文档库 最新最全的文档下载
当前位置:文档库 › 总复习(振动测试与分析)

总复习(振动测试与分析)

总复习(振动测试与分析)
总复习(振动测试与分析)

“振动测试与分析”主要内容

概述

振动信号的分类

振动测试及其主要任务

振动系统的力学模型及参数

振动系统的动力学模型

振动系统的主要参数

结构振动系统三元素(件)

单自由度无阻尼自由振动特性

有阻尼系统的自由振动特性

周期振动的峰值、有效值和平均值及其相互关系周期振动的频谱表示法

振动基本参量(动态特性)的常用测试方法简谐振动幅值的测量

简谐振动频率的测量

衰减系数及相对阻尼系数的测量

同频简谐振动相位差的测量

质量或刚度的测量

振动测量系统及其主要特性

振动测试系统组成

振动测试系统的主要特性参数

振动信号传感器

测振传感器

测振传感器分类

惯性式传感器力学原理

位移计型惯性式拾振器的构成特点

加速度计的构成特点

动圈型磁电式速度拾振器

压电式加速度计及其应用问题

电涡流传感器

振动信号处理和分析(基本理论)

数字信号分析

数据处理的基本知识

傅氏级数及其复数表达法

傅氏积分变换,傅氏变换的主要性质

典型函数的傅氏变换

FT、FFT、选带傅氏分析(ZOOM-FFT)

LT&ZT

混淆与采样

泄漏与窗函数

随机振动统计特性

数字特征

概率分布函数

概率密度函数

高斯分布和瑞利分布

二元随机变量的概率分布

相关分析(自相关函数,互相关函数)

实验模态分析

多自由度系统实验模态分析(频域方法,时域方法)多自由系统响应的模态迭加法

振动系统物理模型和模态模型间的转换

频响函数与模态参数的关系

频响函数的留数表示法

模态试验设计(试件支承状态,测点及测量方法,试验频段的选择,激振器的支承)

模态试验常用激励方法(步进式正弦激励法,自动正弦慢扫描激励,快速扫描正弦激励,冲击激励,纯随机激励,伪随机激励,周期随机激励,瞬态随机激励)

结构系统频响函数的估计(H1、H2估计,模态振型标准化)

振动信号分类

从振动的规律来分:

简谐振动 复合周期振动 瞬态振动 随机振动

不同类型振动的特点

简谐振动: 可以用简谐函数表示,0()sin P t P t ω=。

非简谐周期振动:载荷是时间t 的周期函数,但不是简单的简谐函数。

冲击载荷:作用时间很短的载荷,爆炸引起产冲击、撞击等。 随机振动:难以用解析函数表示。火箭发动机推力、地震、风载荷等。分为平稳过程,非平稳过程。前者可用子样来代替,后者统计特征为时变函数。

复杂周期振动

简谐振动

准周期振动 瞬态和冲击

各态历经

非各态历经

振动测试系统组成、原理(框图)

振动测试系统组成

振动测试与分析系统通常由三部分组成,激振系统,测量系统,分析系统。

(1)激振系统

实现对被测系统的激励(输入),使系统发生振动。它主要由激励信号源、功率放大器和激振装置组成。

(2)测量系统

检测并放大被测系统的输入、输出信号,并将信号转换成一定的形式(通常为电信号)。它主要由传感器、可调放大器组成。

(3)分析系统

将拾振部分传来的信号记录下来供以后分析处理或直接近行分析处理并记下处理结果。它主要由各种记录设备和频谱分析设备组成。

振动测量仪器(系统)的主要性能指标

(1)灵敏度

不同的测试仪器,灵敏度有不同的表达方式。通常可定义为输出量与输入量之比。如输出与输入量量纲相同,及为放大倍数。

(2)分辨率

能够引起输出量发生可分辨变化的最小输入量的大小,称为分辨率,如果一台仪器的输出量由表读出,则该表的最小可读出增量即是这台仪器的分辨率。

(3)线性度和线性度范围

所谓线性度实际上就是在正常情况下灵敏度的误差范围(图)。仪器只能在一定范围内保持线性度(即保证其灵敏度在规定的线性度之内)。这一范围的低端,即最低可测幅度由仪器分辨率,或非线性特性决定。

(4)频率范围

频率范围通常是指仪器灵敏度变化不超过某一范围,仪器的使用频率范围。

大型复杂结构系统工程简化

大型结构系统,受到的激励很复杂。在研究其振动特性时,只有进行大量的工程简化处理,抽象出其主要本质,形成理想化的力学模型同,才能进行振动分析。

简化过程:忽略某些次要因素;确定系统的自由度数。

结构系统→动力学模型

大型复杂结构系统建立动力学模型时,通常进行如下工程简化简化:

(1)线性化(L)假设

(2)时不变(TI)系统假设

(3)非耦合假设

简谐振动位移、速度、加速度之间的相位关系

简谐振动位移、速度、加速度之间的相位关系

sin()sin()

m m m v V t a A t ωαωα'=+''=+ 其中幅值之间的关系为:

m m m X V A ωω==

相角之间的关系为:

2

a v x π

αααπ=+

=+

即,在矢量图上,将位移的矢量的模放大ω倍,并逆时针旋转90度,即得速度矢量;若将位移的矢量的模放大ω2倍,并逆时针旋转180度,即得加速度矢量;在相位上,速度超前位移90度,加速度又超前速度90度。相位关系如图所示。

单自由度系统有阻尼自由振动的特点

有阻尼系统的自由振动,振动幅值将随时间的增加而逐渐衰减。有阻尼系统的自由振动运动方程:

0mx

cx kx ++= 进而可得微分方程的解:

