文档库 最新最全的文档下载
当前位置:文档库 › 高中物理选修知识点整理

高中物理选修知识点整理

高中物理选修知识点整理
高中物理选修知识点整理

高中物理选修3-5知识点梳理

一、动量动量守恒定律

1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。②动量是物体机械运动的一种量度。

动量的表达式P = mv。单位是s

m

kg .动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。

2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

运用动量守恒定律要注意以下几个问题:

①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。

④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。

⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。

3、动量与动能、动量守恒定律与机械能守恒定律的比较。

动量与动能的比较:

①动量是矢量, 动能是标量。

②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。所以动量和动能是从不同侧面反映和描述机械运动的物理量。

动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。

4、碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状

态发生显着化的现象叫做碰撞。

以物体间碰撞形式区分,可以分为“对心碰撞”(正碰), 而物体碰前速度沿它们质心的连线;“非对心碰撞”——中学阶段不研究。

以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。碰撞前后物体系总动能守恒;“非弹性碰撞”,完全非弹性碰撞是非弹性碰撞的特例,这种碰撞,物体在相碰后粘合在一起,动能损失最大。

各类碰撞都遵守动量守恒定律和能量守恒定律,不过在非弹性碰撞中,有一部分动能转变成了其他形式能量,因此动能不守恒了。

二、验证动量守恒定律(实验、探究)

【实验目的】研究在弹性碰撞的过程中,相互作

用的物体系统动量守恒.

【实验原理】利用图2-1的装置验证碰撞中的动

量守恒,让一个质量较大的球从斜槽上滚下来,

跟放在斜槽末端上的另一个质量较小的球发生

碰撞,两球均做平抛运动.由于下落高度相同,

从而导致飞行时间相等,我们用它们平抛射程的

大小代替其速度.小球的质量可以测出,速度也可间接地知道,如满足动量守恒式m1v1=m1v1'+m2v2',则可验证动量守恒定律.

进一步分析可以知道,如果一个质量为m1,速度为v1的球与另一个质量为m2,速度

为v2的球相碰撞,碰撞后两球的速度分别为v1'和v2',则由动量守恒定律有:m1v1=m1v1'+m2v2'.

【实验器材】两个小球(大小相等,质量不等);斜槽;重锤线;白纸;复写纸;天平;刻度尺;圆规.

【实验步骤】

1.用天平分别称出两个小球的质量m1和m2;

2.按图2-1安装好斜槽,注意使其末端切线水平,并在地面适当的位置放上白纸和复写纸,并在白纸上记下重锤线所指的位置O点.

3.首先在不放被碰小球的前提下,让入射小球从斜槽上同一位置从静止滚下,重复数次,便可在复写纸上打出多个点,用圆规作出尽可能小的圆,将这些点包括在圆内,则圆心就是不发生碰撞时入射小球的平均位置P点如图2-2。

4.将被碰小球放在斜槽末端上,使入射小球与被碰小球能发生正碰;

5.让入射小球由某一定高度从静止开始滚下,重复数次,使两球相碰,按照步骤(3)的办法求出入球落地点的平均位置M和被碰小球落地点的平均位置N;

6.过ON在纸上做一条直线,测出OM、OP、ON的长度;

7.将数据代入下列公式,验证公式两边数值是否相等(在实验误差允许的范围内):m1·OP=m1·OM+m2·ON

【注意事项】

1.“水平”和“正碰”是操作中应尽量予以满足的前提条件.

2.测定两球速度的方法,是以它们做平抛运动的水平位移代表相应的速度.

3.斜槽末端必须水平,检验方法是将小球放在平轨道上任何位置,看其能否都保持静止状态.

4.入射球的质量应大于被碰球的质量.

5.入射球每次都必须从斜槽上同一位置由静止开始滚下.方法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球.

6.实验过程中,实验桌、斜槽、记录的白纸的位置要始终保持不变.

7.m1·OP=m1·OM+m2·ON式中相同的量取相同的单位即可.

【误差分析】误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大,动量守恒的误差就越小.应进行多次碰撞,落点取平均位置来确定,以减小偶然误差.

