文档库 最新最全的文档下载
当前位置:文档库 › 1, 1' - 二(二苯基膦)二茂铁金属配合物的晶体生产与结构分析

1, 1' - 二(二苯基膦)二茂铁金属配合物的晶体生产与结构分析

1, 1' - 二(二苯基膦)二茂铁金属配合物的晶体生产与结构分析
1, 1' - 二(二苯基膦)二茂铁金属配合物的晶体生产与结构分析

1, 1' - 二(二苯基膦)二茂铁金属配合物的晶体生产

与结构分析

*中山大学化学学院应用化学,广州,510275

摘要:实验中制备了[1,1'-双(二苯基膦基)二茂铁]二氯化镍、[1,1'-双(二苯基膦基)二茂铁]二氯化钯,培养得到合适的单晶后,通过X射线衍射仪对其晶体结构进行分析,收集相关数据。然后使用Olex2软件,SHELXTL程序解析得到的单晶衍射数据,通过数据分析及精修得到这两个化合物的的晶体结构参数;并用Diamond软件绘制晶体结构图。实验结果表明,在[1,1'-双(二苯基膦基)二茂铁]二氯化镍中,镍是四面体配位,由于氯原子间强大的斥力,存在一个较大的Cl--Ni--Cl角(124.47(3)0),而两个Cl-Ni-P角的不同是由于空间位阻的存在,二茂铁配体表现出稍微扭曲。[1,1'-双(二苯基膦基)二茂铁]二氯化钯属于单斜晶系,P21/c空间群,Mr= 772.71,其中的Pd是平行四边形配位,其处于两个P 原子和两个顺式1C 原子组成的假平面中心,Pd 一P1和Pd 一P2的键长分别为2.2933(8) ?和2.2774(8) ?,P1和P2原子都与Pd的两个C l原子所组成的平面有些偏离, 可能是由于四个苯基的空间位阻所致,扭曲程度越大Pd一P键就越长。两者的中心配位原子不一样,中心原子的配位方式不一样,因此相应的键角和键长也不一样。

关键词1, 1' - 二(二苯基膦)二茂铁金属配合物晶体结构结构分析

1.引言

晶体由原子组成的点阵在三维空间呈有序排列,类似于光线和光栅的作用,当一束单色X 射线照射到某一小晶体上,由于晶体内部结构及其周期性,点阵面间距d与X射线入射角之间符合布拉格(Bragg)方程:2dsinθ=nλ时,产生相干现象,就会产生衍射效应。

当X 射线穿过物体时,电场使带电粒子(电子和质子)振荡,结果是带电粒子本身又成为辐射源,这称为散射。大体上,X 射线衍射分析实验即是通过测定散射波的强度,由此推导出晶体中的电子密度分布。电子密度的峰值与原子核的位置相关,峰值处的密度越高,该处原子核的原子序数就越大,从而可根据电子密度分布情况确定原子的种类与坐标。

常常采用帕特森方法、直接法和charge-flipping 法推导出部分衍射的正确相角值,获得初步的电子密度分布图。对电子密度峰进行原子指认后,经过多轮的傅立叶合成,可最终得到完整的结构模型。为了获得精确的结构数据,还必须利用最小二乘法对原子坐标、占有率、热振

动因子等结构参数值进行最优化,即对各种结构参数进行微小的移动,使得结构模型相应的理论衍射强度值|F c |最接近相应的实验值|F o |,这个过程称为结构精修。

2.实验方法

2.1仪器及程序

Bruker Smart 1000 CCD X-射线单晶衍射仪,滴管,滤纸,体式显微镜,载玻片,凡士林,玻璃纤维,刀片,Olex2软件,SHELXTL程序,Diamond软件。

2.2实验步骤

2.2.1 双(乙腈)二氯化钯的合成

在氮气氛下中,将30 ml 无水乙腈加入二氯化钯(0.20 g, 0.95 mmol)后回流 3 小时。冷却至室温,溶剂通过减压旋干后,橘黄色配合物固体在高真空条件下干燥,在惰性气氛低温避光保存。

2.2.2 二氯(1,5-环辛二烯)钯的合成

将 5 ml 浓盐酸小心加入到装有 2 g,0.0095 mol 二氯化钯的200 ml 烧杯中,40°C 加热十分钟。冷却后往上述红棕色溶液加入150 ml 95%乙醇,用玻璃棒搅拌一分钟后过滤掉不

溶物。在搅拌下,慢慢滴加 3 ml 1,5-环辛二烯后,继续反应十分钟,黄色沉淀用布氏漏斗过滤,用3×10 ml 乙醚洗涤,真空干燥 2 小时。

2.2.3 二氯三(三苯基膦)合钌的合成

将三水合三氯化钌(0.25 g, 0.95 mmol)溶解在60 ml 无水甲醇中,将这个溶液在氮气氛下回流 5 分钟。冷却后,加入三苯基膦(1.5 g, 5.75 mmol),并在氮气氛下将溶液再回流 3 小时。配合物从溶液中以闪亮的黑色晶体沉淀出来;冷却后,在氮气氛下过滤,用脱过气的乙醚洗涤多次,并真空干燥。称重计算产率,测试熔点

2.2.4 [1,1'-双(二苯基膦基)二茂铁]二氯化镍的合成

在惰性气氛中将1,1'-二(二苯基膦)二茂铁(0.554 g,0.001 mol)溶于30 ml 无水乙醇,加热至稍微回流状态下,通过双头针向上述溶液滴加热的六水氯化镍(0.200 g, 0.00085 mol)乙醇(15 ml)溶液。马上产生绿色沉淀,加热回流下,搅拌2 个小时后,趁热过滤,用冷的甲醇洗涤2×5 ml,干燥,称重计算产率。

2.2.5 [1,1'-双(二苯基膦基)二茂铁]二氯化钯的合成

在惰性气氛中将1,1'-二(二苯基膦)二茂铁(0.554 g,0.001 mol)溶于30 ml 无水甲醇,加

热至稍微回流状态下,通过双头针向上述溶液滴加热的双(乙腈)二氯化钯( 0.00085 mol)或二氯(1,5-环辛二烯)钯( 0.00085 mol)甲醇(15 ml)溶液。回流搅拌3 小时,冷却至室温,用注射器转移上清液,往固体中加入10 ml 干燥二氯甲烷搅拌 1 小时,重结晶后经过滤得橘黄色晶状固体产物,干燥,称重计算产率。

2.2.6 配合物单晶的挑选、数据收集和处理

分别进行[1,1'-双(二苯基膦基)二茂铁]二氯化镍和[1,1'-双(二苯基膦基)二茂铁]二氯化钯的单晶挑选和数据收集处理。

通过肉眼观察三个方向大小相当的块状蓝色晶体,并在显微镜下观察其外观为凸多面体、外形完整、晶面光洁、透明均匀、无裂缝、无瑕疵、表面无附着小晶粒和杂物的;晶体大小在0.3~0.5 mm 范围。大致处理方法是从溶液中挑出一颗晶体,在低温下进行衍射实验用凡士林包裹晶体粘在一根纤细的玻璃纤维上;如果晶体太大,可以用一点凡士林的载玻片上用锋利的刀片小心切出合适的形状和大小。将粘好晶体的玻璃纤维插入中空金属杆上,用橡皮泥固定后,将其安置在载晶台上待测。

