家Cauchy 给出的,它是解析法中最古老的一种,其他解析方法或是它的变形,或是受它的启发而得到的,因此它是最优化方法的基础。作为一种基本的算法,他在最优化方法中占有重要地位。其优点是工作量少,存储变量较少,初始点要求不高;缺点是收敛慢,效率不高,有时达不到最优解。非线性规划研究的对象是非线性函数的数值最优化问题。它的理论和方法渗透到许多方面,特别是在军事、经济、管理、生产过程自动化、工程设计和产品优化设计等方面都有着重要的应用。而最速下降法正是n 元函数的无约束非线性规划问题min f (x)的一种重要解析法,研究最速下降法原理及其算法实现对我们有着极其重要的意义。

4.2 最速下降法的步骤 最速下降法的迭代公式是

x (k+1) = x (k) + λk d (k) ,

其中d (k)是从x (k)出发的搜索方向,这里取在x (k)处的最速下降方向,即

d = -▽f(x (k)).

λk 是从x (k)出发沿方向d (k)进行一维搜索的步长,即λk 满足

f(x (k) + λk d (k)) = min f(x (k)+λd (k)) (λ≥0).

算法步骤如下:

Step1::给出初始点0x ,和精度1;0k ε<<=;

Step2:计算()k f x ?,如果()k f x ε?≤,则停止迭代,输出结果;否则转step3; Step3:令下降方向()k k d f x =-?,计算步长因子k λ使得

()min ()k k k k k f x d f x d λλλ≥+=+,令1,1k k k k x x d k k λ+=+=+,转step2。 4.3 最少下降法实现

最速下降法的Matlab 程序如下:

新建Steepest_Descent_Method.m 文件,并复用grad_obj.m 、line_search.m 、obj.m 文件

Steepest_Descent_Method.m 文件如下:

4.4最速下降法算法测试

使用此最速下降法算法求解此前的问题一和问题二,取不同的起始点的数值结果分别如下:

问题一:

问题二:

4.5共轭梯度法与最速下降法比较

通过分别用两种算法求解问题一和问题二所得的结果可以看出,共轭梯度法的收敛速度是比较最速下降快,在相同初始点处开始求解,使用共轭梯度法所需要的迭代次数比最速下降法的迭代次数的少得很多,并且也比最速下降法稳定得多。虽然在算法设计上比较相似,但是微小的改进,使得共轭梯度法无论是准

确性上还是效率上都优于牛顿法。

5、总结

5.1 总结概括

最优化理论研究在如今的研究领域发展得如火如荼,共轭梯度法是一种很有效求解无约束优化的方法,共轭梯度法是根据共轭方向搜索,可以由较快的收敛速度找到最优解。该算法最早是由Hesternes和Stiefle(1952)提出来的,用于解正定系数矩阵的线性方程组,在这个基础上,Fletcher和Reeves(1964)首先提出了解非线性最优化问题的共轭梯度法。当然该算法发展到现在已经发展出了FR,PR,HS,CD,DY等算法,在搜索方法上有了较大的改进,迭代次数减少,收敛速度加快。无约束问题最优化方法的核心问题是选择搜索方向。而共轭梯度法只计算当前方向只需用到前一方向,对其他方向则无要求;因此相对与其他算法大大减少了计算量。本次课程设计,对最优化算法中的共轭梯度法做了一定程度的研究,并通过MATLABLE实现了该算法。除此之外还实现了最速下降法,将二者所求的结果进行比较分析,进一步深入理解共轭梯度法。

5.2 个人感言

通过本次课程设计,我学会了如何对提出的问题进行研究,首先要对该问题有个大致的了解,再通过查阅资料对该问题深入研究,确定研究的方向和步骤,并一步步实现。比如在对共轭梯度法的定义及算法的具体步骤进行研究时,我还了解到了共轭方向,梯度法,无约束优化问题等知识。由于已经将关于MATLAB 编程的知识忘得差不多了,所以在使用MATLAB实现该算法时,遇到遇到了不少困难,在不断利用各种途径寻找解决的方法后,最终能够使该算法在MATLAB上得到实现。让我得到了一个复习前面所学MATLAB知识的好机会。通过本次课程设计,了解到了共轭梯度法的定义、描述以及算法的实现,及其使用共轭梯度法来解决最优化问题,使得我对最优化问题有了更深刻的了解。

6、参考文献:

[1] 何坚勇.最优化方法[M].北京:清华大学出版社,2007.

[2] 袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997

[3] 薛嘉庆.最优化原理与方法[M].北京:清华大学出版社,2003.