下列一些原因可能使实验产生误差:

1.若两球不能正碰,则误差较大;

2.斜槽末端若不水平,则得不到准确的平抛运动而造成误差;

3.O、P、M、N各点定位不准确带来了误差;

4.测量和作图有偏差;

5.仪器和实验操作的重复性不好,使得每次做实验时不是统一标准.三、弹性碰撞和非弹性碰撞Ⅰ

碰撞:相互运动的物体相遇,在极短的时间内,通过相互作用,运动状态发生显着变化的过程叫碰撞。

⑴完全弹性碰撞:在弹性力的作用下,系统内只发生机械能的转移,无机械能的损

失,称完全弹性碰撞。

⑵非弹性碰撞:非弹性碰撞:在非弹性力的作用下,部分机械能转化为物体的内能,

机械能有了损失,称非弹性碰撞。

⑶完全非弹性碰撞:在完全非弹性力的作用下,机械能损失最大(转化为内能等),称完全非弹性碰撞。碰撞物体粘合在一起,具有相同的速度。

四、普朗克量子假说黑体和黑体辐射Ⅰ

一、量子论

1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。

2.量子论的主要内容:

①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即

以物体间碰撞

以物体间碰撞前

后两物体的总动

“能量子”或称“量子”,也就是说组成能量的单元是量子。

②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。

3.量子论的发展

①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。

②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。

③到1925年左右,量子力学最终建立。

二、黑体和黑体辐射

1.热辐射现象

任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。

这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。

①.物体在任何温度下都会辐射能量。

②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。

辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。

实验表明:物体辐射能多少决定于物体的温度

(T)、辐射的波长、时间的长短和发射的面积。

2.黑体

物体具有向四周辐射能量的本领,又有吸收外界

辐射来的能量的本领。

黑体是指在任何温度下,全部吸收任何波长的辐射的物体。

3.实验规律:1)随着温度的升高,黑体的辐射强度都有增加;

2)随着温度的升高,辐射强度的极大值向波长较短方向移动。

五、光电效应 1、光电效应:⑴光电效应在光(包括不可见

光)的照射下,从物体发射出电子的现象称为光电效应。

⑵光电效应的实验规律:装置:如右图。

①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。

②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。

③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。

④ 金属受到光照,光电子的发射一般不超过10-9秒。

2、波动说在光电效应上遇到的困难:波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关。所以波动说对解释上述实验规律中的①②④条都遇到困难

3、光子说:⑴量子论:1900年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量νεh =.

⑵光子论:1905年爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。即:νεh =. 其中ν是电磁波的频率,h 为普朗克恒量:h =6.63×10-34s J ?

4、光子论对光电效应的解释:金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。

5.光电效应方程:0W h E k -=ν ,E k 是光电子的最大初动能,当E k =0 时,?为极限频率,?c =h

W 0. 六、光的波粒二象性 物质波 Ⅰ

光既表现出波动性,又表现出粒子性

大量光子表现出的波动性强,少量光子表现出的粒子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强.

实物粒子也具有波动性,这种波称为德布罗意波,也叫物质波。满则下列关系:

P h h ==λεν, 从光子的概念上看,光波是一种概率波. 七、原子核式结构模型 Ⅰ

1、电子的发现和汤姆生的原子模型:

⑴电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列研究,从而发现了电子。

电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 ⑵汤姆生的原子模型:

1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

2、粒子散射实验和原子核结构模型

⑴粒子散射实验:1909年,卢瑟福及助手盖革和

马斯顿完成的.

①装置:如右图。

②现象:

a. 绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b. 有少数粒子发生较大角度的偏转

c. 有极少数粒子的偏转角超过了90°,有的几乎达到180°,即被反向弹回。

⑵原子的核式结构模型:

由于粒子的质量是电子质量的七千多倍,所以电子不会使粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的粒了所受正电荷的作用力在各方向平衡,粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

原子核半径约为10-15m,原子轨道半径约为10-10m。

⑶光谱

①观察光谱的仪器,分光镜

②光谱的分类,产生和特征

发射光谱连续光谱

产生特征

由炽热的固体、液

体和高压气体发光

产生的

由连续分布的,一

切波长的光组成

发 射 光 谱 连 续 光 谱 产 生 特 征

明 线 光 谱

由稀薄气体发光产生的 由不连续的一些亮

线组成

吸 收 光 谱

高温物体发出的白

光,通过物质后某

些波长的光被吸收

而产生的 在连续光谱的背景

上,由一些不连续

的暗线组成的光谱

③ 光谱分析:

一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。

八、氢原子光谱:氢原子是最简单的原子,其光谱也最简单。

1885年,巴耳末对当时已知的,在可见光区的14条谱线作了分析,发现这些谱线的波长可以用一个公式表示:)121(1

22n

R -=λ n=3,4,5,… 式中R 叫做里德伯常量,这个公式成为巴尔末公式。

除了巴耳末系,后来发现的氢光谱在红外和紫个光区的其它谱线也都满足与巴耳末公式类似的关系式。氢原子光谱是线状

410.29

397.12 434.17

谱,具有分立特征,用经典的电磁理论无法解释。

九、原子的能级Ⅰ

玻尔的原子模型

⑴原子核式结构模型与经典电磁理论的矛盾(两方面)

a电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

b电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。

⑵玻尔理论

上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:

①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射

能量,这些状态叫定态。

②跃迁假设:原子从一个定态(设能量为E m)

跃迁到另一定态(设能量为E n)时,它辐射成吸

收一定频率的光子,光子的能量由这两个定态的能量差决定,即hv=E m-E n

③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。

⑶玻尔的氢子模型:

①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。)

②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。

其中n=1的定态称为基态。n=2以上的定态,称为激发态。

十、原子核的组成Ⅰ

原子核

1、天然放射现象

⑴天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。

放射性:物质能发射出上述射线的性质称放射性

放射性元素:具有放射性的元素称放射性元素

天然放射现象:某种元素自发地放射射线的现象,叫天然放射现象。这表明原子核存在精细结构,是可以再分的。

⑵放射线的成份和性质:用电场和磁场来研究放射性元

素射出的射线,在电场中轨迹,如:图1

2、原子核的组成

原子核的组

成:原子核是由质子和中

子组成,质子

和中子统称

为核子

在原子核中

有:质子数等于电荷数、核子数等于质量数、中子数等于质量数减电荷数 十一、原子核的衰变 半衰期 Ⅰ

⑴衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒 射 线 种 类 射 线 组 成

性 质

电 离 作 用 贯 穿 能 力 α射线 氦核组成的粒子

流 很 强

很 弱 β射线 高速电子流 较 强 较 强 γ射线 高频光子 很 弱 很 强

衰 变 类

型 衰 变 方 程

衰 变 规 律

α 衰 变 新 核 4

2质量数减少电荷数减少 β 衰 变 新 核 质量数不变

电荷数增加 在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个

质子和一个电子,即:e H n 01

1110-+→. γ辐射伴随着α衰变和β衰变产生,这时放射性物质发出的射线中就会同时具有α、β和γ三种射线。

⑵半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。 放射性元素衰变的快慢是由核内部自身因素决定的,跟原子所处的化学状态和外部条件没有关系。

十二、放射性的应用与防护 放射性同位素 Ⅰ

放射性同位素:有些同位素具有放射性,叫做放射性同位素

同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

正电子的发现:用粒子轰击铝时,发生核反应。

1934年,约里奥—居里夫妇发现经过α粒子轰击的铝片中含有放射性磷P 3015

, 即: n P Al He 103015271342+→+ ,反应生成物P 是磷的一种同位素,自然界没有天然的P 3015

,它是通过核反应生成的人工放射性同位素。

与天然的放射性物质相比,人造放射性同位素:1、放射强度容易控制

2、可以制成各种需要的形状

3、半衰期更短

4、放射性废料容易处理 放射性同位素的应用:

①利用它的射线

A 、由于γ射线贯穿本领强,可以用来γ射线检查金属内部有没有砂眼或裂纹,所用的设备叫γ射线探伤仪.

B 、利用射线的穿透本领与物质厚度密度的关系,来检查各种产品的厚度和密封容器中液体的高度等,从而实现自动控制

C 、利用射线使空气电离而把空气变成导电气体,以消除化纤、纺织品上的静电

D 、利用射线照射植物,引起植物变异而培育良种,也可以利用它杀菌、治病等 ②作为示踪原子:用于工业、农业及生物研究等.

棉花在结桃、开花的时候需要较多的磷肥,把磷肥喷在棉花叶子上,磷肥也能被吸收.但是,什么时候的吸收率最高、磷在作物体内能存留多长时间、磷在作物体内

的分布情况等,用通常的方法很难研究.如果用磷的放射性同位素制成肥料喷在棉花叶面上,然后每隔一定时间用探测器测量棉株各部位的放射性强度,上面的问题就很容易解决.

放射性的防护:

⑴在核电站的核反应堆外层用厚厚的水泥来防止放射线的外泄

⑵用过的核废料要放在很厚很厚的重金属箱内,并埋在深海里

⑶在生活中要有防范意识,尽可能远离放射源

十三、核反应方程 Ⅰ

1.熟记一些实验事实的核反应方程式。

⑴卢瑟福用α粒子轰击氦核打出质子:H O He N 111784214

7+→+

⑵贝克勒耳和居里夫人发现天然放射现象:

α衰变:He Th U 4223490238

92+→

β衰变:e Pa Th 0123491234

90-+→

⑶查德威克用α粒子轰击铍核打出中子:n C He Be 1012

64294+→+

⑷居里夫人发现正电子:e Si P n P He Al 0130

1430

15103015422713+→+→+

⑸轻核聚变:γ+→+H H n 21

1110

⑹重核裂变:n Kr Ba n U Sr n Xe n U 108936144561

0235

92903810136541023592310++→+++→+

2.熟记一些粒子的符号

α粒子(He 42)、质子(H 11)、中子(n 10)、电子(e 01-)、氘核(H 21)、氚核(H 31

)3.注意在核反应方程式中,质量数和电荷数是守恒的。

处理有关核反应方程式的相关题目时,只要做到了以上几点,即可顺利解决。 十四、重核裂变 核聚变 Ⅰ

释放核能的途径——裂变和聚变

⑴裂变反应: ①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。

例如:n Kr Ba n U 1089361445610235

923++→+

②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。

链式反应的条件: 临界体积,极高的温度.

③U 23592裂变时平均每个核子放能约200Mev 能量 1kg U 235

92全部裂变放出的能量相当于2800吨煤完全燃烧放出能量!

⑵聚变反应:

①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。 例如: MeV 6.1710423121

++→+n He H H ②一个氘核与一个氚核结合成一个氦核时(同时放出一个中子),释放出17.6MeV 的能量,平均每个核子放出的能量3MeV 以上。比列变反应中平均每个核子放出的能量大3~4倍。

③聚变反应的条件;几百万摄氏度的高温。

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

人教版高中物理选修31知识点归纳总结.doc

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

高中物理知识点归纳分享

高中物理知识点归纳分享 高中物理知识点归纳分享 1.光本性学说的发展简史 (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象. (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象. 2、光的干涉 光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的.方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光 分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。 下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平 面镜形成相干光源的示意图。 2.干涉区域内产生的亮、暗纹 ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即 δ=nλ(n=0,1,2,……) ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即 δ=(n=0,1,2,……) 相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条 纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。 3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

⑴各种不同形状的障碍物都能使光发生衍射。 ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射 现象。) ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。 4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平 面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光 是横波。 5.光的电磁说 ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。) ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外, 相邻两个波段间都有重叠。 各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受 到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ 射线是原子核受到激发后产生的。 ⑶红外线、紫外线、X射线的主要性质及其应用举例。 种类产生主要性质应用举例 红外线一切物体都能发出热效应遥感、遥控、加热 紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2 X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤 以上就是新编高中物理知识点归纳之光的波动性和微粒性的全部内容,希望能够对大家有所帮助!

物理选修3-4知识点(全)

选修3—4考点汇编 一、机械振动(*振动图象是历年考查的重点:同一质点在不同时刻的位移) 1、只要回复力满足F kx =-或位移满足sin()x A t ω?=+的运动即为简谐运动。 说明:①做简谐运动的物体,加速度、速度方向可能一致,也可能相反。 ②做简谐运动的物体,在平衡位置速度达到最大值,而加速度为零。 ③做简谐运动的物体,在最大位移处加速度达到最大值,而速度为零。 2、质点做简谐运动时,在T/4内通过的路程可能大于或等于或小于A (振幅),在3T/4内通过的路程可能大于或等于或小于3A 。 3、质点做简谐运动时,在1T 内通过的路程一定是4A ,在T/2内通过的路程一定是2A 。 4、简谐运动方程sin()x A t ω?=+中t ω?+叫简谐运动的相位,用来表示做简谐运动的质点此时正处于一个运动周期中的哪个状态。 5、单摆的回复力是重力沿振动方向(垂直于摆线方向)的分力,而不是摆球所受的合外力(除两个极端位置外)。 6、单摆的回复力sin /F mg mgx L θ=≈-,其中x 指摆球偏离平衡位置的位移,x 前面的是常数mg/L ,故可以认为小角度下摆球的摆动是简谐运动。 7、摆的等时性是意大利科学家伽利略发现的,而单摆的周期公式是由荷兰科学家惠更斯发现的,把调准的摆钟,由北京移至赤道,这个钟变慢了,要使它变准应该增加摆长。(附单摆的周期公式:2L T g π=) 8、阻尼振动是指振幅逐渐减小的振动,无阻尼振动是指振幅不变的振动。 9、物体做受迫振动时,频率由驱动力频率决定与固有频率无关。 10、如果驱动力频率等于振动系统的固有频率,受迫振动的振幅最大,这种现象叫共振,共振现象的应用有转速计和共振筛等,军队过桥要便步走,火车过桥要慢行,厂房建筑物的固有频率要远离机器运转的频率范围之内都是为了减小共振。 11、轮船航行时,如果左右摆动有倾覆危险,可采用改变航向和速度,使波浪冲击力的频率远离轮船摇摆的固有频率。这是共振防止的一种方法。 12、简谐波中,其他质点的振动都将重复振源质点的振动,既是振源带动下的振动,故应为受迫振动。 13、一切复杂的振动虽不是简谐振动,但它们都可以看作是由若干个振幅和频率不同的简谐运动合成的。 二、机械波(*波形图为历年来考查的重点:一列质点在同一时刻的位移) 14、有机械波必有机械振动,有机械振动不一定有机械波。 15、当波动的振源停止振动时,已形成的波动将仍能往前传播,直至能量衰减至零为止。 16、发生地震时,从地震源传出的地震波,既有横波,也有纵波。 17、机械波传播的只是振动形式,质点本身并不随波一起传播,在波的传播过程中,任一质点的起振方向都与波源的起振方向相同。 18、机械波的传播需要介质,当介质中本来静止的质点,随着波的传来而发生振动,表示质点获得能量。波不但传递着能量,而且可以传递信息。 19、在波动中振动相位总是相同两个相邻质点间的距离叫做波长,在波动中振动相位总是相反两个质点间的距离为半个波长的奇数倍。 20、任何振动状态相同的点组成的圆叫波面,与之垂直的线叫波线,表示了波的传播方向。 21、惠更斯原理是指介质中任一波面上的点都可以看作发射子波的波源,其后任意时刻,这些子波在波德