)nt x Xe t α-=+

该式随时间变化如下图所示。

单自由度有阻尼系统的自由振动固有频率与无阻尼系统相同,但由于阻尼的存在为减幅振动,由衰减系数n 决定振幅。

周期振动的频谱图

根据傅里叶理论,任何周期振动,即()()x t x t T =+通常属于有限振动,总可以将它分解成若干简谐分量,从而将这一周期振动表示为傅里叶级数的形式

0001

()(cos sin ),

1,2,3,2n

k k k a x t a k t b k t k ωω==++=∑

称ω0为基频,与之相应的振动分量称为基波;称2ω0为基频的二倍频、3ω0倍频,??相应的振动分量称为二次谐波、三次谐波??。根据上述简谐分析理论,用频谱法来描述周期振动。即频率为横坐标,以幅值为纵坐标 ,画出各次谐波的幅值,称为幅频图,同理可画出相频图,二者通称为频谱图。

振动系统衰减系数的测量方法(具体描述)

(1)自由振动衰减法

(2)半功率点法

(3)共振法

快速傅氏变换(FFT)

快速傅氏变换(FFT)并不是一种新的变换,而是离散傅氏变换的一种新算法:实质是通过矩阵分解,调整矩阵的行号,并合理安排计算流程,使计算时间大幅度减少的一种方法。

随机振动的特点及描述方法

随机振动:不能用确定性的函数来描述的振动,其瞬时值具有不可预知性,也即是一种非确定性的振动,这类振动的时间历程只能借

助实测记录的数据来描述。这种样本无论有多少个,都不可能找到任

何两个是重复的,这类振动即称为随机振动。

可分为平稳随机过程和非平稳随机过程。

随机振动不能用时间的确定函数来描述,只能通过统计特性来描述:随机过程的数字特征:均值、均方值、方差,以及统计特性函数:概率分布函数和概率密度函数。

[]1

1lim n

i n i E x x n →∞==∑ ()()2220

lim T

T x E x t x t dt →∞??==???

()22

01lim T T x t x dt T σ→∞

=-????? ()()111

lim i t i

P x Prob x t x t t →∞=<=

?????∑ 0()()()

lim ()x P x x P x dP x p x x dx

?→+?-==

?

随机过程相关分析的物理意义

相关函数是随机过程的一种统计特性。若有两个时间记录x 1(t )和x 2(t ),其相关函数的定义为

12121

1(),()()()N

i i i x t x t x t x t N ==∑

可见若x 1(t )和x 2(t )相似或相等,其相关性大;反之相关性小。 根据相关函数的定义其物理意义为:

1.相关是两个时间记录的相似性的一种衡量。可用来检出湮没在测量噪声中的周期信号以及振动信号在结构中的传播时间;

2.对于x(t)和x(t+τ)的相关称为自相关函数,能够反映随机过程在不同时间的依赖性。

振动系统频响分析

用已知的激振力,以可控的方式来激励结构系统,利用测量得到的输入、输出信号获得系统的频响特性,进一步利用系统的频响特性与系统动态特性参数之间的关系,求取结构系统的动态参数方法,即

为频响分析。

频响试验结果通常为一组频率-响应曲线:包括幅频曲线、相频曲线,或实频、虚频曲线,也可表示为响应向量的矢端轨迹图(Nyquist 图),通过对曲线的分析即可找出表征结构振动特性的有关参数。

对于单自由度系统,即固有频率、阻尼以及刚度、质量。对于多自由度系统,求得阻尼后,还要确定振型,并对振型进行适当的规格化之后,刚度和质量参数才能确定。

惯性式传感器的测振原理

惯性式传感器实质上一个单自由度弹簧质量阻尼系统,具体测量时,将传感器直接固定在被测振动体上,形成强迫振动,在一定的条件下,即可根据质量块相对于壳体的运动获得被测振动体的振动,从而实现振动测量。

进一步可解释如下:

设振动体的位移为Y,引起传感器质量块相对壳体的位移为X,则,质量块的绝对位移为Z=X+Y,进一步建立质量块运动方程,解方程即可根据X求出Y。而X可利用压电或磁电等原理通过信号测量得到。

值得注意的是,惯性式传感器测量振动响应量的原理基本相同,但在进行位移测量和加速度测量对传感器频率特性要求不同。

振动传感器的主要技术指标

模态试验系统包括几个部分

通常,模态试验系统包括以下三部分,如下图所示。

模态试验系统组成

可见,模态试验系统通常由激振、拾振、中间变换电路、振动分析仪器及显示记录装置等环节所组成。通常分为三大部分:激振系统,测量系统,分析系统。 (1)激振系统

实现对被测系统的激励(输入),使系统发生振动。它主要由激励信号源、功率放大器和激振装置组成。 (2)测量系统

检测并放大被测系统的输入、输出信号,并将信号转换成一定的形式(通常为电信号)。主要由传感器、放大器组成。 (3)分析系统

将从拾振部得到的信号进行分析处理并记录处理结果。主要由各种记录设备和频谱分析设备组成。

干 扰

模态试验常用激励方法

步进式正弦激励法

自动正弦慢扫描激励

快速扫描正弦激励

冲击激励

纯随机激励

伪随机激励

周期随机激励

瞬态随机激励(Burst Randm)

模态试验中试件支承、测点、试验频段的选择

激振器的支承

(1)通常激振固有频率较低的结构时,激振器通常刚性固接于地面,以使激振系统的固有频率远高于结构的弹性振动频率。

(2)激振固有频率较高的结构时,通常将激振器通过软弹簧接地或采用悬吊支承,应尽量降低激振系统的固有频率。

试件支承状态

进行结构的模态试验时,应尽可能尤模拟试验件实际边界条件,或使其处于自由状态-自由地悬浮在空中。通常,试验中自由状态是通过某种低刚度支承来实现的,比如,通过长的柔性橡胶绳或弹簧将结构悬挂起来。对于大而较重的结构可用空气弹簧支承。悬挂系统应能保证“刚体模态”频率不超过最低的结构弹性模态频率的20-30%。