[4] 张光澄.非线性最优化计算方法[M].北京:高等教育出版社,2005

[5] 傅英定,成孝予,唐应辉.最优化理论与方法[M].北京:国防工业出版社,2008

数学实验“线性方程组的最速下降法与共轭梯度法解法”实验报告(内含matlab程序代码)

西京学院数学软件实验任务书

实验五实验报告 一、实验名称:最速下降法与共轭梯度法解线性方程组。 二、实验目的:进一步熟悉理解掌握最速下降法与共轭梯度法解法思路,提高matlab 编程能力。 三、实验要求:已知线性方程矩阵,应用最速下降与共轭梯度法在相关软件编程求解线性方程组的解。 四、实验原理: 1.最速下降法: 从某个初始点)0(X 出发,沿)(X f 在点)0(X 处的负梯度方向 )0()0()0()(AX b X f r -=-?= 求得)(X f 的极小值点)1(X , 即 )(min )0()0(0 r X f λλ+> 然后从)1(X 出发,重复上面的过程得到)2(X 。如此下去,得到序列{)(k X } )(...)()()()1()0(k X f X f X f >>> 可以证明,从任一初始点)0(X 出发, 用最速下降法所得到的序列{)(k X }均收敛于问题使X 最小化)(X f 的解,也就是方程组b AX =的解。其收敛速度取决于 1 1 λλλλ+-n n ,其中1λ ,n λ分别

为A 的最小,最大特征值。最速下降法迭代格式:给定初值)0(X , )(k X 按如下方法决定: ()) ()(1)(k )()()()(k ) ()(X ,,)(k k k k T k k T k k k k r X Ar r r r AX b X f r λλ+=> <><=-=-?=+ 2.共轭梯度法 其基本步骤是在点)(k X 处选取搜索方向)(k d , 使其与前一次的搜索方向)1(-k d 关于A 共轭,即 (1)()(1),0k k k d d Ad --<>= 然后从点)(k X 出发,沿方向)(k d 求得)(X f 的极小值点 )1(+k X , 即 )(min )() ()(0 )1(k d X f X f k k λλ+=>+ 如此下去, 得到序列{)(k X }。不难求得0,)1()(>=<-k k Ad d 的解为 ) () 1()1()()() () 1(,,k k k k k k k d Ad d d AX b X X > <>-<+=--+ 注意到)(k d 的选取不唯一,我们可取

最优化方法实验报告(2)

最优化方法实验报告Numerical Linear Algebra And Its Applications 学生所在学院:理学院 学生所在班级:计算数学10-1 学生姓名:甘纯 指导教师:单锐 教务处 2013年5月

实验三 实验名称: 无约束最优化方法的MATLAB 实现 实验时间: 2013年05月10日 星期三 实验成绩: 一、实验目的: 通过本次实验的学习,进一步熟悉掌握使用MATLAB 软件,并能利用该软件进行无约束最优化方法的计算。 二、实验背景: (一)最速下降法 1、算法原理 最速下降法的搜索方向是目标函数的负梯度方向,最速下降法从目标函数的负梯度方向一直前进,直到到达目标函数的最低点。 2、算法步骤 用最速下降法求无约束问题n R x x f ∈,)(min 的算法步骤如下: a )给定初始点)0(x ,精度0>ε,并令k=0; b )计算搜索方向)()()(k k x f v -?=,其中)()(k x f ?表示函数)(x f 在点)(k x 处的梯度; c )若ε≤)(k v ,则停止计算;否则,从)(k x 出发,沿)(k v 进行一维搜索, 即求k λ,使得)(min )()()(0 )()(k k k k v x f v x f λλλ+=+≥; d )令1,)()()1(+=+=+k k v x x k k k k λ,转b )。

(二)牛顿法 1、算法原理 牛顿法是基于多元函数的泰勒展开而来的,它将 )()]([-)(1)(2k k x f x f ??-作为搜索方向,因此它的迭代公式可直接写出 来: )()]([)(1)(2)()(k k k k x f x f x x ??-=- 2、算法步骤 用牛顿法求无约束问题n R x x f ∈),(min 的算法步骤如下: a )给定初始点)0(x ,精度0>ε,并令k=0; b )若ε≤?)()(k x f ,停止,极小点为)(k x ,否则转 c ); c )计算)()]([,)]([)(1)(2)(1)(2k k k k x f x f p x f ??-=?--令; d )令1,)()()1(+=+=+k k p x x k k k ,转b )。 (三)共轭梯度法 1、算法原理 共轭梯度法是利用目标函数梯度逐步产生共轭方向作为线搜索方向的方法,每次搜索方向都是在目标函数梯度的共轭方向,搜索步长通过一维极值算法确定。 2、算法步骤 a )给定初始点)0(x ,精度0>ε;

共轭梯度法C语言(西安交大)

#include #include #define N 10 /*定义矩阵阶数*/ void main() { int i,j,m,A[N][N],B[N]; double X[N],akv[N],dka[N],rk[N],dk[N],pk,pkk,ak,bk; for(i=0;i

