文档库 最新最全的文档下载
当前位置:文档库 › 加氢裂化装置说明危险因素及防范措施

加氢裂化装置说明危险因素及防范措施

加氢裂化装置说明危险因素及防范措施
加氢裂化装置说明危险因素及防范措施

加氢裂化装置说明、危险因素及防范措施一、装置简介

(一)装置的发展及类型

1.加氢装置的发展

加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工

过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构

化等,下面重点介绍加氢裂化加工过程。

加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。

1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术,

其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司

开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得

到了迅速发展。

早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜

利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966

年我国建成了第一套4000kt/a的加氢裂化装置。

进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。

2.装置的主要类型

加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢

处理等类型,这里主要介绍加氢裂化装置。

加氢裂化按操作压力可分为:高压加氢裂化和中压加氢裂化,

高压加氢裂化分离器的操作压力一般为16MPa左右,中压加氢裂化

分离器的操作压力一般为9.OMPa左右。

加氢裂化按工艺流程可分为:一段加氢裂化流程、二段加氢裂

化流程、串联加氢裂化流程。

一段加氢裂化流程是指只有一个加氢反应器,原料的加氢精制

和加氢裂化在一个反应器内进行。该流程的特点是:工艺流程简单,但对原料的适应性及产品的分布有一定限制。

二段加氢裂化流程是指有两个加氢反应器,第一个加氢反应器

装加氢精制催化剂,第二个加氢反应器装加氢裂化催化剂,两段加

氢形成两个独立的加氢体系,该流程的特点是:对原料的适应性强,操作灵活性较大,产品分布可调节性较大,但是,该工艺的流程复杂,投资及操作费用较高。

串联加氢裂化流程也是分为加氢精制和加氢裂化两个反应器,

但两个反应器串联连接,为一套加氢系统。串联加氢裂化流程既具

有二段加氢裂化流程比较灵活的特点,又具有一段加氢裂化流程比

较简单的特点,该流程具有明显优势,如今新建的加氢裂化装置多

为此种流程,本节所述的流程即为此种流程。

二、重点部位及设备

(一)重点部位

1.加热炉及反应器区

加氢装置的加热炉及反应器区布置有加氢反应加热炉、分馏部

分加热炉、加氢反应加热器、高压换热器等设备,其中大部分设备

为高压设备,介质温度比较高,而且加热炉又有明火,因此,该区

域潜在的危险性比较大,主要危险为火灾、爆炸是安全上重点防范

的区域。

2.高压分离器及高压空冷区

高压分离器及高压空冷区内有高压分离器及高压空冷器,若高

压分离器的液位控制不好,就会出现严重问题。主要危险为火灾、

爆炸和H2S中毒,因此该区域是安全上重点防范的区域。

3.加氢压缩机厂房

加氢压缩机厂房内布置有循环氢压缩机、氢气增压机,该区域

为临氢环境,氢气的压力较高,而且压缩机为动设备,出现故障的

机率较大,因此,该区域潜在的危险性比较大,主要危险为火灾、

爆炸中毒,是安全上重点防范的区域。

4.分馏塔区

分馏塔区的设备数量较多,介质多为易燃、易爆物料,高温热

油泵是应重点防范的设备,高温热油一旦发生泄漏,就可能引起火

灾事故,分馏塔区内有大量的燃料气、液态烃及油品,如发生事故,后果将十分严重,此外,脱丁烷塔及其干气、液化气中H2S浓度高,有中毒危险,因此该区域也是安全上重点防范的区域。

(二)主要设备

1.加氢反应器

加氢反应器多为固定床反应器,加氢反应属于气—液—固三相涓流床反应,加氢反应器分冷壁反应器和热壁反应器两种:冷壁反应器内有隔热衬里,反应器材质等级较低;热壁反应器没有隔热衬里,而是采用双层堆焊衬里,材质多为2×1/4Cr—1M0。加氢反应器内的催化剂需分层装填,中间使用急冷氢,因此加氢反应器的结构复杂,反应器人口设有扩散器,内有进料分配盘、集垢篮筐、催化剂支承盘、冷氢管、冷氢箱、再分配盘、出口集油器等内构件。

加氢反应器的操作条件为高温、高压、临氢,操作条件苛刻,是加氢装置最重要的设备之一。

蜡油加氢裂化装置

180万吨/年蜡油加氢裂化装置 一、工艺流程选择 1、反应部分流程选择 A.反应部分采用单段双剂串联全循环的加氢裂化工艺。 B.反应部分流程选择:本装置采用部分炉前混氢的方案,即部分混合氢和原料油混合进入高压换热器后进入反应进料加热炉,另一部分混合氢和反应产物换热后与加热炉出口的混氢油一起进入反应器。 C.本装置采用热高分流程,低分气送至渣油加氢脱硫后进PSA部分,回收此部分溶解氢。同时采用热高分油液力透平回收能量。因本装置处理的原料油流含量很高,氮含量较高,故设循环氢脱硫设施。 2、分馏部分流程选择 A.本项目分馏部分采用脱硫化氢塔-吸收稳定-常压塔出航煤和柴油的流程,分馏塔进料加热炉,优化分流部分换热流程。采用的流程比传统的流程具有燃料消耗低、投资省、能耗低等特点。 B.液化气的回收流程选用石脑油吸收,此法是借鉴催化裂化装置中吸收稳定的经验,吸收方法正确可靠,回收率搞。具有投资少、能耗低、回收率可达95%以上等特点。 3、催化剂的硫化、钝化和再生 A、本项目催化剂硫化拟采用干法硫化 B、催化剂的钝化方案采用低氮油注氨的钝化方案 C、催化剂的再生采用器外再生。 二、工艺流程简介 1、反应部分