模态试验时测点位置、数量的选择主要考虑:能够正确显示要测试的模态变形特征,以及所关心的结构点。

试验频段的选择

考虑机械或机构在正常运行条件下激振力的频率范围。通常试验频段应适当高于工作情况下的振源频段。

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

振动测试系统

一、振动测试系统 1.主要功能 DASP V10振动测试系统包括信号采集和实时分析软硬件。DASP V10 是一套运行在Windows95/98/Me/NT/2000/Xp平台上的多通道信号采集和实时分析软件,通过和东方所的不同硬件配合使用,即可构成一个可进行多种动静态试验的试验室。DASP V10 软件既具有多类型视窗的多模块功能高度集成特性,具有操作便捷的特点。基于东方所在各种工程应用领域的长期经验,DASP-V10对各种功能模块重新进行整合,成为一套功能更加全面、操作更加便捷、界面更加美观、性能继续保持领先的动静态信号测试分析系统。DASP V10 软件的每一个模块中均包含了非常多的功能,各种功能可交错使用,在测试和分析的功能和性能上突破了以往信号分析仪的种种限制,与INV系列采集仪配合形成的系统的各项指标均可达到或超过国家高级仪器的标准。DASP V10 软件的所有测试分析结果都可以多种方式输出,包括图形的复制、存盘、打印,数据导出为TXT、CSV、Excel电子表格和Access数据库格式,并可轻松输出图文并茂的Word格式或者Html格式的分析报告。基于DASP V10 的平台上,还可以运行专业模态和动力学分析系统、虚拟仪器库、信号发生器以及针对声学、旋转机械、路桥土木、计量检定等行业的多种软件系统,满足各方面各层次的测试和分析需求。

3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:魏德华 二、ANSYS/CFD流体分析软件 1.主要功能 FLUENT、CFX是目前国际上比较流行的商用CFD软件包,国际市场占有率达70%。凡跟流体、热传递及化学反应等有关的领域均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛应用,包括管路、渠道、流体机械、燃烧、环境分析、油气消散/聚积、喷射控制、多相流等方面的流动计算分析。 2.主要设备 3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:石祥钟

振动测试和分析技术综述分析解析

振动测试和分析技术综述 黄盼 (西华大学,成都四川 610039) 摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。 关键词:振动测试; 信号分析; 动态特性; 综述 Summary of Vibration Testing and Analysis HuangPan ( Xihua University,Chengdu 610039,China) Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted. Key words: vibration testing; signal analysis; dynamic characteristic;overview

振动测试与数据处理

振动 振动是一种机械振荡。他是指机械或结构系统在其平衡位置附近的往复运动,这种振荡的量值是确定机械系统运动状态的一个参数. 加速度导纳 加速度导纳是正弦激励时,加速度与力的复数比,其中包含着加速度和力之间的相位角.加速度导纳有时称为“惯量”. 加速度阻抗 加速度阻抗是正弦激振时,力与加速度的复数比,其中包含着力和加速度之间的相位角.加速度阻抗有时称为“动态质量”或“视在质量”. 电荷变换器 电荷变换器是一个可提供与瞬时输入电荷成正比的瞬时输出电压的电子线路. 有阻尼固有频率 有阻尼固有频率是有阻尼线性系统自由振动的频率.有阻尼系统的自由振动,尽管相邻周期的振幅逐步减小,但在零点(同向的)间的时间间隔保持不变的少数情况下,仍可看成是周期性的.振动频率是上述时间间隔的倒数(见“固有频率”和“无阻尼固有频率”). 阻尼比 具有粘性阻尼的传感器,其阻尼比等于实际阻尼系数与临界阻尼系数之比. 分贝 分贝是用来表示一个量相对于某个规定的参考值的大小的一种单位,它用这两个量之比的以Iog为底的对数表示. 位移导纳 位移导纳是正弦激振时,位移与力的复数比,其中包含着位移与力之间的相位角.位移导纳有时称为“动柔度”. 位移阻抗 位移阻抗是正弦激振时,力与位移的复数比,其中包含着力与位移之间的相位角.他移阻抗有时称为“动刚度”。 谐波 谐波是一个正弦波,其频率等于相应的周期波的频率的整数倍. 固有频率 固有频率是单自由度系统作自由振动时的频率.对多自由度系统来说,固有频率指的是它的正则振型的频率. 压电式传感器 压电式传感器是利用某种非对称晶体的特性来工作的传感器,这种晶体的材料在变形时会产生电荷. 压电现象 压电现象是某些非对称晶体材料受到适当方向的攻变时,产生与应变成正比的电极化作用的现象;逆压电现象是某些非对称晶体材料受到外部电场作用时,产生与电场成正比的机械应变的现象 压阻式传感器 压阻式传感器的工作原理基于半导体或其他晶体材料的电阻率随施加于其上的应力而变化这一特性. 相位角 一个正弦振动的相位角是该振动相对于某一作为参照的正弦振动的相位超前(或滞后).