printf("\n"); printf("input the Maxtr X\n"); /*给X0输入一个初始向量*/ for(i=0;i

最优化课程设计--共轭梯度法算法分析与实现

最优化课程设计--共轭梯度法算法分析与实现(设计程序) 题目共轭梯度法算法分析与实现 班级 / 学号 14140101/2011041401011 学生姓名黄中武指导教师王吉波王微微 课程设计任务书 课程名称最优化方法课程设计院(系) 理学院专业信息与计算科学 课程设计题目共轭梯度法算法分析与实现课程设计时间: 2014 年 6月 16日至 2014 年 6月 27日 课程设计的要求及内容: [要求] 1. 学习态度要认真,要积极参与课程设计,锻炼独立思考能力; 2. 严格遵守上机时间安排; 3. 按照MATLAB编程训练的任务要求来编写程序; 4. 根据任务书来完成课程设计论文; 5. 报告书写格式要求按照沈阳航空航天大学“课程设计报告撰写规范”; 6. 报告上交时间:课程设计结束时上交报告; 7. 严禁抄袭行为,一旦发现,课程设计成绩为不及格。 一、运用共轭梯度法求解无约束最优化问题 要求:1)了解求解无约束最优化问题的共轭梯度法; 2)绘出程序流程图; 3)编写求解无约束最优化问题的共轭梯度法MATLAB程序; 4)利用编写文件求解某无约束最优化问题;

5)给出程序注释。 指导教师年月日 负责教师年月日 学生签字年月日 沈阳航空航天大学 课程设计成绩评定单 课程名称最优化理论与算法课程设计院(系) 理学院专业信息与计算科学课程设计题目共轭梯度法算法分析与实现学号 2011041401011 姓名黄中武指导教师评语: 课程设计成绩 指导教师签字 年月日 最优化方法课程设计沈阳航空航天大学课程设计用纸目录 目录 一、正 文 (1) 二、总结 ............................................................... 8 参考文 献 ............................................................... 9 附录 .. (10) 第 I 页 最优化方法课程设计沈阳航空航天大学课程设计用纸正文 一、正文 一无约束最优化问题的共轭梯度法

清华大学高等数值计算(李津)实践题目一(共轭梯度CG法,Lanczos算法与MINRES算法)

高等数值计算实践题目一 1. 实践目的 本次计算实践主要是在掌握共轭梯度法,Lanczos 算法与MINRES 算法的基础上,进一步探讨这3种算法的数值性质,主要研究特征值特征向量对算法收敛性的影响。 2. 实践过程 (一)生成矩阵 (1)作5个100阶对角阵i D 如下: 1D 对角元:1,1,...,20,1+0.1(-20),21,...,100j j d j d j j ==== 2D 对角元:1,1,...,20,1+(-20),21,...,100j j d j d j j ==== 3D 对角元:,1,...,80,81,81,...,100j j d j j d j ==== 4D 对角元:,1,...,40,41,41,...,60,41+(60),61,...,100j j j d j j d j d j j =====-= 5D 对角元:,1,...,100j d j j == 记i D 的最大模特征值和最小模特征值分别为1i λ和i n λ,则i D 特征值分布有如下特点: 1D 的特征值有较多接近于i n λ,并且1/i i n λλ较小, 2D 的特征值有较多接近于i n λ,并且1/i i n λλ较大, 3D 的特征值有较多接近于1i λ,并且1/i i n λλ较大, 4D 的特征值有较多接近于中间模特征值,并且1/i i n λλ较大, 5D 的特征值均匀分布,并且1/i i n λλ较大 (2)随机生成10个100阶矩阵j M : (100(100))j M fix rand = 并作它们的QR 分解,得j Q 和j R ,这样可得50个对称的矩阵T ij j i j A Q DQ =,其中i D 的对角元就是ij A 的特征值,若它们都大于0,则ij A 正定,j Q 的列就是相应的特征向量。结合(1)可知,ij A 都是对称正定阵。

用MATLAB实现共轭梯度法求解实例

用MATLAB 实现共轭梯度法求解实例 康福 1 一.无约束优化方法 1.1 无约束优化方法的必要性 一般机械优化设计问题,都是在一定的限制条件下追求某一指标为最小,它 们都属于约束优化问题。但是为什么要研究无约束优化问题? (1)有些实际问题,其数学模型本身就是一个无约束优化问题。 (2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。 (3)约束优化问题的求解可以通过一系列无约束优化方法来达到。所以无约束优 化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。 (4)对于多维无约束问题来说,古典极值理论中令一阶导数为零,但要求二阶可 微,且要判断海赛矩阵为正定才能求得极小点,这种方法有理论意义,但无 实用价值。和一维问题一样,若多元函数F(X)不可微,亦无法求解。但古典 极值理论是无约束优化方法发展的基础。 1.2共轭梯度法 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向 上的差别。 (1)间接法——要使用导数,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度 法等。 (2)直接法——不使用导数信息,如坐标轮换法、鲍威尔法单纯形法等。 用直接法寻找极小点时,不必求函数的导数,只要计算目标函数值。这类方 法较适用于解决变量个数较少的(n ≤20)问题,一般情况下比间接法效率低。间接法除要计算目标函数值外,还要计算目标函数的梯度,有的还要计算其海赛矩阵。 搜索方向的构成问题乃是无约束优化方法的关键。 共轭梯度法是沿着共轭方向进行搜索,属于共轭方向法中的一种,该方法中 每一个共轭向量都是依赖于迭代点处的负梯度而构造出来。共轭梯度法作为一种实用的迭代法,它主要有下面的优点: (1)算法中,系数矩阵A的作用仅仅是用来由已知向量P 产生向量W=AP ,这不仅 可充分利用A的稀疏性,而且对某些提供矩阵A较为困难而由已知向量P 产 生向量W=AP 又十分方便的应用问题是很有益的。 (2)不需要预先估计任何参数就可以计算,这一点不像SOR 等; (3)每次迭代所需的计算,主要是向量之间的运算,便于并行化。 共轭梯度法原理的知识较多,请详见《机械优化设计》第四章的第四、五节。 图1为共轭梯度法的程度框图 1(0,1,2,) k k k k s k α+=+=x x