原料油从原料预处理装置和渣油加氢裂化装置进入混合器混合后进入原料缓冲罐(D-101),经升压泵(P-101)升压后,再经过过滤(SR-101),进入滤后原料油缓冲罐(D-102)。原料油经反应进料泵(P-102)升压后与部分混合氢混合,混氢原料油与反应产物换热(E-101),然后进入反应进料加热炉(F-101)加热,加热炉出口混氢原料和另一部分经换热后的混合氢混合,达到反应温度后进入加氢精制反应器(R-101),然后进入加氢裂化反应器(R-102),在催化剂的作用下,进行加氢反应。催化剂床层间设有控制反应温度的急冷氢。反应产物先与部分混合氢换热后再与混氢原料油换热后,进入热高压分离器(D-103)。 装置外来的补充氢由新氢压缩机(K-101)升压后与循环氢混合。混合氢先与热高分气进行换热,一部分和原料油混合,另一部分直接和反应产物换热后直接送至加氢精制反应器入口。 从热高压分离器出的液体(热高分油)经液力透平(HT-101)降压回收能量,或经调节阀降压,减压后进入热低压分离器进一步在低压将其溶解的气体闪蒸出来。气体(热高分气)与冷低分油和混合氢换热,最后由热高分气空冷器(A-101)冷却至55℃左右进入冷高压分离器,进行气、油、水三相分离。为防止热高分气中NH3和H2S在低温下生成铵盐结晶析出,赌赛空冷器,在反应产物进入空冷器前注入除盐水。 从冷高压分离器分理出的气体(循环氢),经循环氢脱硫后进入循环氢压缩机分液罐(D-108),有循环氢压缩机(K-102)升压后,返回反应部分同补充氢混合。自循环氢脱硫塔底出来的富胺液闪蒸罐闪蒸。从冷高压分离器分离出来的液体(冷高分油)减压后进入冷低压分离器,继续进行气、液、水三相分离。冷高分底部的含硫污水减压后进入酸性水脱气罐(D-109)进行气液分离,含硫污水送出装置至污水汽提装置处理。从冷低压分离器分离出的气体(低分气)至渣油加氢装置低压脱硫部分:液体(冷低分油)经与热高分气换热后进入脱硫化氢塔。从热低压分离器分离出的气体(热低分气)经过水冷冷却后至冷低压分离器,液体(热低分油)直接进入脱硫化氢塔。 2、分馏和吸收稳定部分

SBS危险因素及防范措施详细版

文件编号:GD/FS-5997 (解决方案范本系列)SBS危险因素及防范措 施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

SBS危险因素及防范措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 (一)火灾爆炸危险 生产中的火灾爆炸危险主要来自于丁二烯以及溶剂系统,特别是丁二烯的自聚应该成为主要危险,丁二烯属于易于自聚的物质,丁二烯生成端基过氧化自聚物的倾向十分明显。丁二烯端基聚合物坚硬且不溶于已知溶剂,即便加热也不能熔融。由于丁二烯生成的端基聚合物在丁二烯中的溶解度很小,所以很容易沉积在浓缩层中,黏附在器壁和管道上,造成管道、阀门和设备堵塞或涨裂。在60—80~C或光照、撞击、摩擦时能发生爆炸。生产过程对于氧含量、水含量等要求非常严格,丁二烯在少量的氧存在的情况下就可能被氧化生成过氧化物,引发自聚。因此,防

火、防爆、防自聚要引起高度重视。 (二)毒性危害 SBS生产所用的物料主要是丁二烯、苯乙烯等,它们均属有毒有害物质,对人体有一定的毒性伤害,大都对人体的皮肤及呼吸道有一定的刺激作用。因此员工平时上岗一定要穿戴好劳动防护用品,操作过程中避免直接接触有毒介质,特别是在配制偶合剂、活化剂的过程中要严格按安全操作规程进行操作,避免引起急性中毒和皮肤损伤。 (三)开停工危险因素及防范措施 石油化工装置的开停工过程,由于装置的主要工艺参数在操作上都是在较短的时间内完成,物料进出、温度变化、压力变化几乎在极限范围内进行,因而也往往是容易导致事故发生的过程。 开工过程中主要危险因素及防范措施见表4—

加氢裂化工艺流程概述

加氢裂化工艺流程概述 全装置工艺流程按反应系统(含轻烃吸收、低分气脱硫)、分馏系统、机组系统(含PSA系统)进行描述。 1.1反应系统流程 减压蜡油由工厂罐区送入装置经原料升压泵(P1027/A、B)后,和从二丙烷罐区直接送下来的轻脱沥青油混合,在给定的流量和混合比例下原料油缓冲罐V1002液面串级控制下,经原料油脱水罐(V1001)脱水后,与分馏部分来的循环油混合,通过原料油过滤器(FI1001)除去原料中大于25微米的颗粒,进入原料油缓冲罐(V1002),V1002由燃料气保护,使原料油不接触空气。 自原料油缓冲罐(V1002)出来的原料油经加氢进料泵 (P1001A,B)升压后,在流量控制下与混合氢混合,依次经热高分气/混合进料换热器(E1002)、反应流出物/混合进料换热器(E1001A,B)、反应进料加热炉(F1001)加热至反应所需温度后进入加氢精制反应器(R1001),R1001设三个催化剂床层,床层间设急冷氢注入设施。R1001反应流出物进入加氢裂化反应器(R1002)进行加氢裂化反应,两个反应器之间设急冷氢注入点,R1002设四个催化剂床层,床层间设急冷氢注入设施。R1001反应流出物设有精制油取样装置,用于精制油氮含量监控取样。 由反应器R1002出来的反应流出物经反应流出物/混合