高中物理知识点大总结

高中物理知识点大总结 高中物理公式总结 物理定理、定律、公式表 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t 图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动

高中物理必修2知识点归纳重点

新课标高中物理必修Ⅱ知识点总结 在学习物理的过程中,希望你能养成解题的好习惯,这一点很重要。 1、看题目的时候,很容易会看着头晕转向,这是心理问题,是自己逃避的 表现。因此再看题目的过程中,要手拿笔,画出重要的解题关键点。比 如:物体的开始与结束的状态、平衡状态等等;(这是一个积累过程,习 惯了就会事半功倍,不要不要在乎纸的清洁。); 2、画图;物理解题应该是想象思维、图形结合,再到推理的过程。画图真 的是必不可少的,不能懒而省了这一步。一定要画图,而且要整洁,不 可马虎; 3、辅导书是第二个老师;你若自学辅导书的每一章节前面的是总结梳理, 认真的记忆梳理,你课都可以不听了(不骗人,前提是你真的用功了)。 自习的时候,不要直接做辅导书的题那么快,认真看前面的知识点和例 题,消化好了,绝对受益匪浅。(任何一门理科都可以这么学的) 第一模块:曲线运动、运动的合成和分解 <一> 曲线运动 1、定义:运动轨迹为曲线的运动。 2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上。 3、曲线运动的性质:曲线运动一定是变速运动。(选择题) 由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。(选择题) 4、物体做曲线运动的条件 物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。 总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。(选择题) 5、分类 ⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。 ⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。 <二> 运动的合成与分解(小船渡河是重点) 1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。(做题依据) 2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3、合运动与分运动的关系: ⑴运动的等效性⑵等时性⑶独立性⑷运动的矢量性 4、运动的性质和轨迹

【人教版】版高中物理选修35知识点清单

精品“正版”资料系列,由本公司独创。旨在将“人教 版”、”苏教版“、”北师大版“、”华师大版“等涵盖几 乎所有版本的教材教案、课件、 导学案及同步练习和检测题分 享给需要的朋友。 本资源创作于2020年12月, 是当前最新版本的教材资源。 包含本课对应内容,是您备课、 上课、课后练习以及寒暑假预 习的最佳选择。 通过我们的努力,能 够为您解决问题,这是我们的 宗旨,欢迎您下载使用! 一、动量 动量守恒定律 高中物理选修 3-5 知识点 第十六章 动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积, 叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式 P = mv 。单位是kg m s .动量是矢量, 其方向就是瞬时速度的方向。 因为速度是相对的, 所以动量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式, 一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。 ④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体相互作用时, 不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,

(完整版)高中物理知识点清单(非常详细)

高中物理知识点清单 第一章 运动的描述 第一节 描述运动的基本概念 一、质点、参考系 1.质点:用来代替物体的有质量的点.它是一种理想化模型. 2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动. 二、位移和速度 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度 1.定义式:a =Δv Δt ;单位是m/s 2 . 2.物理意义:描述速度变化的快慢. 3.方向:与速度变化的方向相同. 考点一 对质点模型的理解 1.质点是一种理想化的物理模型,实际并不存在. 2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点. (2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点. 考点二 平均速度和瞬时速度 1.平均速度与瞬时速度的区别 平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度. 2.平均速度与瞬时速度的联系 (1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