实验2 最速下降法和共轭梯度法的程序设计

实验2 最速下降法和共轭梯度法的程序设计 一、实验目的 1、熟悉无约束优化问题的最速下降算法和共轭梯度法。 2、培养matlab 编程与上机调试能力。 二、实验课时:2个课时 三、实验准备 1、预习无约束优化问题的最速下降算法和共轭梯度法。 2、熟悉matlab 软件的基本操作及程序编写。 四、实验内容 课堂实验演示 根据最速下降法编写程序,求函数 21222121342)(min x x x x x x x f -++-= 的极小值,其中初始点为()01,1T x = 算法步骤如下: Step1::给出初始点0x ,和精度1;0k ε<<=; Step2:计算()k f x ?,如果()k f x ε?≤,则停止迭代,输出结果;否则转step3; Step3:令下降方向()k k d f x =-?,计算步长因子k λ使得0()min ()k k k k k f x d f x d λλλ≥+=+,令1,1k k k k x x d k k λ+=+=+,转step2。 其程序如下: function [x,iter,val,dval] = Steepest_Descent_Method(x,eps) k = 1; dy = grad_obj(x); x_mat(:,1) = x;%存储每一次迭代得到的点x while norm(dy)>eps d = -dy; % 搜索方向 lambda = line_search(x,d);%步长 x = x + d*lambda; k = k + 1; x_mat(:,k) = x; dy = grad_obj(x); end iter = k - 1; val = obj(x);%目标函数在极值点处的函数值

作业4-FR共轭梯度法

最优化方法第四次作业 题目:利用FR-共轭梯度法求解无约束优化问题222 12122min ()44412x R f x x x x x x ∈=+--。初始点(0)(0.5,1).T x =- () ()T k k T k k k k k k k g g g g k d g k g d 111110.0,;0,-----=???≥+-=-=ββ 一、程序 function [x,val,k]=frcg(fun,gfun,x0) %功能:用FR 共轭梯度法求解无约束问题min f (x ) %输入:x0是初始点,fun,gfun 分别是求目标函数和梯度 %输出:x,val 分别是近似最优点和最优值,k 是迭代次数 maxk=5000; rho=0.6; sigma=0.4; k=0; epsilon=1e-4; n=length(x0); while (k=0.0) d=-g; end end if (norm(d)

while (m<20) %用Armijo 搜索求步长 if (feval(fun,x0+rho^m*d)> x0=[-0.5,1]'; >> [x,val,k]=frcg('fun','gfun',x0) x = 1.0000 2.0000 val = -12.0000 k = 10 即22212122min ()44412x R f x x x x x x ∈=+--的极小值点x=[1;2];minf(x)= -12。

共轭梯度法

共轭梯度法 1.算法思想: 共轭梯度法是利用目标函数梯度逐步产生共轭方向作为线搜索方向的方法,每次搜索方向都是在目标函数梯度的共轭方向,搜索步长通过一维极值算法确定。 2.算法步骤: 用共轭梯度法求无约束多维极值问题min (),n f x x R ∈的算法步骤如下: (1) 给定初始点(0)x ,及精度0ε>; (2) 若 (0)()f x ε ?≤,停止,极小值点为(0)x ,否则转步骤(3); (3) 取(0)(0)()p f x =-?,且置0k =; (4) 用一维搜索法求k t ,使得()()()()()0 ()min k k k k k t f x t p f x tp ≥+=+,令,(1)()()k k k k x x t p +=+,转步骤5; (5) 若 (1)()k f x ε +?≤,停止,极小值点为(1)k x +,否则转步骤(6); (6) 若1k n +=,令(0)()n x x =,转步骤(3),否则转步骤(7); (7) 令(1)(1)()()k k k k p f x p λ++=-?+,2(1)2 () () () k k k f x f x λ+?=?,置1k k =+,转 步骤(4)。 3.算法源程序: #include #include

#define N 10 #define eps pow(10,-6) double f(double x[],double p[],double t) { double s; s=pow(x[0]+t*p[0],2)+25*pow(x[1]+t*p[1],2); return s; } /*以下是进退法搜索区间源程序*/ void sb(double *a,double *b,double x[],double p[]) { double t0,t1,t,h,alpha,f0,f1; int k=0; t0=2.5; /*初始值*/ h=1; /*初始步长*/ alpha=2; /*加步系数*/ f0=f(x,p,t0); t1=t0+h; f1=f(x,p,t1); while(1) {