振动测量仪器知识

振动测量仪器知识 一、概述 (一)用途 振动测量仪器是一种测量物体机械振动的测量仪器。测量的基本量是振动的加速度、速度和位移等,可以测量机械振动和冲击振动的有效值、峰值等,频率范围从零点几赫兹?几千赫兹。外部联接或内部设置带通滤波器,可以进行噪声的频谱分析。随着电子技术尤其是大规模集成电路和计算机技术的发展,振动测量仪器的许多功能都通过 数字信号处理技术代替模拟电路来实现。这不仅使得电路更加简化,动态范围更宽,而且功能和稳定性也大大提高,尤其是可以实现实时频谱分析,使振动测量仪器的用途更加广泛。 (二)分类与特点 振动测量仪器按功能来分:分为工作测振仪、振动烈度计、振动分析仪、激振器 (或振动台)、振动激励控制器、振动校准器测量机械振动,具有频谱分析功能的称为频谱分析仪,具有实时频谱分析功能的称为实时频谱分析仪或实时信号分析仪,具有多路测量功能的多通道声学分析仪。 振动测量仪器按采用技术来分:分为模拟振动计、数字化振动计和多通道实时信号分析仪。 振动测量仪器按测量对象来分:分为测量机械振动的通用振动计,测量振动对人体影响的人体(响应)振动计、测量环境振动的环境振动仪和振动激励控制器。 工作测振仪特点 通常是手持式,操作简单、价格便宜,只测量并显示振动的加速度、速度和位移等。以前用电表显示测量值,现在都是用数字显示。通常不带数据储存和打印功能,用于一般振动测量。振动烈度计是指专用于测量振动烈度(10 Hz?1000 Hz 频率范围的速度有效值)的振动测量仪器。 实时信号分析仪特点 实时信号分析仪是一种数字频率分析仪,它采用数字信号处理技术代替模拟电路来 进行振动的测量和频谱分析。当模拟信号通过采样及A/D转换成数字信号后,进入数字计算机进行运算,实现各种测量和分析功能。实时信号分析仪可同时测量加速度、速度和位移,均方根、峰值(Peak、峰-峰值(Peak-Peak检波可并行工作。不仅分析速度快,而且也能分析瞬态信号,在显示器上实时显示出频谱变化,还可将分析得到的数据输出并记录下来。 动态信号测试和分析系统特点 包含多路高性能数据采集、多功能信号发生、基本信号分析,还可以选择高级信号分析;以及模态分析、故障分析等应用。尤其适合振动、噪声、冲击、应变、温度等信号的采集和分析。 人体(响应、振动计特点 主要用于测量和分析振动对人体的影响。人体振动又分为人体全身振动和手 传振动,测量计权振动加速度有效值。仪器性能应符合GB/T 23716-2009《人体对 振动的响应一一测量仪器》的要求,对于全身振动(频率计权W c、W d、W e、W j、W k、)和用于进行轨道车辆舒适度评价的全身振动(频率计权W b)频率范围为0.5 Hz?80 Hz,对于建筑物内连续与冲击引起的振动(频率计权W m)频率范围为1 Hz?80 Hz,

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

机械振动测试系统综述

机械振动测试系统综述 翟 慧 强 张 金 萍 于 玲 王 丹 (沈阳化工大学 机械工程学院,辽宁 沈阳 110142) 摘 要:机械振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的机械振动测试系统便成为测试技术的重要内容。本文首先概述了机械振动测试系统的发展历程。总结和分析了发展机械振动 测试系统的基本组成和应用理论。根据不同原理列举了几种机械振动测试系统的类型并对不同的机械振动 测试系统进行分析,探讨了他们的优点和不足。最后在此基础上分析了机械振动测试系统的几个发展趋势和 系统建设中仍然要注意的抗干扰问题和故障诊断问题。 关键词:机械振动测试系统;测试技术;抗干扰;故障诊断 1 引言 振动问题广泛存在于热门的生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试系统应运而生。 振动测试系统有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2]。无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,机械振动测试在理论方面也有了长足的发展,1656年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2机械振动测试系统的基本理论与组成 机械振动测试就是利用现代一些测试手段,对所研究物体的机械振动进行测量,并对测得的信号进行更细致的分析,以期获得在各种工作状态下物体的机械振动特性,从而判断物体的机械振动特性是否符合要求。 振动测试系统主要由传感器、信号调节部分、数模转换器、信号处理部分和数据记录部分、反馈部分等组成。传感器是将被测量转换成某种电信号的部件。是整个测试系统最重要的组成部分。信号调节部分是把传感器的输出信号转换成适合于进一步传输和处理的形式。经过加工处理使得原始信号更加便于分析和处理。这种信号的转换多数是电信号直接的转换。信号处理部分是对来自信号调节环节的信号进行各种运算和分析。这也是测试的核心意义所在,包括对时域和频域的分析,已得到各种参数。数模转换器是采用计算机等进行测试、控制系统时进行模拟信号与数字信号的相互转换的环节。测试系统的主要作用是更加便捷易懂的将初试信号转换成某种信号进行提取分析。因此最重要的是信号不能失真,不出现扰动。这就对测试系统提出了较为严格的要求[3]。 3.振动测试系统的分类 近几年来,振动测试理论与方法都有了很大的发展。目前振动测试方法按其原理不同可以分为四类。直观类、光学类、机械类和电测类。直观法操作简便,不受各种器材的限制。