江苏省高考物理选修35知识点梳理.pdf

选修3-5 动量 动量守恒定律Ⅱ 1、冲量 冲量可以从两个侧面的定义或解释。①作用在物体上的力和力的作用时间的乘积, 叫做该力对这物体的冲量。②冲量是力对时间的累积效应。力对物体的冲量, 使物体的动量发生变化; 而且冲量等于物体动量的变化。 冲量的表达式 I = F ·t 。单位是牛顿·秒 冲量是矢量, 其大小为力和作用时间的乘积, 其方向沿力的作用方向。如果物体在时间t 内受到几个恒力的作用, 则合力的冲量等于各力冲量的矢量和, 其合成规律遵守平行四边形法则。 2、动量 可以从两个侧面对动量进行定义或解释。①物体的质量跟其速度的乘积, 叫做物体的动量。②动量是物体机械运动的一种量度。动量的表达式P = mv 。单位是千克米 / 秒。动量是矢量, 其方向就是瞬时速度的方向。因为速度是相对的, 所以动量也是相对的, 我们啊 3、动量定理 物体动量的增量, 等于相应时间间隔力, 物体所受合外力的冲量。表达式为I = ?P 或12mv mv Ft ?=。 运用动量定理要注意①动量定理是矢量式。合外力的冲量与动量变化方向一致, 合外力的冲量方向与初末动量方向无直接联系。②合外力可以是恒力, 也可以是变力。在合外力为变力时, F 可以视为在时间间隔t 内的平均作用力。③动量定理不仅适用于单个物体, 而且可以推广到物体系。 4、动量守恒定律 当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式, 一般常用P P P P A B A B +='+'等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。 ②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。 ③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。 ④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。 ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。 ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。系统内部各物体相互作用时, 不论具有相同或相反的运动方向; 在相互作用时不论是否直接接触; 在相互作用后不论是粘在一起, 还是分裂成碎块, 动量守恒定律也都适用。 5、动量与动能、冲量与功、动量定理与动能定理、动量守恒定律与机械能守恒定律的比较。动量与动能的比较: ①动量是矢量, 动能是标量。 ②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒, 若要研究碰撞过程改变成内能的机械能则要用动能为损失去

高中物理选修3-1知识点归纳(完美版)

物理选修3-1 一、电场 1. 两种电荷、电荷守恒定律、 元电荷(e = 1.60 x 10-19C );带电体电荷量等于元电荷的 整数倍 2. 库仑定律:F =?2伞(真空中的点电荷){ F:点电荷间的作用力(N ); r k:静电力常量k = 9.0 x 109N?m/C 2; Q 、Q:两点电荷的电量(C ) ; r:两点电荷间的距离(m ); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引 } 3. 电场强度:E 二匸(定义式、计算式){ E:电场强度(N/C ),是矢量(电场的叠加原理);q :检验 q 电荷的电量(C ) } 4. 真空点(源)电荷形成的电场 E =竽 {r :源电荷到该位置的距离(m ), Q :源电荷的电量} r 5. 匀强电场的场强 E =U AB { 3B :AB 两点间的电压(V ) , d:AB 两点在场强方向的距离 (m )} d 6. 电场力:F = qE {F:电场力(N ) , q:受到电场力的电荷的电量 (C ) , E:电场强度(N/C ) } A E P 减 7. 电势与电势差: L A B = $ A - $ B , U A B = W AB /q = △ q 8. 电场力做功:W A B = qL AB = qEd = △ E P 减{ W A B :带电体由A 到B 时电场力所做的功(J ) , q:带电量(C ) , L A B : 电 场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m ); △曰减:带电体由A 到B 时势能的减少量} 9. 电势能:0A = q $ A {庄A :带电体在 A 点的电势能(J ) , q:电量(C ) , $ A :A 点的电势(V ) } 10. 电势能的变化 △曰减=E^A -E PB {带电体在电场中从 A 位置到B 位置时电势能的减少量} 11. 电场力做功与电势能变化 W A B = △ E P 减=qUk (电场力所做的功等于电势能的减少量 ) 12. 电容C = Q/U (定义式,计算式){ C:电容(F ) , Q:电量(C ) , U:电压(两极板电势差)(V ) } 13. 平行板电容器的电容 C =上匚(S:两极板正对面积,d:两极板间的垂直距离, 3 :介电常数) 4水d 常见电容器 类平抛运动(在带等量异种电荷的平行极板中: E = U d 垂直电场方向:匀速直线运动 L = V o t 注:(1)两个完全相同的带电金属小球接触时 ,电量分配规律:原带异种电荷的先中和后平分 的总量平分; 14.带电粒子在电场中的加速 (Vo = 0): W = △ E <增或 qU = mVt 2 15.带电粒子沿垂直电场方向以速度 V o 进入匀强电场时的偏转 (不考虑重力作用) 平行电场方向:初速度为零的匀加速直线运动 d at2 , F a=— =qE = qU 2 m m m ,原带同种电荷