晶体的X 射线衍射数据是在带有石墨单色器Bruker Smart 1000 CCD 面探衍射仪上进行衍射实验。晶体结构分析相关处理细节:取用待测单晶,于173(2) K 下,用MoKα射线(0.071073 nm),以ω/2θ扫描方式收集数据。数据的处理使用SAINT + 程序包,吸收校正使用SADABS 程序。

2.2.7 配合物的单晶结构解析

原始数据经过还原和吸收校正后输出的*.hkl 文件(*代表化合物的代码),将其和已输

正确分子式的*.p4p 文件一同拷贝到一新建的文件夹中。Olex2软件打开文件,通过SHELXTL 完成结构计算,再选择合适的Q峰进行加氢,再检查计算结果、指认原子的种类和标号、观看分子结构模型和检查结构模型的“化学合理性”。最后SHELXTL用差值傅立叶法求出全部非氢原子坐标并进行标号,有机氢原子坐标由理论计算加入无机氢原子从差值傅立叶图中找出,用最小二乘法对结构进行修正,数据收敛后即精修完成,通过在线进行检查进一步确认。

2.2.8配合物结构图绘制

借助Diamond软件对晶体结构进行表达,画出配合物最后结构模型的分子结构图,同时生成diamdoc文件和各种晶体学表格。

3.实验结果与讨论

3.1 晶体结构图

图1 [1,1'-双(二苯基膦基)二茂铁]二氯化镍 图2 [1,1'-双(二苯基膦基)二茂铁]二氯化钯

3.2 配合物晶体学参数

表1 配合物晶体学数据

表2 [1,1'-双(二苯基膦基)二茂铁]二氯化镍键长

Atom Atom Length/? Atom Atom Length/?

Fe1 C5 2.069(2) Ni1P1 2.3187(7) Fe1C1 2.048(3) Ni1P2 2.3062(7) Fe1C34 2.035(3) Ni1Cl1 2.2341(7) Fe1C4 2.041(3) Ni1Cl2 2.2084(7) Fe1C30 2.058(3) P1C12 1.819(2) Fe1C31 2.054(3) P1C5 1.808(2) Fe1C33 2.046(3) P1C6 1.840(2) Fe1C32 2.049(3) P2C24 1.822(3) Fe1C3 2.039(3) P2C18 1.817(2) Fe1C2 2.043(3) P2C30 1.793(2)

表3 [1,1'-双(二苯基膦基)二茂铁]二氯化钯配位键键长

Atom Atom Length/?Atom Atom Length/?

Pd01 P1 2.2933(8) Fe1 C18 1.993(3)

Pd01 P2 2.2774(8) Fe1 C20 2.069(3)

Pd01 Cl2 2.3369(8) Fe1 C16 2.055(4)

Pd01 Cl1 2.3568(8) P1 C13 1.806(3)

Fe1 C13 2.018(3) P1 C1 1.831(3)

Fe1 C22 2.027(3) P1 C7 1.824(4)

Fe1 C19 2.027(3) P2 C18 1.801(3)

Fe1 C14 2.045(3) P2 C29 1.817(4)

Fe1 C17 2.026(3) P2 C23 1.821(3)

Fe1 C21 2.065(3) C13 C14 1.433(5)

Fe1 C15 2.059(3)

表4[1,1'-双(二苯基膦基)二茂铁]二氯化镍配位键键角

Atom Atom Atom Angle/?Atom Atom Atom Angle/?

C1 Fe1 C5 40.64(10) P1 C5 Fe1 129.80(13) C1 Fe1 C30 122.87(11) C1 C5 Fe1 68.89(15) C1 Fe1 C31 109.87(11) C1 C5 P1 127.20(19) C1 Fe1 C32 126.00(12) C4 C5 Fe1 68.47(14) C34 Fe1 C5 122.10(10) C4 C5 P1 125.85(19) C34 Fe1 C1 157.50(11) C25 C24 P2 117.2(2) C34 Fe1 C4 107.83(11) C29 C24 P2 124.0(2) C34 Fe1 C30 41.14(9) C5 C1 Fe1 70.47(15) C34 Fe1 C31 68.63(11) C2 C1 Fe1 69.58(17) C34 Fe1 C33 40.59(11) C30 C34 Fe1 70.29(15) C34 Fe1 C32 68.35(12) C33 C34 Fe1 70.12(17) C34 Fe1 C3 124.53(12) C7 C6 P1 122.72(19) C34 Fe1 C2 160.76(12) C11 C6 P1 118.8(2) C4 Fe1 C5 40.97(10) C19 C18 P2 120.7(2) C4 Fe1 C1 68.59(11) C23 C18 P2 120.2(2) C4 Fe1 C30 129.00(11) C5 C4 Fe1 70.56(14) C4 Fe1 C31 167.71(11) C3 C4 Fe1 69.60(16) C4 Fe1 C33 117.77(11) P2 C30 Fe1 126.11(13) C4 Fe1 C32 150.64(11) C34 C30 Fe1 68.56(15) C4 Fe1 C2 68.23(13) C34 C30 P2 125.58(19) C30 Fe1 C5 111.66(9) C31 C30 Fe1 69.49(15) C31 Fe1 C5 130.05(10) C31 C30 P2 127.55(18)

C33 Fe1 C5 154.49(11) C32 C31 Fe1 69.63(15) C33 Fe1 C1 161.34(12) C34 C33 Fe1 69.29(15) C33 Fe1 C30 68.36(11) C32 C33 Fe1 70.02(17) C33 Fe1 C31 67.78(11) C31 C32 Fe1 70.05(15) C33 Fe1 C32 40.20(13) C33 C32 Fe1 69.78(16) C32 Fe1 C5 165.21(11) C4 C3 Fe1 69.76(16) C32 Fe1 C30 68.36(11) C2 C3 Fe1 69.98(17) C32 Fe1 C31 40.31(11) C1 C2 Fe1 69.98(17) C3 Fe1 C5 68.39(10) C3 C2 Fe1 69.69(18) C3 Fe1 C1 68.15(13) C12 P1 Ni1 118.40(8) C3 Fe1 C4 40.64(12) C12 P1 C6 104.86(11) C3 Fe1 C30 164.28(12) C5 P1 Ni1 113.65(8) C3 Fe1 C31 151.16(12) C5 P1 C12 103.77(11) C3 Fe1 C33 104.51(12) C5 P1 C6 103.86(11) C3 Fe1 C32 115.88(12) C6 P1 Ni1 110.94(8) C3 Fe1 C2 40.32(14) C24 P2 Ni1 107.12(8) C2 Fe1 C5 68.15(11) C18 P2 Ni1 121.25(9) C2 Fe1 C1 40.44(12) C18 P2 C24 104.02(12) C2 Fe1 C30 155.28(12) C30 P2 Ni1 114.28(8) C2 Fe1 C31 119.09(12) C30 P2 C24 105.70(12) C2 Fe1 C33 123.11(12) C30 P2 C18 103.10(11) C2 Fe1 C32 105.33(12) C13 C12 P1 119.97(19) P2 Ni1 P1 104.94(3) C17 C12 P1 121.15(19) Cl1 Ni1 P1 107.65(3) Cl2 Ni1 P2 112.51(3) Cl1 Ni1 P2 95.53(3) Cl2 Ni1 Cl1 124.47(3) Cl2 Ni1 P1 109.58(3)

表5 [1,1'-双(二苯基膦基)二茂铁]二氯化钯键角

Atom Atom Atom Angle/?Atom Atom Atom Angle/?