进料换热器(E1001)的管程,与混合原料油换热,以尽量回收热量。在原料油一侧设有调节换热器管程出口温度的旁路控制,紧急情况下可快速的降低反应器的入口温度。换热后反应流出物温度降至250℃,进入热高压分离器(V1003)。热高分气体经热高分气/混合进料换热器(E1002)换热后,再经热高分气空冷器(A1001)冷至49℃进入冷高压分离器(V1004)。为了防止热高分气在冷却过程中析出铵盐堵塞管路和设备,通过注水泵(P1002A,B)将脱盐水注入A1001上游管线,也可根据生产情况,在热高分顶和热低分气冷却器(E1003)前进行间歇注水。冷却后的热高分气在V1004中进行油、气、水三相分离。自V1004底部出来的油相在V1004液位控制下进入冷低压分离器(V1006)。自V1003底部出来的热高分油在V1003液位控制下进入热低压分离器(V1005)。热低分气气相与冷高分油混合后,经热低分气冷却器(E1003)冷却到40℃进入冷低压分离器(V1006)。自V1005底部出来的热低分油进入分馏部分的脱丁烷塔第29层塔盘。自V1006底部出来的冷低分油分成两路,一路作为轻烃吸收塔(T1011)的吸收油,吸收完轻烃的富吸收油品由T-1011的塔底泵P-1016再打回进冷低分油的进脱丁烷塔线。依次经冷低分油/柴油换热器(E1004)、冷低分油/减一线换热器(E1005A,B)、冷低分油/减二线换热器(E1014)和冷低分油/减底油换热器(E1015),分别与柴油、减一线油、减二

机械设备的危险因素及防范措施汇总

集宁东绕城高速公路工程 机 械 设 备 危 害 及 防 范 措 施 内蒙古新大地建设集团 集宁东绕城高速公路TJ-02项目经理部 二〇一一年七月

机械设备的危害因素及防范措施 一、机械危害 1.静止的危险 设备处于静止状态时存在的危险即当人接触或与静止设备作相对运动时可引起的危险。包括: (l)切削刀具有刀刃。 (2)机械设备突出的较长的部分,如设备表面上的螺栓、吊钩、手柄等。 (3)毛坯、工具、设备边缘锋利和粗糙表面,如未打磨的毛刺、锐角、翘起的铭牌等。 (4)引起滑跌的工作平台,尤其是平台有水或油时更为危险。2.直线运动的危险 指作直线运动的机械所引起的危险,又可分接近式的危险和经过式的危险。 (l)接近式的危险:这种机械进行往复的直线运动,当人处在机械直线运动的正前方而未及时躲让时将受到运动机械的撞击或挤压。 ①纵向运动的构件,如龙门刨床的工作台、牛头刨床的滑枕、外国磨床的往复工作台等。 ②横向运动的构件,如升降式铣床的工作台。 (2)经过式的危险指人体经过运动的部件引起的危险。包括: ①单纯作直线运动的部位,如运转中的带键、冲模。 ②作直线运动的凸起部分,如运动时的金属接头。 ③运动部位和静止部位的组合,如工作台与底座组合,压力机的滑块与模具。 ④作直线运动的刃物,如牛头刨床的刨刀、带锯床的带锯。3.机械旋转运动的危险 指人体或衣服被卷进旋转机械部位引起的危险。

(l)卷进单独旋转运动机械部件中的危险,如主轴、卡盘、进给丝杠等单独旋转的机械部件以及磨削砂轮、各种切削刀具,如铣刀、锯片等加工刃具。 (2)卷进旋转运动中两个机械部件间的危险,如朝相反方向旋转的两个轧辊之间,相互啮合的齿轮。 (3)卷进旋转机械部件与固定构件间的危险,如砂轮与砂轮支架之间,有辐条的手轮与机身之间。 (4)卷进旋转机械部件与直线运动部件间的危险,如皮带与皮带轮、链条与链轮、齿条与齿轮、滑轮与绳索间、卷场机绞筒与绞盘等。 (5)旋转运动加工件打击或绞轧的危险,如伸出机床的细长加工件。 (6)旋转运动件上凸出物的打击、如皮带上的金属皮带扣、转轴上的键、定位螺丝、联轴器螺丝等。 (7)孔洞部分有些旋转零部件,由于有孔洞部分而具有更大的危险性。如风扇、叶片,带幅条的滑轮、齿轮和飞轮等。 (8)旋转运动和直线运动引起的复合运动,如凸轮传动机构、连杆和曲轴。 4.机械飞出物击伤的危险 (l)飞出的刀具或机械部件,如未夹紧的刀片、紧固不牢的接头、破碎的砂轮片等。 (2)飞出的切屑或工件,如连续排出或破碎而飞散的切屑、锻造加工中飞出的工件。 二、非机械危害 1.电击伤 指采用电气设备作为动力的机械以及机械本身在加工过程中产生 的静电引起的危险。 (l)静电危险如在机械加工过程中产生的有害静电,将引起爆炸、电击伤害事故。 (2)触电危险如机械电气设备绝缘不良,错误地接线或误操作等原因造成的触电事故。 2.灼烫和冷危害

公司生产主要危险因素及防范措施(新版)