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

物理选修35知识点总结

知识点梳理高中物理选修3-5动量守恒定律一、动量 kg ms mvP.。单位是1、动量:动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。= I Ft 冲量:冲量是矢量,在作用时间内力的方向不变时,冲量的方向与力的方向相同;如果力的方向是变化的,则冲量的方向与相应时间内物体动量变化量的方向相同。若力为同一方向均 匀变化的力,该力的冲量可以用平均力计算;若力为一般变力,则不能直接计算冲量。同一方向 上动量的变化量=这一方向上各力的冲量和。 1mv mv P P动量定理:otot 动量与力的关系:物体动量的变化率等于它所受的力。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。(适用于目前 物理学研究的一切领域。)_____ _ __ _____ _ _________ _____ __________ 动量守恒定律成立的条件:①系统不受外力作用。②系统虽受到了外力的作用,但所受合外 力为零。③系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒(碰撞,击打,爆炸,反冲)。④系统所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。⑤系统受外力,但在某一方向上内力远大于外力,也可认为在这一方向上系统的 动量守恒。 常见类型:①由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短或拉伸到最长时,弹簧两端的两个物体的速度必然相等。②在物体滑上斜面(斜面放在光滑水平面 上)的过程中,由于物体间弹力的作用,斜面在水平方向上将做加速运动,物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体到达斜面顶端时,在竖直方向上的 分速度等于零。③子弹刚好击穿木块的临界条件为子弹穿出时的速度与木块的速度相同,子弹位 移为木块位移与木块厚度之和。 二、验证动量守恒定律(实验、探究)I 【注意事项】 1?“水平”和“正碰”是操作中应尽量予以满足的前提条件. 2.入射球的质量应大于被碰球的质量. 3?入射球每次都必须从斜槽上同一位置由静止开始滚下?方法是在斜槽上的适当高度处固定一档板,小球靠着档板后放手释放小球. 4.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平仪器确保导轨水平。 【误差分析】 误差来源于实验操作中,两个小球没有达到水平正碰,一是斜槽不够水平,二是两球球心不在同 一水平面上,给实验带来误差.每次静止释放入射小球的释放点越高,两球相碰时作用力就越大, 动量守恒的误差就越小?应进行多次碰撞,落点取平均位置来确定,以减小偶然误差. 三、碰撞与爆炸 1.碰撞的特点:①相互作用的时间极短,可忽略不计。②系统的内力远大于外力,外力可忽略③速度发生突变,物体发生的位移极小,可认为碰撞前后物体处于同一位置。 2.爆炸的特点:作用时间短,内力非常大,机械能增加,动能会增加。 3.碰撞中遵循的规律:动量守恒,动能不增加。 4.一维碰撞:两个物体碰撞前后斗艳同一直线运动,这种碰撞叫做一维碰撞。