P1 Pd01 Cl2 172.52(3) C17 C13 Fe1 69.39(18) P1 Pd01 Cl1 84.77(3) C17 C13 P1 125.9(3) P2 Pd01 P1 97.33(3) C21 C22 Fe1 71.3(2) P2 Pd01 Cl2 88.30(3) C18 C22 Fe1 67.64(18) P2 Pd01 Cl1 177.12(3) C2 C1 P1 121.7(3) Cl2 Pd01 Cl1 89.44(3) C6 C1 P1 120.1(3) C13 Fe1 C22 138.65(14) C18 C19 Fe1 67.80(18) C13 Fe1 C19 109.81(14) C20 C19 Fe1 71.4(2) C13 Fe1 C14 41.31(14) C13 C14 Fe1 68.34(19)

C13 Fe1 C21 177.81(14) C15 C14 C13 108.3(3) C13 Fe1 C15 69.05(13) C13 C17 Fe1 68.79(18) C13 Fe1 C20 138.97(16) C16 C17 Fe1 70.6(2) C13 Fe1 C16 69.71(14) C12 C7 P1 119.5(3) C22 Fe1 C14 176.86(15) C8 C7 P1 121.5(3) C22 Fe1 C21 40.33(15) C22 C21 Fe1 68.38(19) C22 Fe1 C15 136.81(15) C20 C21 Fe1 70.2(2) C22 Fe1 C20 68.04(16) C20 C21 C22 108.8(3) C22 Fe1 C16 108.55(16) C14 C15 Fe1 69.26(19) C19 Fe1 C22 69.59(15) C16 C15 Fe1 69.8(2) C19 Fe1 C14 113.54(15) C16 C15 C14 109.0(3) C19 Fe1 C21 68.14(15) P2 C18 Fe1 123.72(16) C19 Fe1 C15 142.98(16) C22 C18 Fe1 70.19(18) C19 Fe1 C20 40.43(15) C22 C18 P2 131.3(3) C19 Fe1 C16 176.78(15) C19 C18 Fe1 70.37(18) C14 Fe1 C21 139.88(15) C19 C18 P2 121.9(2) C14 Fe1 C15 40.42(15) C19 C18 C22 106.8(3) C14 Fe1 C20 114.04(16) C19 C20 Fe1 68.18(18) C14 Fe1 C16 68.34(16) C21 C20 Fe1 69.9(2) C17 Fe1 C22 108.97(15) C21 C20 C19 108.6(3) C17 Fe1 C19 136.62(14) C30 C29 P2 123.5(3) C17 Fe1 C14 69.06(15) C34 C29 P2 118.2(3) C17 Fe1 C21 139.20(16) C17 C16 Fe1 68.42(19) C17 Fe1 C15 68.30(14) C15 C16 Fe1 70.1(2) C17 Fe1 C20 176.07(15) C24 C23 P2 119.0(3) C17 Fe1 C16 41.00(14) C28 C23 P2 121.7(3) C21 Fe1 C20 39.82(17) C31 C30 C29 119.6(4) C15 Fe1 C21 113.01(14) N1 C010 C017 179.1(7) C15 Fe1 C20 115.61(15) C13 P1 C1 101.79(15) C18 Fe1 C13 108.67(13) C13 P1 C7 101.58(16) C18 Fe1 C22 42.16(13) C1 P1 Pd01 110.78(11) C18 Fe1 C19 41.84(14) C7 P1 Pd01 110.70(11) C18 Fe1 C14 140.38(14) C7 P1 C1 107.34(16) C18 Fe1 C17 106.88(13) C18 P2 Pd01 112.92(11) C18 Fe1 C21 69.33(13) C18 P2 C29 110.49(15) C18 Fe1 C15 174.90(15) C18 P2 C23 101.55(15) C18 Fe1 C20 69.20(14) C29 P2 Pd01 108.74(12) C18 Fe1 C16 135.06(15) C29 P2 C23 105.36(17) C16 Fe1 C21 112.29(16) C23 P2 Pd01 117.37(12)

C16 Fe1 C20 141.78(15) C14 C13 Fe1 70.35(19)

C13 P1 Pd01 123.30(10) C14 C13 P1 127.4(3)

3.3讨论

在[1,1'-双(二苯基膦基)二茂铁]二氯化镍中,镍是四面体配位,由于氯原子间强大的斥力,存在一个较大的Cl--Ni--Cl角(124.47(3)0),而两个Cl-Ni-P角的不同是由于空间位阻的存在,二茂铁配体表现出稍微扭曲。[1,1'-双(二苯基膦基)二茂铁]二氯化钯属于单斜晶系,P21/c空间群,Mr= 772.71,其中的Pd是平行四边形配位,其处于两个P 原子和两个顺式1C 原子组成的假平面中心,Pd一P1和Pd 一P2的键长分别为2.2933(8) ?和2.2774(8) ?,P1和P2原子都与Pd的两个C l原子所组成的平面有些偏离, 可能是由于四个苯基的空间位阻所致,扭曲程度越大Pd一P键就越长。两者的中心配位原子不一样,中心原子的配位方式不一样,因此相应的键角和键长也不一样。

4.结论

实验结果表明,[1,1'-双(二苯基膦基)二茂铁]二氯化镍属于三斜晶系,P-1空间群,Mr=683.96,其中的Ni是四面体配位,由于氯原子间强大的斥力,存在一个较大的C1--Ni--C1角(124.47(3)0),而两个Cl-Ni-P角的不同时由于空间位阻的存在,二茂铁配体表现出稍微扭曲。晶体学数据为:a=9.6622(3) ?,b=9.6712(3) ? ,c=18.3588(5) ?,α=96.011(2) o,β=101.003(2)o ,γ

=115.140(3)o ,Z=2,ρcalc =1.524 g/cm3,F(000) =700.0;[1,1'-双(二苯基膦基)二茂铁]二氯化钯属于单斜晶系,P21/c空间群,Mr= 772.71,其中的Pd是平行四边形配位,其处于两个P 原子和两个顺式1C 原子组成的假平面中心,Pd 一P1和Pd 一P2的键长分别为2.2933(8) ?和2.2774(8) ?,P1和P2原子都与Pd的两个C l原子所组成的平面有些偏离, 可能是由于四个苯基的空间位阻所致,扭曲程度越大P d一P键就越长,晶体学数据为:a= 9.73490(1) ?,b=17.9417(2) ?,c=19.1632(2) ?,α=γ=90°,β=101.7760(10)°,Z=4,ρcalc= 1.566 g/cm3 ,F(000)= 1560.0。

参考文献

[1]U. CASELLATO and D. AJO,G. VALLE,B. CORAIN and B. LONGATO,R. GRAZIANI,Heteropolymetallic complexes of 1, l'- bis(diphenylphosphino) ferrocene (dppf). II. Crystal structure of dppf and NiCl2(dppf),Journal of Crystallographic and Spectroscopic Research, Vol. 18, No. 5, 1988

[2] 席振峰,杨瑞娜,候益民,金斗满,罗保生.双取代二茂铁为配体的配合物研究——Ⅲ.1,1’-双(二苯基膦)二茂铁氯化钯配合物的合成、表征、电化学性质和晶体结构.无机化学学报.1991年04期