公司生产主要危险因素及防范 措施(新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0883

公司生产主要危险因素及防范措施(新版) 一、使用普通车床、角磨机、砂轮机、锤子及清渣工作时等必须佩带护目镜。 二、两人及以上配合工作时,必须统一指挥,密切配合,注意同伴的安全。 三、防止工件掉(滑、滚)落砸伤手脚或身体其他部位。 四、使用钻车时必须将所钻工件压(夹)牢靠,有长铁屑时应停机清除。 五、操作普通车床、钻床等旋转设备,系好袖口及衣扣,严禁穿较宽大的衣服及佩带饰品,严禁在设备运转过程中佩带手套,需将长发束于安全帽内。 六、严禁在车间内跑动、打闹、追逐,在生产区内应时刻保持

警惕,注意上下前后左右的情况,防范一切可能的危险。 七、埋弧焊接时防止铁水流淌烧伤身体。 八、剪、(气)割有弹性的活件时,防止脱离瞬间掉落或弹在人员身体上。 九、使用起重机吊运活件时,人员应与吊物保持安全距离、并位于较安全的一侧,不要在活件易掉落或散落的方向,不要在空间较小的位置。 十、必须保证足够的工作空间,在工作场所狭小的地方进行吊运作业时,人员应防止被撞伤、挤伤、砸伤。 十一、翻转活件时防止被砸伤,搬运活件时应量力而行,并防止滑倒、绊倒及活件掉落砸伤人员。 十二、使用角磨机前应检查机身和电源线是否漏电、砂轮保护罩是否缺失,如有问题必须处理好后再使用。 十三、离地面两米以上的登高作业前,必须事先制定安全保护措施,使用安全梯、安全带、平台等,保证人员上、下及作业安全。地面须有人员进行监护,防止外界干涉而影响安全。

加氢裂化装置说明、危险因素及防范措施

仅供参考[整理] 安全管理文书 加氢裂化装置说明、危险因素及防范措施 日期:__________________ 单位:__________________ 第1 页共18 页

加氢裂化装置说明、危险因素及防范措施 一、装置简介 (一)装置的发展及类型 1.加氢装置的发展 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构化等,下面重点介绍加氢裂化加工过程。 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术,其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 2.装置的主要类型 加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢处理等类型,这里主要介绍加氢裂化装置。 加氢裂化按操作压力可分为:高压加氢裂化和中压加氢裂化,高压 第 2 页共 18 页

加氢裂化分离器的操作压力一般为16MPa左右,中压加氢裂化分离器的操作压力一般为9.OMPa左右。 加氢裂化按工艺流程可分为:一段加氢裂化流程、二段加氢裂化流程、串联加氢裂化流程。 一段加氢裂化流程是指只有一个加氢反应器,原料的加氢精制和加氢裂化在一个反应器内进行。该流程的特点是:工艺流程简单,但对原料的适应性及产品的分布有一定限制。 二段加氢裂化流程是指有两个加氢反应器,第一个加氢反应器装加氢精制催化剂,第二个加氢反应器装加氢裂化催化剂,两段加氢形成两个独立的加氢体系,该流程的特点是:对原料的适应性强,操作灵活性较大,产品分布可调节性较大,但是,该工艺的流程复杂,投资及操作费用较高。 串联加氢裂化流程也是分为加氢精制和加氢裂化两个反应器,但两个反应器串联连接,为一套加氢系统。串联加氢裂化流程既具有二段加氢裂化流程比较灵活的特点,又具有一段加氢裂化流程比较简单的特点,该流程具有明显优势,如今新建的加氢裂化装置多为此种流程,本节所述的流程即为此种流程。 二、重点部位及设备 (一)重点部位 1.加热炉及反应器区 加氢装置的加热炉及反应器区布置有加氢反应加热炉、分馏部分加热炉、加氢反应加热器、高压换热器等设备,其中大部分设备为高压设备,介质温度比较高,而且加热炉又有明火,因此,该区域潜在的危险性比较大,主要危险为火灾、爆炸是安全上重点防范的区域。 第 3 页共 18 页

化验室危险因素及防范措施

化验室危险因素及防范措施 1、危险因素:煤粉碎机 产生危害后果:划伤、绞伤、机械伤害事故 防范措施: (1)检修时断电挂牌专人监护再操作; (2)设备运转时不得擦洗转动部位; (3)带防护手套,小心清理。 2、危险因素:液碱 产生危害后果:腐蚀、灼伤 防范措施: (1)操作时正确佩戴有效劳保防护用品如防酸服、防酸手套、面罩等; (2)如若溅到身体某部位,立即用流动的清水冲洗,严重者立即就医。 3、危险因素:(玉米现场抽样)粉尘 产生危害后果:职业病尘肺 防范措施: (1)进入作业现场前戴好口罩; (2)在上风口取样作业; 4、危险因素: 饮水机 产生危害后果: 烫伤、触电、火灾 防范措施: ⑴安装漏电保护器。 ⑵接放热水应注意安全,以免被开水烫伤。 ⑶严禁无水开启电源,以免无水空烧造成火灾。 5、危险因素: 微型计算机 产生危害后果: 视力下降 防范措施: ⑴使用防辐射装置。 ⑵正确坐姿。 ⑶长时间电脑作业应不间断的对远方眺望,避免长时间作业伤害眼睛。 6、危险因素: 铁踏步 产生危害后果: 摔伤、碰伤 防范措施: ⑴检查好踏步的脱焊情况,避免踩空摔伤、扭脚。 ⑵上下踏步严禁跳跃奔跑。 ⑶按规定着装,严禁穿高跟鞋。 7、危险因素: 玻璃器皿 产生危害后果: 划伤 防范措施: ⑴使用时应轻拿轻放,避免用力过大而使玻璃器皿破损造成划伤。 ⑵玻璃器皿加热时,应缓慢加热。冷却时,应自然冷却,严禁用冷水泼撒,以免玻璃器皿爆裂造成人员伤害。 ⑶玻璃管装塞、乳胶管连结,佩戴防护手套、用布包裹、小心操作。 8、危险因素: 安全帽损坏