数值分析实验报告1——Hilbert矩阵的求解

数值分析课程实验报告 题目:病态线性方程组的求解 理论分析表明,数值求解病态线性方程组很困难。考虑求解如下的线性方程组的求解 Hx = b ,期中H 是Hilbert 矩阵,()ij n n H h ?=,1 1 ij h i j =+-,i ,j = 1,2,…,n 1. 估计矩阵的2条件数和阶数的关系 2. 对不同的n ,取(1,1,,1)n x =∈ ,分别用Gauss 消去,Jacobi 迭代,Gauss-seidel 迭代,SOR 迭代和共轭梯度法求解,比较结果。 3. 结合计算结果,试讨论病态线性方程组的求解。 解答过程 1.估计矩阵的2-条件数和阶数的关系 矩阵的2-条件数定义为:1 222 ()Cond A A A -=?,将Hilbert 矩阵带入有: 1222 ()Cond H H H -=? 调用自编的Hilbert_Cond 函数对其进行计算,取阶数n= 50,可得从1阶到50阶的2-条件数,以五位有效数字输出,其中前10项见表1。 表1.前十阶Hilbert 矩阵的2-条件数 从表1可以看出,随着阶数每递增1,Hilbert 矩阵的2-条件数都至少增加一个数量级,但难以观察出明显的相依规律。故考虑将这些数据点绘制在以n 为横轴、Cond (H )2为纵轴的对数坐标系中(编程用Hilbert_Cond 函数同时完成了这个功能),生成结果如图1。

图1.不同阶数下Hilbert矩阵的2-条件数分布 由图可见,当维数较小时,在y-对数坐标系中Cond(H)2与n有良好的线性关系;但n超过10后,线性趋势开始波动,n超过14后更是几乎一直趋于平稳。事实上,从n = 12开始,系统便已经开始提出警告:“Warning: Matrix is close to singular or badly scaled.Results may be inaccurate.”。也就是说,当n较大时,H矩阵已经接近奇异,计算结果可能是不准确的。通过查阅相关资料,我找到了造成这种现象的原因:在matlab中,用inv函数求条件数过大的矩阵的逆矩阵将是不可靠的。而调用系统自带的专门对Hilbert矩阵求逆的invhilb(n)函数则不存在这个问题,生成结果如图2。 图2. 修正后的不同阶数下Hilbert矩阵的2-条件数分布

最优化课程设计--共轭梯度法算法分析与实现

最优化课程设计--共轭梯度法算法分析与实现 (设计程序) 题目共轭梯度法算法分析与实现 班级 / 学号 14140101/11 学生姓名黄中武指导教师王吉波王微微 课程设计任务书 课程名称最优化方法课程设计院(系) 理学院专业信息与计算科学 课程设计题目共轭梯度法算法分析与实现课程设计时间: 2014 年 6月 16日至2014 年 6月 27日 课程设计的要求及容: [要求] 1. 学习态度要认真,要积极参与课程设计,锻炼独立思考能力; 2. 严格遵守上机时间安排; 3. 按照MATLAB编程训练的任务要求来编写程序; 4. 根据任务书来完成课程设计论文; 5. 报告书写格式要求按照航空航天大学“课程设计报告撰写规”; 6. 报告上交时间:课程设计结束时上交报告; 7. 严禁抄袭行为,一旦发现,课程设计成绩为不及格。 一、运用共轭梯度法求解无约束最优化问题 要求:1)了解求解无约束最优化问题的共轭梯度法; 2)绘出程序流程图; 3)编写求解无约束最优化问题的共轭梯度法MATLAB程序; 4)利用编写文件求解某无约束最优化问题; 5)给出程序注释。

指导教师年月日 负责教师年月日 学生签字年月日 航空航天大学 课程设计成绩评定单 课程名称最优化理论与算法课程设计院(系) 理学院专业信息与计算科学课程设计题目共轭梯度法算法分析与实现学号 11 黄中武指导教师评语: 课程设计成绩 指导教师签字 年月日 最优化方法课程设计航空航天大学课程设计用纸目录 目录 一、正文 ............................................................... 1 二、总 结 ............................................................... 8 参考文 献 ............................................................... 9 附 录 (10) 第 I 页 最优化方法课程设计航空航天大学课程设计用纸正文 一、正文 一无约束最优化问题的共轭梯度法 共轭梯度法最初是由Hesteness和Stiefel于1952年为求解线形方程组而提出的。后来,人们把这种方法用于求解无约束最优化问题,使之成为一种重要的最优化方法。 下面,重点介绍Fletcher-Reeves共轭梯度法,简称FR法。

肌组织实验报告

竭诚为您提供优质文档/双击可除 肌组织实验报告 篇一:表面肌实验报告 武汉理工大学 现代数字信号处理在前沿学科中的应用实验报告 基于semg时域特征的动作识别 学院:信息工程学院 学号:姓名: 班级:电子154 实验基于semg时域特征特的动作识别 一、实验目的 1.了解肌电信号常用的时域分析方法; 2.利用mATLAb对肌电信号进行去噪、特征提取及动作识别; 二、实验设备 1.wi-Fi表面肌电信号采集卡; 2.32位windowsxp台式机(matlab7.0软件); 3.802.11b/g无线网卡;