第一章+金属的晶体结构作业+答案

第一章金属的晶体结构 1、试用金属键的结合方式,解释金属具有良好的导电性、正的电阻温度系数、导热性、塑性和金属光泽等基本特性. 答:(1)导电性:在外电场的作用下,自由电子沿电场方向作定向运动。 (2)正的电阻温度系数:随着温度升高,正离子振动的振幅要加大,对自由电子通过的阻碍作用也加大,即金属的电阻是随温度的升高而增加的。 (3)导热性:自由电子的运动和正离子的振动可以传递热能。 (4) 延展性:金属键没有饱和性和方向性,经变形不断裂。 (5)金属光泽:自由电子易吸收可见光能量,被激发到较高能量级,当跳回到原位时辐射所吸收能量,从而使金属不透明具有金属光泽。 2、填空: 1)金属常见的晶格类型是面心立方、体心立方、密排六方。 2)金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有金属键的结合方式。 3)物质的原子间结合键主要包括金属键、离子键和共价键三种。 4)大部分陶瓷材料的结合键为共价键。 5)高分子材料的结合键是范德瓦尔键。 6)在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为(( 140 )). 7)在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为(ī10),OC晶向指数为(221),OD晶向指数为(121)。 8)铜是(面心)结构的金属,它的最密排面是(111 )。 9) α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn中属于体心立方晶格的有(α-Fe 、 Cr、V ),属于面心立方晶格的有(γ-Fe、Al、Cu、Ni ),属于密排六方晶格的有( Mg、Zn )。 3、判断 1)正的电阻温度系数就是指电阻随温度的升高而增大。(√) 2)金属具有美丽的金属光泽,而非金属则无此光泽,这是金属与非金属的根本区别。(×) 3) 晶体中原子偏离平衡位置,就会使晶体的能量升高,因此能增加晶体的强度。(× ) 4) 在室温下,金属的晶粒越细,则其强度愈高和塑性愈低。(×) 5) 实际金属中存在着点、线和面缺陷,从而使得金属的强度和硬度均下降。 (×) 6)体心立方晶格中最密原子面是{110},原子排列最密的方向也是<111> .(对) 7)面心立方晶格中最密的原子面是{111},原子排列最密的方向是<110>。 ( 对 ) 8)纯铁加热到912℃时将发生α-Fe向γ-Fe的转变,体积会发生膨胀。 ( 错 ) 9)晶胞是从晶格中任意截取的一个小单元。(错) 10)纯铁只可能是体心立方结构,而铜只可能是面心立方结构。 (错) 4、选择题 1)金属原子的结合方式是( C )

第二章金属的晶体结构与结晶(精)

第二章金属的晶体结构与结晶 教学目的及要求 通过本章的学习,使学生掌握常用纯金属的结构特点和性能特点,建立金属材料结构与性能之间的关系。 主要内容 1.材料的结合方式 2.金属的晶体结构与结晶 学时安排 讲课2学时。 教学重点 1.金属的三种典型的晶体结构 2.晶体缺陷及其对性能的影响 3.纯金属的结晶过程 教学难点 1.金属材料的晶体结构 2.各类缺陷对结构及性能的影响 第一节纯金属的晶体结构 一、晶体结构的基本概念 晶体结构:指在晶体内部,原子、离子或原子集团规则排列的方式。晶体结构不同,其性能往往相差很大。 晶格:为了便于分析研究,通常把将晶体中实际存在的原子、离子或原子集团等物质质点,抽象为空间中纯粹的几何点,而完全忽略它的物质性,这些抽象的几何点称为阵点。用假想的直线把这些阵点连接起来,得到周期性规则排列的三维空间格子称为晶格。 晶胞:组成晶格的能反映其特征和规律的最基本几何单元,称为晶胞。晶格可以看作是由许多大小和形状完全相同的晶胞紧密地堆垛在一起而成的。 晶格常数:晶胞各棱边的长度用a、b、c表示,称为晶格常数或点阵常数,其大小通常以埃为计量单位。晶胞各边之间的相互夹角分别以α、β、γ表示。a、b、c、α、β、γ称为晶胞的六个参数。 在研究晶体结构时,通常以晶胞作为代表来考查。

配位数和致密度:表示晶格中原子排列的紧密程度。 配位数:指晶格中与任一原子处于相距最近并距离相等的原子数目; 致密度(K):指晶胞中原子排列的致密程度,即晶胞中原子所占的体积与晶胞体积(V)的比值,比值K越大,致密度越大。 二、金属中常见的晶体结构类型 三种典型晶体结构特征: 晶体结构与材料性能:(一般规律)面心立方的金属塑性最好,体心立方次之,密排六方的金属较差。 第二节实际金属中的晶体缺陷 一、常见晶体缺陷及分类 晶体缺陷:实际晶体中排列不规则的区域称为晶体缺陷。 分类:按空间尺寸分为三种。 1.点缺陷。不规则区域在空间三个方向上的尺寸都很小,主要是空位、置换原子、间隙原子。 2.线缺陷。不规则区域在一个方向的尺寸很大,在另外两个方向的尺寸都很小,主要是位错。 3.面缺陷:不规则区域在两个方向的尺寸很大,在另外一个方向的尺寸很小,主要是晶界和亚晶界。 二、晶体缺陷对晶体性能的影响 1.点缺陷周围晶格发生畸变,材料的屈服强度提高,塑性韧性下降,电阻增加。

33 实际金属的晶体结构 一、多晶体结构和亚结构

3.3 实际金属的晶体结构 一、多晶体结构和亚结构 实际使用的工业金属材料,即使体积很小,其内部的晶格位向也不是完全一致的,而是包含着许许多多彼此间位向不同的、称之为晶粒的颗粒状小晶体。而晶粒之间的界面称为晶界。这种实际上由许多晶粒组成的晶体结构称为多晶体结构(polycrystalline structure)。一般金属材料都是多晶体(图3-12)。通常测得的金属性能是各个位向不同的晶粒的平均值,故显示出各向同性。 图3—12 多晶体结构示意图 实践证明,即使在一个晶粒内部,其晶格位向也并不是象理想晶体那样完全一致,而是存在着许多尺寸更小,位向差也很小的小晶块。它们相互嵌镶成一颗晶粒。这些小晶块称为亚结构。可见,只有在亚结构内部,晶格的位向才是一致的。 二、晶体缺陷 实际晶体还因种种原因存在着偏离理想完整点阵的部位或结构,称为晶体缺陷(crystal defect)。晶体缺陷的存在及其多寡,是研究晶体结构、金属塑性变形的关键问题。根据其几何特性,晶体的缺陷可分为三类: 1.点缺陷——空位和间隙原子 实际晶体未被原子占有的晶格结点称为空位;而不占有正常晶格位置而处于晶格空隙之间的原子则称为间隙原子。在空位或间隙原子的附近,由于原子间作用力的平衡被破坏,使其周围的原子离开了原来的平衡位置,即产生所谓的晶格畸变。空位和间隙原子都处于不断的运动和变化之中,这对于热处理和化学处理过程都是极为重要的。 2.线缺陷——位错 晶体中某处有一列或若干列原子发生有规律的错排现象称为位错(dislocation)。有刃型