产生危害后果: 摔伤、砸伤 防范措施: ⑴使用前应仔细检查是否完好、有瑕疵,严禁使用质量不合格产品。 ⑵按照说明书正确佩戴,严随意拆卸各零部件。 ⑶登高作业应有专人监护。 9、危险因素: 楼梯、爬梯 产生危害后果: 摔伤、扭伤、坠落 防范措施: ⑴登梯前注意检查; ⑵上下楼梯,抓紧扶手,不得奔跑。 ⑶安全护栏,严禁依靠。 ⑷爬梯登高时,正确佩戴有效安全帽、安全带等劳动防护用品。 ⑸作业人员应无恐高症等不适应登高作业的身体状况。 ⑹取样工具、材料等应放在工具袋(箱)内,防止散落砸伤。 ⑺登高取样作业要有专人监护,不得离开作业现场。 10、危险因素: 钢平台 产生危害后果: 摔伤、扭伤 防范措施: ⑴登台前注意检查,破损平台严禁登踩,,以免摔倒、扭伤造成人身伤害。 ⑵平台行走严禁奔跑。 11、危险因素: 防护栏杆 产生危害后果: 坠落、摔伤 防范措施: ⑴检查防护栏干,要有一定高度、密度,无锈蚀、破损。 ⑵严禁依靠防护栏干。 12、危险因素: 硫酸 产生危害后果: 腐蚀、灼伤 防范措施: ⑴操作时正确佩戴有效劳保防护用品(防酸服、防酸鞋、面罩、防酸手套等)。 ⑵移取、转移、稀释时小心操作。 ⑶稀释浓硫酸时,将浓硫酸缓慢倒入冷水中,并不断搅拌,若溶液温度过高,可冷却后再继续稀释。 ⑷若溅到身体某部位,应立即用流动的清水冲洗,严重者立即就医。 13、危险因素:(取样、检尺)高处作业 产生危害后果:摔伤、砸伤 防范措施: ⑴作业前班长必须询问检查作业人的身体条件是否合格; ⑵登高器具应安全可靠,劳保防护用品按规定正确使用; ⑶专人监护,监护人也要做好安全防护; ⑷工具、材料应放入工具包内,不得投掷。 14、危险因素:干粉灭火器损坏或操作不当 产生危害后果:贻误初起火灾扑救时机,导致火灾事故扩大 防范措施: (1)每班巡视检查灭火器的铅封、安全销、压力表是否正常,完好;

工作岗位危险因素的防范、应急措施

编号:SM-ZD-45584 工作岗位危险因素的防 范、应急措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

工作岗位危险因素的防范、应急措 施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 为了加强职工对工作岗位存在的危险因素的认识,增加防范意识和事故应急措施,依据依据《中华人民共和国安全生产法》及国家相关法律法规,结合我厂实际,特规定本措施。 1、员工权利 (1)、有权了解其作业场所和工作岗位存在的危险因素、防范措施及事故应急措施; (2)、有权对本单位的安全生产工作提出建议; (3)、对本单位安全生产工作中存在的问题提出意见和建议; (4)、有权拒绝违章指挥和强令冒险作业; (5)、现直接危及人身安全的紧急情况时,有权停止作业或者在采取可能的应急措施后,撤离作业场所;

2、员工义务: (1)、遵守安全生产规章制度和操作规程的义务; (2)、服从管理的义务、正确佩戴和使用劳动防护用品的义务; (3)、发现事故隐患及时报告的义务; (4)、接受安全生产培训教育的义务; 3、防范及应急措施 (1)、加强法制观念、牢固村立安全意识,严格遵守安全技术操作规程和各项安全生产规章制度。 (2)、所有职工、实习参加劳动和变换工种人员,未经安全培训教育或考核不合格者,不准上岗工作。 (3)、要害岗位工种必须熟知本岗位的操作规程,每年至少接受一次安全技术培训。 (4)、工作前必须按规定穿戴齐全劳保用品,携带保护用具,严禁酒后上岗。工作中要集中精力,坚守岗位,不准擅自脱岗、串岗、离岗;不准做与工作无关的事。 (5)、对正常的通风装置、安全防护设施,严禁擅自拆除。

加氢装置

加氢装置 拼音:jiaqingliehuazhuangzhi 英文名称:hydrocracker 说明:加氢裂化的工业装置有多种类型。按反应器中催化剂的态不同分为固定床和沸腾床加氢裂化工艺,目前前者是主流。按反应器的作用又分为一段法和两段法。两段法包括两级反应器,第一级作为加氢精制段,除掉原料油中的氮、硫化物。第二级是加氢裂化反应段。一段法的反应器只有一个或数个并联使用。一段法固定床加氢裂化装置的工艺流程是原料油、循环油及氢气混合后经加热导入反应器。反应器内装有粒状催化剂,在 9.8-14.7兆帕(100-150公斤/厘米2)压力,氢油比约为1500:1,400℃左右条件下进行反应。反应产物经高压和低压分离器,把液体产品与气体分开,然后液体产品在分馏塔蒸馏获得产品石油馏分。一段法裂化深度较低,一般以减压蜡油为原料,生产中间馏分油为主。二段法裂化深度较深,一般以生产汽油为主。 加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构化等,下面重点介绍加氢裂化加工过程。 装置简介 (一)装置的发展 加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。 1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术,其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司开发出了Uicraking加氢裂化技术。加氢裂化技术在世界范围内得到了迅速发展。 早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966年我国建成了第一套4000kt/a的加氢裂化装置。 进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。 (二)装置的主要类型 加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢处理等类型,这里主要介绍加氢裂化装置。