AWA6256B 型环境振动分析仪

AWA6256B+型环境振动分析仪 一、产品概述: AWA6256B+环境振动分析仪由环境振动加速度计、主机、环境振动测量分析软件组成,主要用于环境振动测量。环境振动可同时符合 ISO8041:1990及GB/T 23716-2009(ISO8041:2005)标准;符合现行GB10070-1988标准中对仪器的要求,也可满足修订中环境振动测量仪器的要求。 AWA6256B+环境振动分析仪安装人体振动测量软件(S6291-01107),符合GB/T13441和ISO8041:2005标准,软件可以对0.5 Hz~100 Hz的全身振动进行7种频率计权、4种时间计权测量及统计分析,配置相应的座垫式加速度计用于全身振动测量;配置相应的手传振动加速度计可对5 Hz~1600 Hz的手传振动进行测量。安装低频1/3 OCT分析软件(S6291-03110) ,满足GB /T 50355-2005 标准对仪器的要求,对中心频率0.5 Hz~200 Hz.低频振动进行实时1/3 OCT分析。 二、主要技术性能: 配置1:环境振动;配置2:环境振动+人体振动;配置3:环境振动+人体振动+低频1/3 OCT; 注:手传振动因使用的传感器不同,需要单独配置。 环境振动测量人体振动测量低频振动测量(新产品) 软件配置人体振动分析软件包 (S 6291-01107) 人体振动分析软件包 (S 6291-01107) 低频1/3 OCT分析软 件包(S 6291- 01310 ) 符合标准ISO 8041: 1990 (JJG921-1996) 可升级符合 GB/T 23716-2009 (ISO 8041:2005) GB/T 23716-2009 (ISO 8041:2005) 全身振动测量符合 GB/T13441 (ISO 2631)标准, 手传振动符合 GB/T 14790.1 (ISO 5349-1), GBZ/T 189.9 GB/T 50355-2005 JGJ/T 170-2009 GB/T 3241-2010 传感器AWA14400型压电加速 度计,灵敏 度: 40 mV/ m·s- 2,质量:550 g 全身振动:AWA84410 型三轴向座垫加速度 计,灵敏度: 约 3 pC/ m·s-2,质 量:250 g 手传振动:AWA84181 传感器,灵敏度: 1 pC m·s-2,质 量:14 g AWA14400型压电加速 度计,灵敏 度: 40 mV/ m·s- 2,质量:550 g

振动测试数据处理方法的应用分析

振动测试数据处理方法的应用分析 【摘要】采用电测法对产品进行振动的加速度测量,通过FFT方法进行时域—频域的转换,运用加速度与位移之间积分的关系,将加速度值转换为位移值,试验证明该方法行之有效。 【关键词】振动测量;FFT;位移转换 0.绪论 根据要求需对产品进行整机振动测量,准确掌握改产品的振动状态和振动特征。本文详细阐述了振动测试及信号分析技术,介绍了一种用加速度传感器测量振动位移信号的方法。即采用FFT方法进行加速度与位移相互转换的方法,将加速度谱转换成位移谱,以达到对位移的测量。 1.振动测试系统基本结构与组成 机械振动参数可以用电测法、机械法、光学法等进行振动测量。目前电测法应用广泛,电测法是将工程振动的参量转换为电信号,经电子线路放大后显示和记录。它与机械式和光学式的测量方法比较,有以下几方面的优点: (1)具有较宽的频带。 (2)具有较高的灵敏度和分辨率。 (3)具有较大的动态范围。 (4)振动传感器可以做得很小,以减小传感器对试验对象的附加影响,还可以做成非接触式的测量系统。 (5)可以根据被测参量的不同来选择不同的振动传感器。 不同测量方法的物理性质虽然各不相同,但是组成的测量系统基本相同,它们都包含传感器、测量放大电路和显示记录三个环节。电测法测量系统图见图1所示。 机械振动参数的测量,是对运行状态下的机械振动进行测量和分析,以期获得振动体的振动强度——振级和有关信息。因为振动体上某一点的振动可以用振动位移、速度或加速度对时间的历程来描述,而且三者之间存在着简单的微分和积分的关系,因此,只要测得其中的一个,就可以通过未分、积分电路获得另外两个参数。 2.振动测试系统组成

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

振动检测与故障诊断分析

概述 对旋转设备而言,绝大多数故障都 是与机械运动或振动相密切联系的,振 动检测具有直接、实时和故障类型覆盖 范围广的特点。因此,振动检测是针对 旋转设备的各种预测性维修技术中的核 心部分,其它预测性维修技术:如红外 热像、油液分析、电气诊断等则是振动 检测技术的有效补充。 相关仪器-----测振仪 VIB05 来自中国祺迈KMPDM的VIB05多功能振动检测仪是 基于微处理器最新设计的机器状态监测仪器,具备有振动 检测,轴承状态分析和红外线温度测量功能。其操作简单, 自动指示状态报警,非常适合现场设备运行和维护人员监 测设备状态,及时发现问题,保证设备正常可靠运行。 振动测量 VIB05可测量振动速度,加速度和位移值。当保持振 动速度读数时,仪器立即比较内置的ISO10816-3振动标准,自动指示机器报警状态。 轴承状态检测 VIB05可测量轴承状态BG值和BV值,它们分别代表高频振动的加速度和振动速度有效值。当保持轴承状态读数时,仪器按内置的经验法则自动指示轴承报警状态。 振动检测仪是测量物体振动量大小的仪器,在桥梁、建筑、地震等领域有广泛的 应用。振动检测仪还可以和加速度传感器组成振动测量系统对物体加速度、速度和位 移进行测量。

VIB07 来自中国祺迈KMPDM的VIB07多功能振动检测仪是基 于微处理器最新设计的机器状态监测仪器,具备有振动检测, 轴承状态分析和红外线温度测量功能。其操作简单,自动指 示状态报警,非常适合现场设备运行和维护人员监测设备状 态,及时发现问题,保证设备正常可靠运行。 主要特点 1、测振仪设计先进,具有功耗低、性能可靠、造型美 观、使用携带极为方便的特点。 2、按国标制造,测量值与国际振动烈度标准(ISO2372)比对可直接判断设备运行状态。 3、高可靠性的环形剪切加速度传感器,性能远远优于压缩式传感器。 4、具有高低频分档功能,在振动测量时,便于识别设备故障类型。 5、备有信号输入功能,配接温度传感器,即可测量温度。 6、备有信号输出功能,选配专用耳机,兼具设备听诊器功能;配接示波器、可用来监测、记录振动信息。 7、按振动传感器与主机的连接方式分为一体式和分体式供您选择。 8、适用于各类机械的振动、温度测量。 动平衡仪-----KMBalancer现场动平衡仪 现场动平衡分析仪KMBALancer是KMPDM 祺迈公司的产品。它嵌入式计算机技术和动平衡技 术,兼备现场振动数据测量、振动分析和单双面动 平衡等诸多功能,简捷易用。是工矿企业预知保养 维修,尤其是风机、电动机等设备制造厂和振动技 术服务机构最为理想之工具。它是美国尖端科技产 品。