和螺型两种位错。 刃型位错如图3-13所示。垂直方向的原子面EFGH中断于水平晶面ABCD上的EF处,就像刀刃一样切入晶体,使得晶体中位于ABCD面的上、下两部分出现错排现象。EF线称为刃型位错线。在位错线附近区域,晶格发生畸变,导致ABCD晶面上、下方位错线附近的区域内,晶体分别受到压应力和拉应力。符号“┴”和“┬”分别表示多出的原子面在晶体的上半部和下半部,分别称为正、负刃型位错。 图3—13 刃型位错示意图 螺型位错如图3-14所示。晶体在BC右方的上、下两部分原子排列沿ABCD晶面发生了错动。aa’右边晶体上、下层原子相对移动了一原子间距,而在BC和aa’之间形成了一个上下层原子不相吻合的过渡区域,这里的原子平面被扭成了螺旋面。在原子面上,每绕位错线一周就推进了一个晶面间距。显然,螺型位错附近区域的晶格也发生了严重畸变,形成了一个应力集中区。 3.面缺陷——晶界和亚晶界 晶界实际上是不同位向晶粒之间原子排列无规则的过渡层(图3-15)。晶界处晶格处于畸变状态,导致其能量高于晶粒内部能量,常温下显示较高的强度和硬度,容易被腐蚀,熔点较低,原子扩散较快。

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

金属学与热处理课后习题答案第二章

第二章纯金属的结晶 2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2 b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何? 答: 2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。为什么形成立方体晶核的△Gk比球形晶核要大。 答:

2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么? 答: 金属结晶时需过冷的原因: 如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使G s<Gl,也就是在过冷的情况下才可自发地发生结晶。把Tm-Tn的差值称为液态金属的过冷度 影响过冷度的因素: 金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。 固态金属熔化时是否会出现过热及原因: 会。原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<G s,固态金属才会发生自发地熔化。 2-4 试比较均匀形核和非均匀形核的异同点。 答: 相同点: 1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。

2、具有相同的临界形核半径。 3、所需形核功都等于所增加表面能的1/3。 不同点: 1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变 化而变化。 2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。 3、两者对形核率的影响因素不同。非均匀形核的形核率除了受过冷度和温度的 影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。 2-5 说明晶体生长形状与温度梯度的关系。 答: 液相中的温度梯度分为: 正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。负温度梯度:指液相中的温度随至固液界面距离的增加而降低的温度分布情况。固液界面的微观结构分为: 光滑界面:从原子尺度看,界面是光滑的,液固两相被截然分开。在金相显微镜下,由曲折的若干小平面组成。 粗糙界面:从原子尺度看,界面高低不平,并存在着几个原子间距厚度的过渡层,在过渡层中,液固两相原子相互交错分布。在金相显微镜下,这类界 面是平直的。 晶体生长形状与温度梯度关系: 1、在正温度梯度下:结晶潜热只能通过已结晶的固相和型壁散失。 光滑界面的晶体,其显微界面-晶体学小平面与熔点等温面成一定角度,这种情况有利于形成规则几何形状的晶体,固液界面通常呈锯齿状。 粗糙界面的晶体,其显微界面平行于熔点等温面,与散热方向垂直,所以晶体长大只能随着液体冷却而均匀一致地向液相推移,呈平面长大方式,固液界面始终保持近似地平面。 2、在负温度梯度下: 具有光滑界面的晶体:如果杰克逊因子不太大,晶体则可能呈树枝状生长;当杰克逊因子很大时,即时在较大的负温度梯度下,仍可能形成规则几何形状的晶体。具有粗糙界面的晶体呈树枝状生长。 树枝晶生长过程:固液界面前沿过冷度较大,如果界面的某一局部生长较快偶有突出,此时则更加有利于此突出尖端向液体中的生长。在尖端的前方,结晶潜热散失要比横向容易,因而此尖端向前生长的速度要比横向长大的速度大,很块就长成一个细长的晶体,称为主干。这些主干即为一次晶轴或一次晶枝。在主干形成的同时,主干与周围过冷液体的界面也是不稳的的,主干上同样会出现很多凸出尖端,它们会长大成为新的枝晶,称为称为二次晶轴或二次晶枝。二次晶枝发展到一定程度,又会在它上面长出三次晶枝,如此不断地枝上生枝的方式称为树枝状生长,所形成的具有树枝状骨架的晶体称为树枝晶,简称枝晶。 2-6 简述三晶区形成的原因及每个晶区的特点。 答: 三晶区的形成原因及各晶区特点: 一、表层细晶区

纯金属与合金的晶体结构

淮安信息职业技术学院教案首页 一、章节:第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构第二节纯金属的实际晶体结构第三节合金的晶体结构 二、教学目的:使学生了解纯金属与合金的晶体结构,晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 三、教学方法: 讲授法。 四、教学重点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 五、教学难点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 六、使用教具: 挂图。 七、课后作业: P17:1、2、6。 八、课后小结:

第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构 一、晶体结构的基本知识 1.晶体与非晶体 晶体内部的原子按一定几何形状作有规则地重复排列,如金钢石、石墨及固态金属与合金。而非晶体内部的原子无规律地规律地堆积在一起,如沥青、玻璃、松香等。 晶体具有固定的熔点和各向异性的特征,而非晶体没有固定的熔点,且各向同性。 2.晶体管格与晶胞 为便于分析晶体中原子排列规律,可将原子近似地看成一个点,并用假想的线条将各原子中心连接起来,便形成一个空间格子。 晶格——抽象的、用于描述原子在晶体中的规则排列方式的空间几何图形。结点——晶格中直线的交点。 晶胞——晶格是由一些最基本的几何单元周期重复排列而成的,这种最基本的几何单元称为晶胞。

晶胞大小和形状可用晶胞的三条棱长a、b、c(单位,1A=108cm)和棱边夹角来描述,其中a、b、c称为晶格常数。 各种晶体由于其晶格类型和晶格常数不同,故呈现出不同的物理、化学及力学性能。 二、常见的晶格类型 1.体心立方晶格 体心立方晶格的晶胞为一立方体,立方体的八个顶角各排列着一个原子,立方体的中心有一个原子。其晶格常数a=b=c。属于这种晶格类型的金属有α铁、铬、钨、钼、钒等。 2.面心立方晶格 面心立方晶格的晶胞也是一个立方体,立方体的八个顶角和六个面的中心各排列一个原子。属于这种晶格类型的金属有γ铁、铝、铜墙铁壁、镍、金、银等。 3.密排六方晶格 密排六方晶格的晶胞是一个六方柱体,柱体的十二个顶角和上、下中心各排列着一个原子,在上、下面之间还有三个原子。属于这种晶格类型的金属有镁、锌、铍等、α-Ti。 晶格类型不同,原子排列的致密度也不同。体心立方晶格的致