三、实验内容 (1)学习信号的基本去噪方法,并用mATLAb实现; (2)学习肌电信号常用的时域特征并利用matlab来进行波形长度(wL)符号改变数(ssc)、过零点(Zc)、威尔 逊赋值(wAmp)等特征的提取; (3)学习神经网络信号处理方法,掌握bp神经网络的用法,将其用于肌电信号的动作识别。 学习以上三个部分,最终完成一整套肌电信号去噪、特征提取(选取一种特征)、基于特征的动作识别的mATLAb程序。 四、实验原理 (1)小波去噪 小波去噪方法是一种建立在小波变换基础上的新兴算法,基本思想是根据噪声在不同频带上的小波分解系数具有不同强度分布的特点,将各频带上的噪声对应的小系数去除,保留原始信号的小波分解系数,然后对处理后系数进行小波重构,得到纯净信号。 小波去噪的基本原理图如下 (2)特征提取 时域分析是将肌电信号看成均值为零,而方差随着信号强度的变化而变化的随机信号。时域特征的计算复杂度低,提取比较方便。

最常用的方法有:方差,过零点数(Zerocrossing,Zc),willison幅值(willisonAmplitude,wAmp),绝对值平均值(meanAbsoluteValue,mAV)和波形长度(wavelength,wL)等。在实际应用中,为了让特征可以包含更多的信息,往往选择用不同的时域特征组合形成联合特征向量。我们主要介绍一下几种方法: 过零率(Zc):为波形通过零线的次数,从一定程度上反映了信号的频率特性。为了降低零点引入的噪声,往往会引入一个阈值δ。计算方式如下: sgn(?xk?xk?1),(xk?xk?1??)(1)willison幅值:是由willison提出一种对表面肌电信号的幅值变化数量进行计 算的方法,经过后人的研究,对willison幅值的阈值有了明确的范围限定,目前认为50~100?V是最合适的阈值范围。其数学表示公式如公式(3-3)。 wAmp??fxi?xi?1 t?1n(2) ?1f(x)???0其中:ifx?阈值otherwise 波形长度(wL):它是对某一分析窗中的波形长度的统计,波长可以体现该样本的持续时间、幅值、频率的特征。 1n?1 wL??x(i?1)?x(i)ni?1(3)符号改变斜率(ssc):为信号的的频率性能提供了一些附加信息,对于3个连续的采样

共轭梯度法程序

一、共轭梯度法 共轭梯度法(Conjugate Gradient)是共轭方向法的一种,因为在该方向法中每一个共轭向量都是依靠赖于迭代点处的负梯度而构造出来的,所以称为共轭梯度法。由于此法最先由Fletcher和Reeves (1964)提出了解非线性最优化问题的,因而又称为FR 共轭梯度法。由于共轭梯度法不需要矩阵存储,且有较快的收敛速度和二次终止性等优点,现在共轭梯度法已经广泛地应用于实际问题中。共轭梯度法是一个典型的共轭方向法,它的每一个搜索方向是互相共轭的,而这些搜索方向d仅仅是负梯度方向与上一次迭代的搜索方向的组合,因此,存储量少,计算方便,效果好。 二、共轭梯度法的原理 设有目标函数 f(X)=1/2X T HX+b T X+c 式1 式中,H作为f(X)的二阶导数矩阵,b为常数矢量,b=[b1,b2,b3,...b n]T 在第k次迭代计算中,从点X(k)出发,沿负梯度方向作一维搜索,得 S(K)=-?f(X(k))式2 X(k+1)=X(k)+ɑ(k)S(k) 式3 在式中,ɑ(k)为最优步长。 设与S(k)共轭的下一个方向S(k+1)由点S(k)和点X(k+1)负梯度的线性组

合构,即 S (k+1)=-?f (X (k+1))+β(k)S (k) 式4 根据共轭的条件有 [S (k)]T ?2f (X (k))S (k+1)=0 式5 把式2和式4带入式5,得 -[?f(X (k))]T ?2f (X (k))[-?f (X (k+1))+β(k)S (k) ]=0 式6 对于式1,则在点X (k)和点X (k+1)的梯度可写为 ?f(X (k))=HX (k)+b 式7 ?f (X (k+1))=HX (k+1)+b 式8 把上面两式相减并将式3代入得 ɑ(k)H S (k)=?f (X (k+1))-?f(X (k)) 式9 将式4和式9两边分别相乘,并代入式5得 -[?f (X (k+1))+β(k)?f(X (k))]T [?f (X (k+1))-?f(X (k)]=0 式10 将式10展开,并注意到相邻两点梯度间的正交关系,整理后得 β (k ) =2 2 ||))((||||))1((||k X f k X f ?+? 式11 把式11代入式4和式3,得 S (k+1)=-?f (X (k))+β (k ) S (k ) X (k+1)=X (k )+ɑ(k )S (k ) 由上可见,只要利用相邻两点的梯度就可以构造一个共轭方向。以这种方式产生共轭方向并进行迭代运算的方法,即共轭梯度法。