振动测试与分析报告汇编

输电线微风振动测试技术报告 任课教师:刘娟 组员: 2016年6月10日

1 大跨越输送线路背景 线路大跨越是输电线路的重要组成部分,在线路运行过程中具有特殊重要地位。架空电线路经常发生超过允许幅值的微风振动,往往导致某些线路部件的疲劳损坏,如导地线的疲劳断股,金具、间隔棒及杆塔构件的疲劳损坏或磨损等,其中导线疲劳断股是架空送电线路普遍发生的问题,严重时需要将全线路更换为新导线。所有的高压送电线路都受到微风振动的影响,尤其在线路大跨越上,因具有档距大、悬挂点高和水域开阔等特点,使风输给导地线的振动能量大大增加,导地线振动强度远较普通档距严重。 2 微风振动的原理与波形特点 2.1 微风振动原理 导线的振动是由于风作用于导线而产生的“卡门旋涡”造成的。把一个圆柱体,水平地放在风洞的试验中,并把圆柱体的两端刚性地固定住。如图1所示,当风vs从垂直于圆柱体轴线的方向作用于圆柱体后,在圆柱体的背后将产生旋涡,这种旋涡称为卡门旋涡。旋涡发生在圆柱体背风面处,上下交替地产生,不断地离开圆柱体向后延伸,渐渐消失。由于这种上下交替旋涡的产生,风对于圆柱体的作用除了有一个水平的压力外,在圆柱体上还有一种上下交替的力,在此交变力的作用下圆柱体产生持续振动。 图1 卡门涡街 卡门和司脱罗哈最早研究了旋涡的特性后发现,当出现振动时旋涡有比较稳定的频率f ,常称为司脱罗哈频率或冲击频率,这个交变力的频率与风速,圆柱体 s 的直径有如下关系:

另外,导线之所以能够持续振动其主要是由于同步效应作用的结果。风作用 于圆柱体后,由于产生卡门旋涡,根据上式,导线会以一定的频率f s 开始振动,如 果风对圆柱体产生的冲击频率与圆柱体的固有频率f 相同时,则会引起谐振使作用于圆柱体上的交变冲击力变大,激发圆柱体产生较大振幅的振动。当圆柱体以 f 0=f s 的频率振动后,气流将受到导线振动的控制,导线背后的旋涡将表现为很好 的顺序性,其频率也为f 0。当风速在一定范围内变化时,(约相应f 的士20%范围), 圆柱体的振动频率和旋涡的频率都不变化仍保持为f s ,这种现象称为“同步效应”。 电线受到微风(1一3级)吹拂时,由于产生卡门旋涡和同步效应(或锁定效应),加之电线振动振幅的自限作用,使得电线产生小振幅的持续振动,即微风振动。电线的振动波形有单一的驻波和行波,最常见的是有由以上二者混合成的拍频波。 (1)图所示波来回于档内时能出现这种波形,可观察到某点发生间歇性振动, 行波产生的原因可能是由于杆塔振动带动线夹上下振动,一般在振动发生的初期可能出现这种行波。 图2行波 (2)图3所示当档内具有同样风吹时会产生这种大体上具有相同振幅和频率 且波节、波腹位置不变的驻波。

简支梁振动系统动态特性综合测试方法

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

测试技术与数据处理试验

南京林业大学试验报告2014 ~2015 学年第二学期 报告名称:测试技术与数据处理试验专业:建筑与土木工程 学号: 作者: 任课教师: 二○一五年六月

(一)应变式拉力传感器的制作与静态标定试验报告 一、实验目的 1、初步掌握常温用电阻应变片的粘贴技术 2、熟悉应变式拉力传感器的制作方法 3、学习半桥的接线与静态标定方法 4、学习电阻应变仪操作方法 5、了解信号采样的原理和方法 二、设备和器材 1、电阻应变片、导线、万用表或电桥、砝码、25瓦电烙铁、焊锡、松香、镊子 2、502粘结剂、丙酮、石蜡或清漆、康铜皮、细砂纸、棉纱、塑料薄膜 3、电阻应变仪 三、实验原理 弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 四、实验步骤 1、测量电阻应变片电阻值, 选择2~4片电阻值非常接近的电阻应变片 2、剪一小块矩形状的康铜皮并弯成弓形;在康铜皮待贴位置用细砂纸打成45交叉纹,用丙酮醮棉纱将贴片位置附近擦洗干净直到棉纱洁白为止。 3、将502粘结剂瓶口打一小细孔。一手捏住应变片引出线,一手拿502粘结剂瓶。将瓶口向下在应变片基底底面上涂抹一层502粘结剂,立即将应变片底面向下平放在试件贴片部位上,并使应变片基准对准康铜皮纵轴线方向。将一小片塑料薄膜盖在应变片上,用手指按应变片挤出多余粘结剂(按住时不要使应变片移动) 手指保持不动1分钟后再放开,轻轻掀开薄膜,检查有无气泡、翘曲、脱胶等现象,否则需重贴。 4、用万用表检查应变片是否通路,否则需重贴或补焊。 5、按半桥电路原理用电烙铁焊接有关焊点,检查应变片公线与康铜皮之间的绝缘电阻,应在兆欧量级。 6、用石蜡或清漆复盖应变片区域作防湿层(本实验免去这一步骤) 7、分别半桥电路将传威器与电阻应变仪相连 8、检查无误后, 开启电阻应变仪, 预热15~30分钟后,调节传感器受力砝码和电阻应变仪灵敏度, 使传感器最大受力时, 电阻应变仪输出电压在4V左右。 9、对自制的拉力传感器进行标定;从零开始,每加载一次砝码,记录一次读数;加到最大值后,每卸载一次砝码,也记录一次读数,直到卸载为零,此时读数一般不能返回到零。 10、用线性回归对标定数据进行拟合,求出回归公式、标准差、相关系数、非线性度、回程误差。