第一章__金属的晶体结构习题答案

第一章 金属得晶体结构 (一)填空题 3.金属晶体中常见得点缺陷就是 空位、间隙原子与置换原子 ,最主要得面缺陷就是 。 4.位错密度就是指 单位体积中所包含得位错线得总长度 ,其数学表达式为V L =ρ。 5.表示晶体中原子排列形式得空间格子叫做 晶格 ,而晶胞就是指 从晶格中选取一个能够完全反应晶格特征得最小几何单元 。 6.在常见金属晶格中,原子排列最密得晶向,体心立方晶格就是 [111] ,而面心立方晶格就是 [110] 。 7 晶体在不同晶向上得性能就是 不同得 ,这就就是单晶体得 各向 异性现象。一般结构用金属为 多 晶体,在各个方向上性能 相同 ,这就就是实际金属得 伪等向性 现象。 8 实际金属存在有 点缺陷 、 线缺陷 与 面缺陷 三种缺陷。 位错就是 线 缺陷。 9.常温下使用得金属材料以 细 晶粒为好。而高温下使用得金属 材料在一定范围内以粗 晶粒为好。 10.金属常见得晶格类型就是 面心立方、 体心立方 、 密排六方 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1, 1,1/2),D(1/2,1,1/2),那么AB 晶向指数为10]1[- ,OC 晶向指数为[221] ,OD 晶向指数为 [121] 。 12.铜就是 面心 结构得金属,它得最密排面就是 {111} , 若铜得晶格常数a=0、36nm,那么最密排面上原子间距为 0、509nm 。 13 α-Fe 、γ-Fe 、Al 、Cu 、Ni 、Cr 、V 、Mg 、Zn 中属于体心立方 晶格得有 α-Fe 、Cr 、V ,属于面心立方晶格得有 γ-Fe 、Al 、Cu 、Ni 、 ,属于密排六方晶格得有 Mg 、Zn 。 14.已知Cu 得原子直径为0.256nm ,那么铜得晶格常数为 。 1mm 3Cu 中得原子数为 。 15.晶面通过(0,0,0)、(1/2、1/4、0)与(1/2,0,1/2)三点,这个晶 面得晶面指数为 、 16.在立方晶系中,某晶面在x 轴上得截距为2,在y 轴上得截距为 1/2;与z 轴平行,则该晶面指数为 (140) 、 17.金属具有良好得导电性、导热性、塑性与金属光泽主要就是因为 金属原子具有 金属键 得结合方式。 18.同素异构转变就是指 当外部条件(如温度与压强)改变时,金

第二章 金属及合金的晶体结构

第二章金属及合金的晶体结构 金属材料是指以金属键来表征其特性的材料,它包括金属及其合金。金属材料在固态下通常都是晶体状态,所以要研究金属及合金的结构就必须首先研究晶体结构。 一、晶体的基本概念 晶体结构指晶体内部原子规则排列的方式。晶体结构不同,其性能往往相差很大。为了便于分析研究各种晶体中原子或分子的排列情况,通常把原子抽象为几何点,并用许多假想的直线连接起来,这样得到的三维空间几何格架称为晶格,如图2-3(b)所示;晶格中各连线的交点称为结点;组成晶格的最小几何单元称为晶胞,晶胞各边的尺寸a、b、c称为晶格常数,其大小通常以为计量单位(A),晶胞各边之间的相互夹角分别以α、β、γ表示。图2-3(c)所示的晶胞为简单立方晶胞,其晶格常数a=b=c,而α=β=γ=90o。由于晶体中原子重复排列的规律性,因此晶胞可以表示晶格中原子排列的特征。在研究晶体结构时,通常以晶胞作为代表来考查。 为了描述晶格中原子排列的紧密程度,通常采用配位数和致密度(K)来表示。配位数是指晶格中与任一原子处于相等距离并相距最近的原子数目;致密度是指晶胞中原子本身所占的体积百分数,即晶胞中所包含的原子体积与晶胞体积(V)的比值。 图2-3 简单立方晶体 (a)晶体结构(b)晶格(c)晶胞 二、常见纯金属的晶格类型 在金属元素中,除少数具有复杂的晶体结构外,大多数具有简单的晶体结构,常见的晶格类型有以下三种:1.体心立方晶格 体心立方晶格的晶胞如图2-4所示。它的形状是一个立方体,其晶格常数a=b=c,所以只要一个常数a即可表示;其α=β=γ=90o。在体心立方晶胞中,原子位于立方体的八个顶角和中心。属于这类晶格的金属有α-Fe、Cr、V、W、Mo、Nb等。

第一章 金属的晶体结构

第一章金属的晶体结构 1-1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向。 附图1-1 有关晶面及晶向 1-2、立方晶系的{111}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。 {111}=(111)+(111)+(111)+(111) (111)与(111)两个晶面指数的数字与顺序完全相同而符号相反,这两个晶面相互平行,相当于用-1乘某一晶面指数中的各个数字。 1-3 (题目见教材) 解:x方向截距为5a,y方向截距为2a,z方向截距为3c=3 2a/3=2a。 取截距的倒数,分别为 1/5a,1/2a,1/2a

化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 1-4 (题目见课件) 解:(100)面间距为a/2;(110)面间距为2a/2;(111)面间距为3a/3。 三个晶面中面间距最大的晶面为(110)。 1-5 (题目见课件) 解:方法同1-4题 1-7 证明理想密排六方晶胞中的轴比c/a=1.633。 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内 的原子相切,构成正四面体,如图所示。 则OD= 2 c ,AB=BC=CA=AD=BD=CD=a 因?ABC 是等边三角形,所以有OC=3 2CE 因(BC)2 =(CE)2 +(BE) 2 则CE=23a ,OC=32×23a =3 3 a 又(CD)2 =(OC)2 +( 21c )2,即(CD)2=(3 3a )2+(21c )2=(a )2 因此, a c =3 8≈1.633 1-8 解:面心立方八面体间隙半径 r=a/2-2a/4=0.146a , 面心立方原子半径R=2a/4,则a=4R/2,代入上试有

第一章 金属的晶体结构习题答案

第一章 金属的晶体结构 (一)填空题 3.金属晶体中常见的点缺陷是 空位、间隙原子和置换原子 ,最主要的面缺陷是 。 4.位错密度是指 单位体积中所包含的位错线的总长度 ,其数学表达式为V L =ρ。 5.表示晶体中原子排列形式的空间格子叫做 晶格 ,而晶胞是指 从晶格中选取一个能够完全反应晶格特征的最小几何单元 。 6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是 [111] ,而面心立方 晶格是 [110] 。 7 晶体在不同晶向上的性能是 不同的 ,这就是单晶体的 各向异性现象。一般结构用金属 为 多 晶体,在各个方向上性能 相同 ,这就是实际金属的 伪等向性 现象。 8 实际金属存在有 点缺陷 、 线缺陷 和 面缺陷 三种缺陷。位错是 线 缺陷。 9.常温下使用的金属材料以 细 晶粒为好。而高温下使用的金属材料在一定范围内以粗 晶粒为好。 10.金属常见的晶格类型是 面心立方、 体心立方 、 密排六方 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2), 那么AB 晶向指数为10]1[- ,OC 晶向指数为[221] ,OD 晶向指数为 [121] 。 12.铜是 面心 结构的金属,它的最密排面是 {111} ,若铜的晶格常数a=0.36nm, 那么最密排面上原子间距为 0.509nm 。 13 α-Fe 、γ-Fe 、Al 、Cu 、Ni 、Cr 、V 、Mg 、Zn 中属于体心立方晶格的有 α-Fe 、Cr 、 V ,属于面心立方晶格的有 γ-Fe 、Al 、Cu 、Ni 、 ,属于密排六方晶格的有 Mg 、 Zn 。 14.已知Cu 的原子直径为0.256nm ,那么铜的晶格常数为 。1mm 3Cu 中的原子数 为 。 15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为 . 16.在立方晶系中,某晶面在x 轴上的截距为2,在y 轴上的截距为1/2;与z 轴平行,则 该晶面指数为 (140) . 17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有 金属键 的 结合方式。 18.同素异构转变是指 当外部条件(如温度和压强)改变时,金属内部由一种金属内部由 一种晶体结构向另一种晶体结构的转变 。纯铁在 温度发生 和 多晶型转变。 19.在常温下铁的原子直径为0.256nm ,那么铁的晶格常数为 。 20.金属原子结构的特点是 。 21.物质的原子间结合键主要包括 离子键 、 共价键 和 金属键 三种。 (二)判断题 1.因为单晶体具有各向异性的特征,所以实际应用的金属晶体在各个方向上的性能也是不 相同的。 (N) 2.金属多晶体是由许多结晶位向相同的单晶体所构成。 ( N) 3.因为面心立方晶体与密排六方晶体的配位数相同,所以它们的原子排列密集程度也相同 4.体心立方晶格中最密原子面是{111}。 Y 5.金属理想晶体的强度比实际晶体的强度高得多。N 6.金属面心立方晶格的致密度比体心立方晶格的致密度高。 7.实际金属在不同方向上的性能是不一样的。N 8.纯铁加热到912℃时将发生α-Fe 向γ-Fe 的转变。 ( Y ) 9.面心立方晶格中最密的原子面是111},原子排列最密的方向也是<111>。 ( N ) 10.在室温下,金属的晶粒越细,则其强度愈高和塑性愈低。 ( Y ) 11.纯铁只可能是体心立方结构,而铜只可能是面心立方结构。 ( N ) 12.实际金属中存在着点、线和面缺陷,从而使得金属的强度和硬度均下降。 ( Y ) 13.金属具有美丽的金属光泽,而非金属则无此光泽,这是金属与非金属的根本区别。N