高中物理选修3-1知识点汇总

第一章 电场 1. 电荷 自然界只存在正、负两种电荷;单位是库伦,符号C ;元电荷电量e=1.6?10 19 -C ;电荷产生方 法有摩擦起电、接触起电、感应起电。 2. 电荷守恒定律 电荷既不能创造,也不能消失,它只能从一个物体转移到另一个物体,或从物体的这一部分转移到另一部分,转移过程中总电荷数不变。 3. 点电荷 当带电体的尺寸和形状对所研究的问题影响不大时,可将此带电体看成点电荷;对于电荷分布均匀的球体,可认为是电荷集中在球心的点电荷;检验电荷一般也可看成点电荷;点电荷实际上是一种理想化模型,并不存在。 4. 库伦定律 在真空中两个点电荷的相互作用力跟它们电荷量的乘积成正比,跟它们间距离的平方成反比, 作用力的方向在它们的连线上;F=k 2 21r Q Q , k=9?109N ·m 2/C 2 .。 5. 电场 带电体周围存在的一种特殊物质,对放入其中的电荷有力的作用;客观存在的;具有力的特性和能的特性。 6. 电场强度 放入电场中某一点的电荷受到的电场力跟它的电荷量的比值;E= q F ;方向是正电荷在该点的 受力方向;矢量,遵循矢量运算原理;点电荷场强F=k 2 r Q 。 7. 电势 描述电场能的性质;?= q E p ,E p 为电荷的 电势能;标量,正负表示大小;数值与零电势的选取有关,一般选择无穷远处为电势零点。 8. 电势差 描述电场做功的本领;U AB = q W AB ;标量, 正负表示电势的高低;也被称作电压。 9. 电势能 描述电荷在电场中的能量,电荷做功的本领;E p =?q ;标量。 10.电场线 从正电荷出发,到负电荷终止的曲线,曲线上每一点的切线方向都跟该点的场强方向一致;虚构的;永不相交;疏密表示电场强度的强弱;沿电场方向电势减小。 11.等势面 电场中电势相等的点构成的面;空间中没有电荷的地方等势面不相交;在平面中构成的是等势线;等差等势面的疏密程度反映电场的强弱。 12.匀强电场 电场强度大小处处相等;E=d U 。 13.电场力做功情况 只与始末位置有关,与路径无关;W=Uq ;匀强电场中W=Fs ·cos θ=Eqs ·cos θ;电场力做的正功等于电势能的减少,W=-?E 。 14.电容器 两个互相靠近又彼此绝缘的导体组成电容器;电容器能充电和放电。 15.电容 电容器所带电荷量与两极板间的电压的比值;单位是法,符号F ;C=U Q 。 16.平行板电容器 高中阶段主要接触的电容器;平行板电容器的电容C= kd S πε4;平行板电容器两极板间的电场可 认为是匀强电场。 17.带电粒子在匀强电场中的运动 加速或者偏转;a=m Eq =md Uq 。 第二章 磁场 1. 磁场 存在与磁体、电流或运动电荷周围的一种物质;对放入其中的磁极或电流有磁场力的作用;规

高中物理选修重要知识点总结.docx

选 修 3 - 5 知 识 汇 总 一、动量 1. 动量: p =mv {方向与速度方向相同} 2. 冲量: I =Ft {方向由 F 决定} 3. 动量定理: I = p 或 Ft =mv t –mv o { p: 动量变化 p =mv t –mv o ,是矢量式 } 4. 动量守恒定律: p 前总 =p 后总 或 p =p ’也可以是 m 1 v 1 m 2v 2 m 1v 1/ m 2v 2/ 5. ( 1)弹性碰撞:系统的动量和动能均守恒 m 1v 1 m 2v 2 m 1 v ' m 2v ' ① 1 m 1v 1 2 1 m 2 v 2 2 1 m 1v 1 '2 1 m 2 v 2 ' 2 ② 1 2 2 2 2 2 其中:当 v 2 =0 时,为一动一静碰撞, ' m 1 m 2 v 1 ' 2m 1 v 1 v 1 m 1 m 2 此时 v 2 m 1 m 2 (2)非弹性碰撞:系统的动量守恒,动能有损失 m 1v 1 m 2v 2 ' ' m 1v 1 m 2 v 2 (3)完全非弹性碰撞:碰后连在一起成一整体 m 1v 1 共 ,且动能损失最多 m 2 v 2 (m 1 m 2 )v 6. 人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个 物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有 mv1=MV2(注意:几何关系) 注: (1) 正碰又叫对心碰撞,速度方向在它们“中心”的连线上 ; (2) 以上表达式除动能外均为矢量运算 , 在一维情况下可取正方向化为代数运算 ; (3)系统动量守恒的条件 : 合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等) ; (4) 碰撞过程 ( 时间极短,发生碰撞的物体构成的系统 ) 视为动量守恒 , 原子核衰变时动量守 恒; (5) 爆炸过程视为动量守恒,这时化学能转化为动能,动能增加; 思考 1:利用动量定理和动量守恒定律解题的步骤是什么?思考 2:动量变化 p 为正值,动量一定增大吗?(不一定) 思考 3:两个物体组成的系统动量守恒,其中一个物体的动量增大,另一个物体的动量一定减小吗?动能呢?(不一定) 思考 4:两个物体碰撞过程遵循的三条规律分别是什么? 思考 5:一动一静两个小球正碰撞,入射球和被撞球的速度范围怎样计算? 思考 6:有哪些模型可视为一动一静弹性碰撞?有哪些模型可视为人船模型?人船模型存在哪些特殊规律? 思考 7:同样是动量守恒,碰撞,爆炸,反冲三者有何不同?(有弹簧的弹性势能或火药的化学能,或者人体内的化学能转化为动能的情况下,总动能增大) 二、波粒二象性 1、1900年普朗克能量子假说,电磁波的发射和吸收是不连续的,而是一份一份的 E=hv 2、赫兹发现了光电效应, 1905年,爱因斯坦量解释了光电效应,提出光子说及光电效应方 程 3、光电效应

相关文档
相关文档 最新文档