共轭梯度实验报告

竭诚为您提供优质文档/双击可除 共轭梯度实验报告 篇一:共轭梯度法实验报告 数值代数实验报告 一、实验名称:用共轭梯度法解线性方程组。 二、实验目的:进一步熟悉理解掌握共轭梯度法解法思路,提高matlab编程能力。三、实验要求:已知线性方程 矩阵,应用共轭梯度法在相关软件编程求解线性方程组的解。 四、实验原理: 1.共轭梯度法: 考虑线性方程组 Ax?b 的求解问题,其中A是给定的n阶对称正定矩阵,b是 给定的n维向量,x是待求解的n维向量.为此,定义二次泛 函 ?(x)?xTAx?2bTx. 定理1设A对称正定,求方程组Ax?b的解,等价于求二次泛函?(x)的极小值点.定理1表明,求解线性方程组问题

就转化为求二次泛函?(x)的极小值点问题.求解二次函数极 小值问题,通常好像盲人下山那样,先给定一个初始向量x0,确定一个下山方向p0,沿着经过点x0而方向为p0的直线 x?x0??p0找一个点 x1?x0??0p0, 使得对所有实数?有 ??x0??0p0????x0??p0?, 即在这条直线上x1使?(x)达到极小.然后从x1出发, 再确定一个下山的方向p1,沿着直 线x?x1??p1再跨出一步,即找到?1使得??x?在 x2?x1??1p1达到极小: ??x1??1p1????x1??p1?. 重复此步骤,得到一串 ?0,?1,?2, x?xk??pk上确定步长?k使 和p0,p1,p2, , 称pk为搜索方向,?k为步长.一般情况下,先在xk点 找下山方向pk,再在直线 ??xk??kpk????xk??pk?, 最后求出xk?1?xk??kpk.然而对不同的搜索方向和步长,得到各种不同的算法.

用MATLAB实现共轭梯度法求解实例(精编文档).doc

【最新整理,下载后即可编辑】 用MATLAB 实现共轭梯度法求解实例 康福 201103710031 一.无约束优化方法 1.1 无约束优化方法的必要性 一般机械优化设计问题,都是在一定的限制条件下追求某一指标为最小,它们都属于约束优化问题。但是为什么要研究无约束优化问题? (1)有些实际问题,其数学模型本身就是一个无约束优化问题。 (2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。 (3)约束优化问题的求解可以通过一系列无约束优化方法来达 到。所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。 (4)对于多维无约束问题来说,古典极值理论中令一阶导数为零, 但要求二阶可微,且要判断海赛矩阵为正定才能求得极小点,这种方法有理论意义,但无实用价值。和一维问题一样,若多元函数F(X)不可微,亦无法求解。但古典极值理论是无约束优化方法发展的基础。 1.2共轭梯度法 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 (1)间接法——要使用导数,如梯度法、(阻尼)牛顿法、变尺 度法、共轭梯度法等。 (2)直接法——不使用导数信息,如坐标轮换法、鲍威尔法单纯形法等。 用直接法寻找极小点时,不必求函数的导数,只要计算目标函数值。这类方法较适用于解决变量个数较少的(n ≤20)问题,一般情况下比间接法效率低。间接法除要计算目标函数值外,还要计算目标函数的梯度,有的还要计算其海赛矩阵。 1(0,1,2,)k k k k s k α+=+=x x

搜索方向的构成问题乃是无约束优化方法的关键。 共轭梯度法是沿着共轭方向进行搜索,属于共轭方向法中的一种,该方法中每一个共轭向量都是依赖于迭代点处的负梯度而构造出来。共轭梯度法作为一种实用的迭代法,它主要有下面的优点: (1)算法中,系数矩阵A的作用仅仅是用来由已知向量P产生向量W=AP,这不仅可充分利用A的稀疏性,而且对某些提供 矩阵A较为困难而由已知向量P产生向量W=AP又十分方便 的应用问题是很有益的。 (2)不需要预先估计任何参数就可以计算,这一点不像SOR等;(3)每次迭代所需的计算,主要是向量之间的运算,便于并行化。 共轭梯度法原理的知识较多,请详见《机械优化设计》第四章的第四、五节。 图1为共轭梯度法的程度框图

共轭梯度法

最速下降法and 共轭梯度法 分类:matlab 2011-04-17 17:02 961人阅读评论(2) 收藏举报算法出版优化 注明:程序中调用的函数jintuifa.m golddiv.m我在之前的笔记中已贴出 最速下降法 %最速下降法求解f = 1/2*x1*x1+9/2*x2*x2的最小值,起始点为x0=[9 1] %算法根据最优化方法(天津大学出版社)97页算法3.2.1编写 %v1.0 author: liuxi BIT %format long syms x1 x2 alpha; f = 1/2*x1*x1+9/2*x2*x2;%要最小化的函数 df=jacobian(f,[x1 x2]);%函数f的偏导 epsilon=1e-6;%0.000001k=0; x0=[9 1];%起始点 xk=x0; gk=subs(df,[x1 x2],xk);%起始点的梯度 gk=double(gk); while(norm(gk)>epsilon)%迭代终止条件||gk||<=epsilon pk=-gk;%负梯度方向 f_alpha=subs(f,[x1 x2],xk+alpha*pk);%关于alpha的函数 [left right] = jintuifa(f_alpha,alpha);%进退法求下单峰区间 [best_alpha best_f_alpha]=golddiv(f_alpha,alpha,left,right);%黄金分割法求最优步长xk=xk+best_alpha*pk; k=k+1; gk=subs(df,[x1 x2],xk); gk=double(gk); end best_x=xk;%最优点 best_fx=subs(f,[x1 x2],best_x);%最优值 共轭梯度法