机械设备的危险因素及防范措施通用版

解决方案编号:YTO-FS-PD997 机械设备的危险因素及防范措施通用 版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

机械设备的危险因素及防范措施通 用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、机械危害 1.静止的危险 设备处于静止状态时存在的危险即当人接触或与静止设备作相对运动时可引起的危险。包括: (l)切削刀具有刀刃。 (2)机械设备突出的较长的部分,如设备表面上的螺栓、吊钩、手柄等。 (3)毛坯、工具、设备边缘锋利和粗糙表面,如未打磨的毛刺、锐角、翘起的铭牌等。 (4)引起滑跌的工作平台,尤其是平台有水或油时更为危险。 2.直线运动的危险 指作直线运动的机械所引起的危险,又可分接近式的危险和经过式的危险。 (l)接近式的危险:这种机械进行往复的直线运动,当人处在机械直线运动的正前方而未及时躲让时将受到运动机

械的撞击或挤压。 ①纵向运动的构件,如龙门刨床的工作台、牛头刨床的滑枕、外国磨床的往复工作台等。 ②横向运动的构件,如升降式铣床的工作台。 (2)经过式的危险指人体经过运动的部件引起的危险。包括: ①单纯作直线运动的部位,如运转中的带键、冲模。 ②作直线运动的凸起部分,如运动时的金属接头。 ③运动部位和静止部位的组合,如工作台与底座组合,压力机的滑块与模具。 ④作直线运动的刃物,如牛头刨床的刨刀、带锯床的带锯。 3.机械旋转运动的危险 指人体或衣服被卷进旋转机械部位引起的危险。 (l)卷进单独旋转运动机械部件中的危险,如主轴、卡盘、进给丝杠等单独旋转的机械部件以及磨削砂轮、各种切削刀具,如铣刀、锯片等加工刃具。 (2)卷进旋转运动中两个机械部件间的危险,如朝相反方向旋转的两个轧辊之间,相互啮合的齿轮。 (3)卷进旋转机械部件与固定构件间的危险,如砂轮与砂轮支架之间,有辐条的手轮与机身之间。 (4)卷进旋转机械部件与直线运动部件间的危险,如皮

煤焦油加氢工艺流程图和主要设备一览表.doc

百度文库 - 让每个人平等地提升自我 煤焦油加氢项目 煤焦油 离心、过滤、换热 减压塔 沥青至造粒设施 加氢精制进料缓冲罐 加氢裂化进料缓冲罐 加氢精制反应器( A 、B 、C ) 加氢裂化反应器( A 、B ) P=16.8MPa P=16.8MPa ° ° t=410 C( 初期) t=402 C( 初期) 精制热高分罐 油 裂化冷高分罐 化 转 氢 气体 液体 未 液体 气体 环 制 精 循 制 精制冷高分罐 精制热低分罐 裂化冷低分罐 裂化 精 体 循环氢 气 压缩机 气体 液体 液体 硫 气 液 脱 精制 精制冷 至 体 体 裂化稳定塔 氢 循环氢 低分罐 体 体 新 压缩机 气 气 充 液体 硫 液 硫 补 氢 脱 油 至 精制 脱 新 化 化 体 至 充 稳定塔 裂 转 补 体 液体 未 新氢 气 新氢 硫 精制分馏塔 裂化分馏塔 压缩机 脱 至 石脑油 柴油 氢 环 循 化 裂

煤焦油加氢装置主要生产设备表 序设备操作条件数量规格介质名称主体材质压力 号名称备注 温度(℃)(台) ( MPa) 一、反应器类 1 加氢精制Ф煤焦油、 H2、 H 2S 反应器 A 1500X13400 加氢精制 Φ 反应器煤焦油、 H2、 H 2S 1800X14678 B/C 加氢裂化 Φ 反应器煤焦油、 H、 H S 1500X10110 2 2 A/B 二、塔类 1 减压塔Ф 2000/2400/1 轻质煤焦油、 Q345R 200 X 25250 重油、水汽 2 精制稳定Ф 600X16000 反应油、 H 、 H S Q245R 塔 2 2 3 精制分馏Ф 1500X2060 石脑油、柴油、 Q345R 塔0 尾油 4 精制柴油 Ф 800X10000 柴油、蒸汽Q245R 汽提塔 5 裂化稳定Ф 400/800X18 反应油、H2 2 Q245R 塔440 、 H S 6 裂化分馏Ф 1500X2060 石脑油、柴油、 Q345R 塔0 尾油 7 裂化柴油 Ф 500X8800 柴油、蒸汽Q245R 汽提塔 三、加热炉类 1 减压塔进400X104 煤焦油1Cr5Mo 料加热炉kcal/h 2 精制加热200X104 精制进料油、 H 2 TP347H 炉kcal/h 3 裂化加热200X104 裂化进料油、 H 2 TP347H 炉kcal/h 精制分馏200X104 1Cr5Mo/ 4 精制尾油 15CrMo 塔再沸炉kcal/h 5 裂化分馏200X104 裂化尾油 1Cr5Mo 塔再沸炉kcal/h 四、换热类原料油 /减壳程 减压循 Q345R 环油 1 压循环油25-4I 20+Q345R 换热器管程原料油 减顶油水 / 壳程减塔中 Q345R 段油 2 减压循环25-4I 减顶油、 油换热器管程20+Q345R 水147/385 1 126/271 1 ▲120/368 1 212/206 1 72/263 1 ▲122/365 1 198/185 1 395 1 ▲315 1 ▲405 1 ▲388 1 ▲385 1 ▲217/178 75/147 1 ▲ 228/217 1 ▲87/150