总复习(振动测试与分析)

“振动测试与分析”主要内容 概述 振动信号的分类 振动测试及其主要任务 振动系统的力学模型及参数 振动系统的动力学模型 振动系统的主要参数 结构振动系统三元素(件) 单自由度无阻尼自由振动特性 有阻尼系统的自由振动特性 周期振动的峰值、有效值和平均值及其相互关系周期振动的频谱表示法 振动基本参量(动态特性)的常用测试方法简谐振动幅值的测量 简谐振动频率的测量 衰减系数及相对阻尼系数的测量 同频简谐振动相位差的测量 质量或刚度的测量 振动测量系统及其主要特性 振动测试系统组成 振动测试系统的主要特性参数 振动信号传感器 测振传感器 测振传感器分类 惯性式传感器力学原理

位移计型惯性式拾振器的构成特点 加速度计的构成特点 动圈型磁电式速度拾振器 压电式加速度计及其应用问题 电涡流传感器 振动信号处理和分析(基本理论) 数字信号分析 数据处理的基本知识 傅氏级数及其复数表达法 傅氏积分变换,傅氏变换的主要性质 典型函数的傅氏变换 FT、FFT、选带傅氏分析(ZOOM-FFT) LT&ZT 混淆与采样 泄漏与窗函数 随机振动统计特性 数字特征 概率分布函数 概率密度函数 高斯分布和瑞利分布 二元随机变量的概率分布 相关分析(自相关函数,互相关函数) 实验模态分析 多自由度系统实验模态分析(频域方法,时域方法)多自由系统响应的模态迭加法 振动系统物理模型和模态模型间的转换

频响函数与模态参数的关系 频响函数的留数表示法 模态试验设计(试件支承状态,测点及测量方法,试验频段的选择,激振器的支承) 模态试验常用激励方法(步进式正弦激励法,自动正弦慢扫描激励,快速扫描正弦激励,冲击激励,纯随机激励,伪随机激励,周期随机激励,瞬态随机激励) 结构系统频响函数的估计(H1、H2估计,模态振型标准化)

振动测试及谱分析课程基本概念

1. 振动:与某个坐标系统有关的、围绕其平均值(或基准值)从大变小,又从 小变大,如此交替重复变化的量,称为振动。 2. 机械:机械就是能帮人们降低工作难度或省力的工具装置。 3. 机械振动:物体或质点在其平衡位置附近所作的往复运动。 4. 随机振动:任何一个给定时刻的振动瞬时值不能预先确定的振动。 5. 简谐振动:位移、速度和加速度为时间的谐和函数的振动。 6. 波形因子:位移的有效值与均值之比;波峰因子:位移的峰值与有效值之比。 7. 复杂周期振动:由一系列频比f i/f j(或ωi/ωj)为有理数的简谐振动叠加而成,当 自变量增加到某一定值时,其函数值又恢复到同一个值的振动,又简称为周期振动。 8. 准周期振动:两个或两个以上无关联的周期性振动混合后产生的一种与周期 性振动略有不同的振动。 9. 振幅:振动物体离开平衡位置的最大距离A。 10. 频率f:单位时间内完成振动的次数,描述振动物体往复运动频繁程度的量。 11. 相位:对于一个波,特定的时刻在它循环中的位置 12. 阻尼:任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的 振动幅度逐渐下降的特性,以及此一特性的量化表征。 13. 频谱:是信号幅度或功率随频率变化的关系,为信号的傅立叶变换(FT), 又称为傅立叶谱。 14. 仪器的灵敏度:在测量范围内,传感器的输出信号变化量与输入信号变化量 是成比例的,这个比例值称为传感器的灵敏度。 15. 压电效应:当被测频率远小于传感器的固有频率时,惯性块的相对运动与被 测物体的振动加速度成正比,惯性质量产生的惯性力作用于压电元件上,在元件的两级面生成正负相反的电荷,称为压电效应。 16. 逆压电效应:当在电介质的极化方向上施加电场,这些电介质会发生变形, 电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。 17. 诺莫图:传感器的测量范围可以用频率f、加速度a(t)、速度v(t)和位移x(t) 来表示,用这些参数绘成的列线图,称为振动诺莫图,用来评价传感器的动