第二章金属及合金相的晶体结构

Chapter Outline ?金属的晶体结构 ?密排面堆积方式 ?晶体结构间隙 ?固溶体 ?中间相结构

常见金属的晶体结构 面心立方结构(A1)face-centred cubic lattice 体心立方结构(A2) body-centred cubic lat tice 密排立方结构(A3)hexagonal close-packed lattice A B A ?金属键无饱和性和方向性,使其晶 体结构倾向于最紧密堆垛。 ?将原子看作刚性球,构成相互接触 圆球模型,更确切表示原子排列。 ?面心原子shared by 2 cells: 6 x 1/2 = 3?顶角原子shared by 8 cells: 8 x 1/8 = 1 面心立方结构金属:γ-Fe, Al, Cu, Ni, Au, Ag 和Pt 等。 面心立方结构 ?结构符号A1,Pearson 符号c F4。 ?每个晶胞含4个原子。(0,1/2,1/2)● (0,0,0) ●(1/2,1/2,0)●●(1/2,0,1/2)

配位数与致密度 面心立方结构的致密度η为?致密度η是衡量原子堆垛紧密程度的,为晶胞中原子所占体积(V a )与晶胞体积(V )的比值:η=V a / V ?面心立方晶胞面对角线为原子半径的4倍,即()r 24/=a ?配位数(Coordination Number——CN )是晶体结构中每个原子的最近邻原子数目。a/2 2密排面{111}密排方向 <110> ?面心立方结构的配位数为12,最近 原子间距离为?结构符号A2,Pearson 符号c I2?每个晶胞含2个原子 体心立方结构 ?体心立方结构的金属包括:α-Fe, Cr, W, Mo, V 和Nb 等。 ?体心立方结构配位数为8,原子间距a/23?还有6个次近邻原子,间距为a ,相差15.5%。?体心配位数也表示为CN=8+6。 体心立方结构的致密度η为 体心立方晶胞体对角线为原子半径的4倍,即()r 34/=a 体心原子shared by 0 cells: 1 x 1 = 1 顶角原子shared by 8 cells: 8 x 1/8 = 1 (1/2 1/2 1/2)●(000)●密排面{110} 密排方向<111>

金属的晶体结构

引言 金属学是研究金属及合金的成分、组织、结构与力学性能之间关系的科学。所谓力学性能主要指材料的强度、硬度和塑性。通常用来承受载荷的零件要求材料具有一定的力学性能,我们称这类材料为结构材料。与结构材料对应的另一类材料是功能材料,它一般不要求承受载荷,主要使用它的物理性能,如光、电、磁性能等。功能材料利用它对光、电、磁的敏感特性制作各类传感器。 金属学只讨论金属材料的力学性能,不涉及物理性能。 固态金属通常是晶体,金属学研究的最小结构单元是原子。原子通过不同的排列可构成各种不同的晶体结构,产生不同的性能。原子结构不是金属学研究的范畴。 第1章金属的晶体结构 1-1金属及金属键 金属的定义根据学科的不同有多种划分方法。本人倾向按结合键的性质来划分,即金属是具有金属键的一类物质。这种分类的好处是有利于解释与金属力学性能相关的现象。例如,为什么金属具有较好的塑性? 什么是金属键、离子键、共价键我们早就熟知,金属键的最大特点是无饱和性、无方向性。以后我们将会看到,正是这些特点使金属具有较好的塑性。 研究表明,固态金属通常是晶体,且其结构趋于密堆积结构。这是为什么?下面我们用双原子模型来说明。 当两个原子相距很远时,它们之间不发生作用。当它们逐渐靠近时,一个原子的原子核与另一个原子的核外电子之间将产生引力;而两原子的原子核及电子之间产生斥力。研究表明,引力是长程力,斥力是短程力,即距离较远时,引力大于斥力,表现为相互吸引。随着原子距离的减小,斥力增加的速度逐渐大于引力增加的速度。显然这样作用的结果必然存在一个平衡距离d0,此时,引力等于斥力,偏离这一距离时,都将受到一个恢复力,如P3图2。d c对应最大恢复引力,即最大结合力,它对应着金属的理论抗拉强度。 下面,我们从能量的角度来考虑系统的稳定性。在引力作用下原子移近所做的功使原子的势能降低,所以吸引能是负值。相反,排斥能是正值。吸引能

第3讲纯金属的晶体结构

第三讲纯金属的晶体结构 1.典型金属的晶体结构 考点再现:这一部分08年09年10年都有所涉及,10年考了晶胞致密度的概念,这部分以名词解释,填空为主,需要在理解的基础上记忆,但是总体上说难度不大,但是却很重点。考试要求:记忆,特别是理解基础上的记忆,对于一些内容需要会一定的推导。 知识点: 晶胞中的原子数:完全属于该晶胞的原子数。★★★ 配位数:晶体结构中任一原子周围最近邻且等距离的原子数(CN)。★★★★ 致密度:晶体结构中的原子体积占总体积的百分比(k)。★★★★ 八面体间隙:位于6个原子所组成的8面体中间的间隙。★★★ 四面体间隙:位于4个原子所组成的4面体中间的间隙。★★★ 典型金属晶体结构有(面心立方fcc),(体心立方bcc),(密排六方hcp)★★★★★

fcc bcc hcp 面心立方结构n = 8×1/8 + 6×1/2 = 4 体心立方结构n = 8×1/8 + 1 =2 密排六方结构n = 12×1/6 +2×1/2 +3 = 6 三种典型金属晶体结构特征 晶体类型原子密排面原子密排方 向晶胞中的原 子数 配位数CN 致密度K A1(fcc){111} <110> 4 12 0.74 A2(bcc){110} <111> 2 8,(8+6)0.68 A3(hcp){0001} <11-20> 6 12 0.74 对于金属晶体结构的这一部分的主要内容都集中在这个表上,在这些方面里,我们更加侧重密排面和密排方向以及致密度的掌握,这是本讲内容的一个重点。 而对于本讲的另一个重点就是关于间隙问题的讨论。 我们知道位于6个原子所组成的8面体中间的间隙。位于4个原子所组成的4面体中间的间隙。单8面体间隙和四面体间隙时如何排布的呢,我们由图可以清楚的了解。