加氢裂化工艺简述

加氢裂化工艺简述 摘要:加氢裂化是重油的深度加工的重要技术之一,是一种使油品变轻的加氢工艺,其加工原料范围广,并且通常可以直接生产优质的液化气,汽油,柴油,喷气燃料等清洁燃料和轻石脑油等优质的化工原料。 关键词:加氢;重油;裂化;石脑油 Abstract: Hydrocracking is an important technology for deep processing of heavy oil is a lighter oil hydrogenation process to make a wide range of its processing of raw materials, and typically can produce high quality gas, gasoline, diesel, jet fuels and other clean fuels and light naphtha quality chemical raw materials. Keywords: hydrogenation; heavy oil; cracking; naphtha 1概论 加氢裂化是重油深度加工的重要技术之一,即在催化剂存在的条件下,在高温及较高的氢分压下,使C—C键断裂的反应,可以使大分子的烃类转化为小分子的烃类,使油品变轻的一种加氢工艺。它加工原料范围广,包括直馏石脑油,粗柴油,减压蜡油以及其他二次加工得到的原料如焦化柴油,焦化蜡油和脱沥青油等,通常可以直接生产优质的液化气,汽油,柴油,喷气燃料等清洁燃料和轻石脑油等优质的化工原料。 为了便于统计,美国油气杂志将转化率大于50%的加氢过程称为“加氢裂化”。在实际应用中,人们习惯将通过加氢反应使原料油中10%到50%的分子变小的那些加氢工艺称为缓和加氢裂化。通常所说的“常规(高压)加氢裂化”是指反应压力在10 Mpa以上的加氢裂化工艺;“中压加氢裂化”是指在10 Mpa以下的加氢裂化工艺。 加氢裂化反应中除了裂化是吸热反应,其他反应大多是放热反应,总的热效应是强放热反应。 2加氢裂化原料油 加氢裂化过程可以加工的原料油相当广泛。由于现代石油化工工业的发展对化纤,依稀原料以及轻质油品的需求,加氢裂化技术得到迅速发展,轻至石脑油,重至常压馏分油,减压馏分油,脱沥青油,减压渣油均可作为加氢裂化原料,二次加工产品如催化裂化循环油,和焦化瓦斯油也可以作为加氢裂化原料,目前国内装置加氢裂化使用量最多的是减压馏分油。 根据生产资料反馈以及实验,原料油的密度越大,越难加氢裂化,密度高一般需提高反应温度。原料油中烷烃较难裂解,而环烷基的原料难裂解需提高苛刻度。原料油的干点高,原料油的氮含量将随之增加,原料油的平均沸点越高和分

工作岗位存在的危险因素及防范措施

作业场所工作岗位存在的危险因素 及防范措施 二零一三年编制

目录 1. ------------------------------------------------------------------------------------------------------------------- 一般工种岗位危害因素辨识及防范措施---------------------- 3 2. ------------------------------------------------------------------------------------------------------------------- 管路维修工岗位危害因素辨识及防范措施-------------------- 4 3. ------------------------------------------------------------------------------------------------------------------- 防突预测工岗位危害因素辨识及防范措施-------------------- 5 4. ------------------------------------------------------------------------------------------------------------------- 防尘隔爆设施维护工岗位危害因素辨识及防范措施------------ 5 5. ------------------------------------------------------------------------------------------------------------------- 防尘洒水工岗位危害因素辨识及防范措施-------------------- 6

加氢裂化装置技术问答

第一章基础知识 1.1基础知识 什么是不饱和烃? 不饱和烃就是分子结构中碳原子间有双键或三键的开链烃和脂环烃。与相同碳原子数的饱和烃相比,分子中氢原子要少。烯烃(如烯烃、丙烯)、炔烃(如乙炔)、环烯烃(如环戊烯)都属于不饱和烃。不饱和烃几乎不存在于原油和天然气中,而存在于石油二次加工产品中。 原料油特性因数K值的含义?K值的高低说明什么? 特性因数K常用以划分石油和石油馏分的化学组成,在评价原料的质量上被普遍使用。它是由密度和平均沸点计算得到,也可以从计算特性因数的诺谟图求出。K值有UOP K值和Watson K值两种。特性因数是一种说明原料石蜡烃含量的指标。K值高,原料的石蜡烃含量高;K值低,原料的石蜡烃含量低。但它在芳香烃和环烷烃之间则不能区分开。K的平均值,烷烃约为13,环烷烃约为11.5,芳烃约为10.5。特性因数K大于12.1为石蜡基原油,K为11.5~12.1为中间基原油,K为10.5~11.5为环烷基原油。另外非通用的分类法还有沥青基原油,K小于11.5;含芳香烃较多的芳香烃基原油。后两种原油在通用方法中均属于环烷基原油。 原料特性因素K值的高低,最能说明该原料的生焦倾向和裂化性能。原料的K值越高,它就越易于进行裂化反应,而且生焦倾向也越小;反之,原料的K值越低,它就难以进行裂化反应,而且生焦倾向也越大。 什么是油品的比重和密度?有何意义? 物质的密度是该物质单位体积的质量,以符号ρ表示,单位为千克/米3。 液体油品的比重为其密度与规定温度下水的密度之比,无因次单位,常以d表示。我国以油品在20℃时的单位体积重量与同体积的水在4℃时的重量之比作为油品的标准比重,以d420表示。 由于油品的实际温度并不正好是20℃,所以需将任意温度下测定的比重换算成20℃的标准比重。 换算公式:d420=d4t+r(t-20) 式中:r为温度校正值 欧美各国,油品的比重通常用比重指数或称API度表示。可利用专用换算表,将API度换算成引d15.615.6,再换算成d420,也可反过来查,将d420换算成API比重指数。 油品的比重取决于组成它的烃类分子大小和分子结构,油品比重反映了油品的轻重。馏分组成相同,比重大,环烷烃、芳烃含量多;比重

加氢裂化装置设计能力简介.