振动测试系统

构建一振动测试系统方案: ?选用合理的试验方法,对某机床进行频率响应试验; ?对机床某部位振动的振幅和频率实现在线监测。 参考答案: 依据题意所给内容,此测试系统应该是一个动态,接触式测量系统;依据采集的信号在测量系统中的传递情况可知不需要反馈通道,故测量系统的类型可以选择为开环测量系统。 据以上初步分析,构建的振动测试系统结构如下: 被测对象——传感器——数据传输环节——信号调理——数据采集卡——信号分析处理——数据显示环节——读取存储测量结果 各部分分析如下: 被测对象:出于构建系统的目的——获取振动引起的振幅和频率的数据,以普通机床为例可以选择其振动较为明显的部位,如主轴箱,溜板箱,挂轮箱等,安 装方式采用磁钢吸附(方便,牢固,温度稳定性佳,可靠),注意安装位 置及其选择,处理,方法等。 传感器:(作用为感受被测量的大小并输出与之对应的可用信号)选择压电式加速度传感器(固有频率 75~500kHz,机床一般是2~3 kHz;传感器的输出电荷语作用力成正比,即与被测对象的加 速度成正比:Q=dma——d为压电系数,m为质量块的质量,a 为加速度);测量范围:0.001~800MPa 灵敏度: 0.2~ 1000PC/MPa , 工作温度: -196~+200℃。 数据传输环节:实现数据传输——主要为电缆传输。当测试系统的多个功能环节相对独立时,就需要数据传输环节将数据从一个环节传输到另一个环节。

信号调理:将传感器输出的电荷通过电荷放大器(原因在于输出电压仅与传感器的电荷量及反馈电容有关,无需考虑电缆的电容,方便远距离测试)转换成采 集设备能够识别的模拟信号。 数据采集卡:实现数据采集功能的计算机扩展卡,将信号调理后的模拟信号变成数字信号通过各种接口接触显示设备(此处为计算机)。 信号分析处理:利用数字信号处理器对其进行数字信号处理(此处为变换域分析——频域变换)。 数据显示结果:借助于各种电脑软件(如LabVIEW)将数据采集系统获取的数据以振幅和频率的形式显示出来,以便完成监视,控制或分析等的后续目的; 读取存储测量结果:除读取当时测量的频率,还可以获取之前频率数值,实现在线监测。 依据以上叙述,先建立振动测试系统结构图如下: 机床某个被测部位——压电式加速度传感器——电缆传输——电荷放大器——数据采集卡——信号分析处理——计算机(兼有储存功能,配有外部电源) 0000000000000000000000000000000000000000000000000000000000000000000000000000000 参考答案: 此测试系统应该是一个动态,接触式测量系统;依据采集的信号在测量系统中的传递情况可知系统不需要反馈通道,故选择为开环测量系统。 据以上初步分析,构建的振动测试系统结构如下: 被测对象——传感器——调理电路——数据采集————计算机 各部分分析如下: 被测对象:出于构建系统的目的——获取振动引起的振幅和频率的数据,以普通机床为例可以选择其振动较为明显的部位——主轴箱(此时机床为启动运行状

振动测试报告

振动测试模态分析报告 班级:力学08-2班 姓名:方志涛 学号:3号

变时基锤击法简支梁模态测试 一、实验目的 1、学习模态分析原理; 2、学习模态测试方法; 3、学习变时基的原理和应用。 二、实验仪器安装示意图 三、实验原理 1、模态分析方法及其应用 模态分析方法是把复杂的实际结构简化成模态模型,来进行系统的参数识别(系统识别),从而大大地简化了系统地数学运算。通过实验测得实际响应来寻示相应的模型或调整预想的模型参数,使其成实际结构的最佳描述。 主要应用有: 用于振动测量和结构动力学分析。可测得比较精确的固有频率、模态振型、模态阻尼、模态质量和模态刚度。 可用模态实验结果去指导有限元理论模型的修正,使计算机模型更趋于完善和合理。 用来进行结构动力学修改、灵敏度分析和反问题的计算。 用来进行响应计算和载荷识别。 2、模态分析基本原理 工程实际中的振动系统都是连续弹性体,其质量与刚度具有分析的性质,只有掌握无限多个点在每瞬间时的运动情况,才能全面描述系统的振动。因此,理论上它们都属于无限多自由度的系统,需要用连续模型才能加以描述。但实际上不可能这样做,通常采用简化的方法,归结为有限个自由度的模型来进行分析,即将系统抽象为由一些集中质量块和弹性元件

组成的模型。如果简化的系统模型中有n 个集中质量,一般它便是一个n 自由度的系统,需要n 个独立坐标来描述它们的运动,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。 模态分析是在承认实际结构可以运用所谓“模态模型”来描述其动态响应的条件下,通过实验数据的处理和分析,寻求其“模态参数”,是一种参数识别的方法。 模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。 经离散化处理后,一个结构的动态特性可由N 阶矩阵微分方程描述: ()t f Kx x C x M =++ (1) 式中f(t)为N 维激振向量;x ,x ,x 分别为N 维位移、速度和加速度响应向量;M 、K 、C 分别为结构的质量、刚度和阻尼矩阵,通常为实对称N 阶矩阵。 设系统的初始状态为零,对方程式(1)两边进行拉普拉斯变换,可以得到以复数s 为变量的矩阵代数方程 [] ()()s F s x K Cs Ms =++2 (2) 式中的矩阵 ()[] K Cs Ms s Z ++=2 (3) 反映了系统动态特性,称为系统动态矩阵或广义阻抗矩阵。其逆矩阵 ()[] 1 2 -++=K Cs Ms s H (4) 称为广义导纳矩阵,也就是传递函数矩阵。由式(2)可知 ()()()s F s H s X = (5) 在上式中令s=j ω,即可得到系统在频域中输出(响应向量*)和输入*的关系式 ()()()ωωωF H X = (6) 式中H (ω)为频率响应函数矩阵。H (ω)矩阵中第i 行第j 列的元素 ()() ()ωωωj i ij F X H = (7) 等于仅在j 坐标激振(其余坐标激振为零)时,i 坐标响应与激振力之比。 在(3)式中令ωj s =,可得阻抗矩阵 ()() C j M K Z ωωω+-=2 利用实际对称矩阵的加权正交性,有

相关文档