最优化方法课程实验报告

项目一 一维搜索算法(一) [实验目的] 编写加步探索法、对分法、Newton 法的程序。 [实验准备] 1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题: 1.用加步探索法确定一维最优化问题 1 2)(min 30 +-=≥t t t t ? 的搜索区间,要求选取2,1,000===αh t . 加步探索法算法的计算步骤: (1)选取初始点 ]) 0[)(0[max 00t t t ,或,∈?∞+∈,计算 )(00t ??=.给出初始步长0 >h , 加步系数1α>,令0=k 。 (2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令 k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。 (4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代,令 11min{}max{}k k a t t b t t ++==,,,。 加步探索法算法的计算框图

程序清单 加步探索法算法程序见附录1 实验结果 运行结果为: 2.用对分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 对分法迭代的计算步骤: (1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。 (2) 计算],[b a 的中点)(2 1 b a c +=. (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =* ,转(5);若0)(>'c ?,则c b = ,转(4). (4) 若ε<-||b a ,则)(2 1* b a t +=,转(5);否则转(2). (5) 打印* t ,结束 对分法的计算框图

MATLAB实现最速下降法_和牛顿法和共轭梯度法

MATLAB实现最速下降法_和牛顿法和共轭梯度法最速下降法: 题目:f=(x-2)^2+(y-4)^2 M文件: function [R,n]=steel(x0,y0,eps) syms x; syms y; f=(x-2)^2+(y-4)^2; v=[x,y]; j=jacobian(f,v); T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0; n=0; syms kk; while (temp>eps) d=-T; f1=x1+kk*d(1);f2=y1+kk*d(2); fT=[subs(j(1),x,f1),subs(j(2),y,f2)]; fun=sqrt((fT(1))^2+(fT(2))^2); Mini=Gold(fun,0,1,0.00001); x0=x1+Mini*d(1);y0=y1+Mini*d(2); T=[subs(j(1),x,x0),subs(j(2),y,y0)]; temp=sqrt((T(1))^2+(T(2))^2); x1=x0;y1=y0;

n=n+1; end R=[x0,y0] 调用黄金分割法: M文件: function Mini=Gold(f,a0,b0,eps) syms x;format long; syms kk; u=a0+0.382*(b0-a0); v=a0+0.618*(b0-a0); k=0; a=a0;b=b0; array(k+1,1)=a;array(k+1,2)=b; while((b-a)/(b0-a0)>=eps) Fu=subs(f,kk,u); Fv=subs(f,kk,v); if(Fu<=Fv) b=v; v=u; u=a+0.382*(b-a); k=k+1; elseif(Fu>Fv) a=u; u=v; v=a+0.618*(b-a); k=k+1;

最优化牛顿法最速下降法共轭梯度法matlab代码

牛顿法 迭代公式:(1)2()1()[()]()k k k k x x f x f x +-=-?? Matlab 代码: function [x1,k] =newton(x1,eps) hs=inline('(x-1)^4+y^2'); 写入函数 ezcontour(hs,[-10 10 -10 10]); 建立坐标系 hold on; 显示图像 syms x y 定义变量 f=(x-1)^4+y^2; 定义函数 grad1=jacobian(f,[x,y]); 求f 的一阶梯度 grad2=jacobian(grad1,[x,y]); 求f 的二阶梯度 k=0; 迭代初始值 while 1 循环 grad1z=subs(subs(grad1,x,x1(1)),y,x1(2)); 给f 一阶梯度赋初值 grad2z=subs(subs(grad2,x,x1(1)),y,x1(2)); 给f 二阶梯度赋初值 x2=x1-inv(grad2z)*(grad1z)'; 核心迭代公式 if norm(x1-x2)

end end end 优点:在极小点附近收敛快 缺点:但是要计算目标函数的hesse 矩阵 最速下降法 1. :选取初始点xo ,给定误差 2. 计算一阶梯度。若一阶梯度小于误差,停止迭代,输出 3. 取()()()k k p f x =? 4. 10 t ()(), 1.min k k k k k k k k k k t f x t p f x tp x x t p k k +≥+=+=+=+进行一维搜索,求,使得令转第二步 例题: 求min (x-2)^4+(x-2*y)^2.初始值(0,3)误差为0.1 (1)编写一个目标函数,存为f.m function z = f( x,y ) z=(x-2.0)^4+(x-2.0*y)^2; end (2)分别关于x 和y 求出一阶梯度,分别存为fx.m 和fy.m function z = fx( x,y ) z=2.0*x-4.0*y+4.0*(x-2.0)^3; end 和 function z = fy( x,y )

相关文档
相关文档 最新文档