加氢裂化装置设计能力简介 1.1装置概况 1.1.1 装置简介 中国石油乌石化分公司炼油厂新建100万吨/年加氢裂化装置于2005年5月10日破土动工,2007年9月30日实现装置中交。由中油第一建筑公司、中油第七建筑公司共同承建。其基础设计部分由中国石化工程建设公司(原北京设计院)完成,详细设计部分由中国石化工程建设公司(SEI)和乌石化总厂设计院(UPDI)共同完成。 100万吨/年加氢裂化装置位于炼油厂建南生产规划区,建东侧与消防二队相邻,建西侧与重催装置隔路相望,建北侧与二套低温热装置毗邻,建南侧为规划预留地。装置占地面积17927.5m2。 加氢裂化装置由反应、分馏吸收稳定两部分组成。装置采用“双剂串联尾油全循环”的加氢裂化工艺。反应部分采用SEI成熟的炉前混氢方案;催化剂的硫化采用干法硫化;催化剂的钝化采用低氮油注氨的钝化方案;催化剂再生采用器外再生方案。分馏部分采用脱硫化氢塔+常压塔出柴油方案,设脱硫化氢塔底重沸炉、分馏进料加热炉;吸收稳定部分采用重石脑油作吸收剂的方案。 加氢裂化装置主要原料为炼油厂二套常减压装置的减压蜡油(VGO)和焦化装置的焦化蜡油(CGO),主要产品为轻石脑油、重石脑油、轻柴油,副产品为干气、低分气。加氢裂化装置设计能力为100万吨/年(尾油全循环方案),年开工时间为8400小时。 1.1.2 工艺原理 1.1. 2.1加氢精制 加氢精制是馏份油在氢压下进行催化改质的统称。是指在催化剂和氢气存在下,石油馏分中含硫、氮、氧的非烃组分和有机金属化合物分子发生脱除硫、氮、氧和金属的氢解反应,烯烃和芳烃分子发生加氢饱和反应。通过加氢精制可以改善油品的气味、颜色和安定性,提高油品的质量,满足环保对油品的使用要求。 石油馏分加氢精制过程的主要反应包括:含硫、含氮、含氧化合物等非烃类的加氢分解反应;烯烃和芳烃(主要是稠环芳烃)的加氢饱和反应;此外还有少量的开环、断链和缩合反应。这些反应一般包括一系列平行顺序反应,构成复杂的反应网络,而反应深度和速率往往取决于原料油的化学组成、催化剂以及过程的工艺条件。一般来说,氮化物的加氢最为困难,要求条件最为苛刻,在满足脱氮的条件下,也能满足脱硫、脱氧的要求。 (1)加氢脱硫反应 硫的存在影响了油品的性质,给油品的加工和使用带来了许多危害。硫在石油馏分中的含量一般随馏分沸点的上升而增加。含硫化合物主要是硫醇、硫醚、二硫化物、噻吩、苯并噻吩和二苯并噻吩(硫芴)等物质。含硫化合物的加氢反应,在加氢精制条件下石油馏分中的含硫化合物进行氢解,转化成相应的烃和H2S,从而硫杂原子被脱掉。几种含硫化合物的加氢精制反应如下: 硫醇通常集中在低沸点馏分中,随着沸点的上升硫醇含量显著下降,>300℃的馏分中几乎不含硫醇。硫醇加氢时发生C-S键断裂,硫以硫化氢形式脱除。 硫醚存在于中沸点馏分中,300—500℃馏分的硫化物中,硫醚可占50%;重质馏分中,硫醚含量一般下降。硫醚加氢时首先生成硫醇,再进一步脱硫。

加氢裂化工艺的进展和发展趋势

辽宁石油化工大学 中文题目加氢裂化工艺的进展和发展趋势 教学院研究生学院 专业班级化学工程0904 学生姓名张国伟 学生学号 01200901030412 完成时间 2010 年6月20日

加氢裂化工艺的进展和发展趋势 张国伟 (辽宁石油化工大学抚顺113001) 摘要:加氢裂化是油料轻质化的有效方法之一,且原料适应性强,他可以将馏分油到渣油的各种油料转化为更轻的油品,随世界范围内原油变重,重油加氢裂化技术发展较快。本文主要介绍了重油高压和中压加氢裂化技术的特点,阐述了固定床、沸腾床、移动床、悬浮床重油加氢裂化技术在世界范围内工艺发展趋势。 关键字:加氢裂化;工艺;技术特点; 发展趋势 Hydrocracking process of development and trends Zhang guowei (Liaoning petrochemical industry university fushun 113001) Abstract:The hydrocracking is one of effective methods which transfer fuel oils to light one , and raw material is uncompatible.Tt may transform range from the fraction oil to residual oil of each kinds of fuel oils to a lighter oil quality. Accompanying with the crude oil change heavy ,the heavy oil hydrocracking technological development is pretty quick.This article mainly introduce the characteristics of the heavy oil hydrocracking technology in high pressure and mid-presses, The article elaborates the fixed bed, the ebullition bed, the moving bed, hang the floating floor heavy oil hydrocracking technology in the worldwide scale and the craft trend of development. Key word:hydrocracking; artwork; tech- characteristic; development tendency

相关文档