(完整版)材料科学基础习题库第一章-晶体结构

(一).填空题 1.同非金属相比,金属的主要特性是__________ 2.晶体与非晶体的最根本区别是__________ 3.金属晶体中常见的点缺陷是__________ ,最主要的面缺陷是__________ 。4.位错密度是指__________ ,其数学表达式为__________ 。 5.表示晶体中原子排列形式的空间格子叫做__________ ,而晶胞是指__________ 。 6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是__________ ,而面心立方晶格是__________ 。 7.晶体在不同晶向上的性能是__________,这就是单晶体的__________现象。 一般结构用金属为__________ 晶体,在各个方向上性能__________ ,这就是实际金属的__________现象。 8.实际金属存在有__________ 、__________ 和__________ 三种缺陷。位错是__________ 缺陷。实际晶体的强度比理想晶体的强度__________ 得多。。9.常温下使用的金属材料以__________ 晶粒为好。而高温下使用的金属材料在一定范围内以__________ 晶粒为好。‘ 10.金属常见的晶格类型是__________、__________ 、__________ 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为__________ ,OC晶向指数为__________ ,OD晶向指数为__________ 。 12.铜是__________ 结构的金属,它的最密排面是__________ ,若铜的晶格常数a=0.36nm,那么最密排面上原子间距为__________ 。 13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有 __________ ,属于面心立方晶格的有__________ ,属于密排六方晶格的有__________ 。 14.已知Cu的原子直径为0.256nm,那么铜的晶格常数为__________ 。1mm3Cu 中的原子数为__________ 。 15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为() 16.在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为__________ . 17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有__________ 的结合方式。 18.同素异构转变是指__________ 。纯铁在__________ 温度发生__________ 和__________ 多晶型转变。 19.在常温下铁的原子直径为0.256nm,那么铁的晶格常数为__________ 。20.金属原子结构的特点是______________________________________。21.物质的原子间结合键主要包括__________ 、__________ 和__________ 三种。 22.大部分陶瓷材料的结合键为__________ 。 23.高分子材料的结合键是__________ 。 25.位错线与柏氏矢量垂直,该位错为_________,位错线与柏氏矢量平行时为_______位错。

纯金属的晶体结构

纯金属的晶体结构

1.三种常见的金属晶体结构 固态物质按其原子的聚集状态可分为两大类:晶体和非晶体,晶体指的是材料的原子(离子、分子)在三维空间呈规则的周期性排列的物体,如金刚石、水晶、金属等。非晶体指的是材料的原子(离子、分子)在三维空间无规则排列的物体,如松香、石蜡、玻璃等。在一定的条件下晶体和非晶体可以互相转化(I2-1)。 晶体结构是晶体中原子(离子或分子)规则排列的方式。晶格是假设通过原子结点的中心划出许多空间直线所形成的空间格架。能反映晶格特征的最小组成单元称为晶胞(I2-2)。晶格常数指的是晶胞的三个棱边的长度a,b,c。 常见的金属晶体结构有 ⑴体心立方晶格(BCC—Body-Centered Cube),典型代表为钼(Mo)、钨、钒、铬、铌、α-Fe等,八个原子处于立方体的角上,一个原子处于立方体的中心,如图2所示。 ⑵面心立方晶格(FCC—Face-Centered Cube),典型代表为铝、铜、镍、金、银、γ-Fe等,原子分布在立方体的八个角上和六个面的中心,如图1所示。 ⑶密排六方晶格(HCP—Hexagonal Close-Packed)典型代表为镁、镉(Cd)、锌、铍(Be)等。12个原子分布在六方体的12个角上,上下底面中心各分布一个原子,上下底面之间均匀分布3个原子,如图3所示。 图1面心立方晶格图2体心立方晶格图3密排六方晶格 原子半径指的是晶胞中相距最近的两个原子之间距离的一半,致密度指的是晶胞中所包含的原子所占有的体积与该晶胞体积之比。 体心立方模型与晶胞示意图(I2-3),在体心立方晶格中如图4: 图 4 晶格常数:a=b=c;a=b=g=90° 晶胞原子数:2 原子半径: 致密度:0.68 面心立方模型与晶胞示意图(I2-4),在面心立方晶格中如图5: 图 5 晶格常数:a=b=c;a=b=g=90° 晶胞原子数:4 原子半径:

金属学及热处理习题参考答案(1-9章)

第一章金属及合金的晶体结构 一、名词解释: 1.晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。2.非晶体:指原子呈不规则排列的固态物质。 3.晶格:一个能反映原子排列规律的空间格架。 4.晶胞:构成晶格的最基本单元。 5.单晶体:只有一个晶粒组成的晶体。 6.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。 7.晶界:晶粒和晶粒之间的界面。 8.合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。 9.组元:组成合金最基本的、独立的物质称为组元。 10.相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。 11.组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。 12.固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。 二、填空题: 1.晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。 2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。 3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。 4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。 5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。 6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。

8.金属晶体中最主要的面缺陷是晶界和亚晶界。 9.位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的。 10.在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、 (210)、(201)、 (201)、(012)、(012)、(021)、(021)、等晶面。 11.点缺陷有空位、间隙原子和置换原子等三种;属于面缺陷的小角度晶界可以用亚晶界来描述。 三、判断题: 1.固溶体具有与溶剂金属相同的晶体结构。(√) 2.因为单晶体是各向异性的,所以实际应用的金属材料在各个方向上的性能也是不相同的。(×) 3.金属多晶体是由许多位向相同的单晶体组成的。(×) 4.因为面心立方晶格的配位数大于体心立方晶格的配位数,所以面心立方晶格比体心立方晶格更致密。(√) 5.在立方晶系中,原子密度最大的晶面间的距离也最大。(√) 6.金属理想晶体的强度比实际晶体的强度稍强一些。(×) 7.晶体缺陷的共同之处是它们都能引起晶格畸变。(√) 四、选择题: 1.组成合金中最基本的,能够独立存在的物质称为:(b) a.相;b.组元;c.合金。 2.正的电阻温度系数的含义是:(b) a.随温度升高导电性增大;b.随温度降低电阻降低;c.随温度增高电阻减小。 3.晶体中的位错属于:(c) a.体缺陷;b.面缺陷;c.线缺陷;d.点缺陷。 4.亚晶界是由:(b) a.点缺陷堆积而成;b.位错垂直排列成位错墙而构成;c.晶界间的相互作用构成。5.在面心立方晶格中,原子密度最大的晶向是:(b) a.<100>;b.<110>;c.<111>。 6.在体心立方晶格中,原子密度最大的晶面是:(b) a.{100};b.{110};c.{111}。

相关文档
相关文档 最新文档