文档库 最新最全的文档下载
当前位置:文档库 › 一类具有无限长区间摄动方程的渐近解

一类具有无限长区间摄动方程的渐近解

一类具有无限长区间摄动方程的渐近解
一类具有无限长区间摄动方程的渐近解

第四节正态总体的置信区间

第四节 正态总体的置信区间 与其他总体相比, 正态总体参数的置信区间是最完善的,应用也最广泛。在构造正态总体参数的置信区间的过程中,t 分布、2χ分布、F 分布以及标准正态分布)1,0(N 扮演了重要角色. 本节介绍正态总体的置信区间,讨论下列情形: 1. 单正态总体均值(方差已知)的置信区间; 2. 单正态总体均值(方差未知)的置信区间; 3. 单正态总体方差的置信区间; 4. 双正态总体均值差(方差已知)的置信区间; 5. 双正态总体均值差(方差未知但相等)的置信区间; 6. 双正态总体方差比的置信区间. 注: 由于正态分布具有对称性, 利用双侧分位数来计算未知参数的置信度为α-1的置信区间, 其区间长度在所有这类区间中是最短的. 分布图示 ★ 引言 ★ 单正态总体均值(方差已知)的置信区间 ★ 例1 ★ 例2 ★ 单正态总体均值(方差未知)的置信区间 ★ 例3 ★ 例4 ★ 单正态总体方差的置信区间 ★ 例5 ★ 双正态总体均值差(方差已知)的置信区间 ★ 例6 ★ 双正态总体均值差(方差未知)的置信区间 ★ 例7 ★ 例8 ★ 双正态总体方差比的置信区间 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题6-4 内容要点 一、单正态总体均值的置信区间(1) 设总体),,(~2σμN X 其中2σ已知, 而μ为未知参数, n X X X ,,,21 是取自总体X 的一个样本. 对给定的置信水平α-1, 由上节例1已经得到μ的置信区间 ,,2/2/???? ? ??+?-n u X n u X σσαα 二、单正态总体均值的置信区间(2) 设总体),,(~2σμN X 其中μ,2σ未知, n X X X ,,,21 是取自总体X 的一个样本. 此时可用2σ的无偏估计2S 代替2σ, 构造统计量 n S X T /μ-=, 从第五章第三节的定理知).1(~/--= n t n S X T μ 对给定的置信水平α-1, 由 αμαα-=? ?????-<-<--1)1(/)1(2/2/n t n S X n t P ,

第2章 流体运动的基本方程

第2章 流体运动的基本方程 流体运动极其复杂,但也有其内在规律。这些规律就是自然科学中通过大量实践和实验归纳出来的质量守恒定律、动量定理、能量守恒定律、热力学定律以及物体的物性。它们在流体力学中有其独特的表达形式,组成了制约流体运动的基本方程。本章将根据上述基本定律及流体的性质推导流体运动的基本方程,并给出不同的表达形式。 2.1 连续方程 2.1.1 微分形式的连续方程 质量守恒定律表明,同一流体的质量在运动过程中保持不变。下面从质量守恒定律出发推导连续性方程。 在流体中任取由一定流体质点组成的物质体,其体积为V ,质量为M ,则 ? = V dV M ρ 根据质量守恒定律,下式在任一时刻都成立 0== ? V dV dt d dt dM ρ (2-1) 应用物质体积分的随体导数公式(1-15b ),则 0dV )]v (div t [dV )v div Dt D ( dV dt d V V V ?? ? =+??=+= ρρρρ ρ 因假定流体为连续介质,流体密度和速度均为空间和时间的连续函数,被积函数连续,且体积V 是任意选取的,故被积函数必须恒等于零,于是有 0v div Dt D =+ ρρ (2-2a ) 或 0)v (div t =+?? ρρ (2-3a ) 上式亦可以写成如下形式 0x u Dt D i i =??+ρ ρ (2-2b ) 或 0x )u (t i i =??+ ??ρρ (2-3b )

式(2-2)和式(2-3)称为微分形式的连续性方程。 在直角坐标系中,微分形式的连续性方程为 0z )u (y )u (x )u (t z y x =??+ ??+ ??+ ??ρρρρ (2-4) 微分形式的连续性方程适用于可压缩流体非恒定流,它表达了任何可实现的流体运动所必须满足的连续性条件。其物理意义是,流体在单位时间流经单位体积空间时,流出与流入的质量差与其内部质量变化的代数和为零。 由式(2-2)可对不可压缩流体给出确切定义。不可压缩流体的条件应为 0=Dt D ρ (2-5) 即密度应随质点运动保持不变。 0=??t ρ只是指密度是恒定不变的,但流体质点密度还可以 在流动中随位置发生变化。只有满足式(2-5),质点密度才能保持不变。但不能排除各个质点可以具有各自不同的密度。如海水在河口淡水下面的入侵(图2-1),含细颗粒泥沙的浑水在水库的清水下面沿库底的的运动(图2-2),都是具有不同密度的不可压缩流动。在这种流动中,因密度不同形成不同的流层,常称为分层流动。 图2-1 河口的海水入侵[1] 图2-2 水库中的浑水异重流[1] 对不可压缩均质流体,则不但0=Dt D ρ,而是在全流场和全部时间内ρ=常数,因此, 连续性方程简化为

不动点非线性方程求解

《MATLAB程序设技实践》课程考核 1编程实现以下科学计算算法,并举一例应用之,(参考书籍《精通MATLAB科学计算》),王正林等著,电子工业出版社,2009年)。“不动点非线性方程求解” ①算法说明: 在MATLAB中编程实现不动点迭代法的函数是:StablePoint。 功能:用不动点迭代法求函数的一个零点。 调用格式:[root,n]=StablePoint(f,x0,eps)。 其中,f为函数名; x0为初始迭代向量; eps为根的精度; root为求出的函数零点; n为迭代步数。 ②流程图:

③源程序代码: Function [root,n]=StablePoint(f,x0,eps) %用不动点迭代法求函数的一个零点 %初始迭代量:x0 %根的精度:eps %求出的函数零点:root %迭代步数:n if(nargin==2) %输入参数个数为2 eps=1.0e-4; end tol=1; %绝对误差限 root=x0; n=0;

while(tol>eps) n=n+1; r1=root; Root=subs(sym(f),findsym(sym(f)),r1)+r1; %迭代的核心公式 tol=abs(root-r1); end ④举例 20 x +-= 的一个根。 解:流程图 在MATLAB命令窗口中输入: >> [r,n]=StablePoint('1/sqrt(x)+x-2',0.5) r =

3.8197e-001 n = 4 ⑤结果说明: 从计算结果可以看出,经过四步迭代,得出方程的一个根为0.3820 ⑥在MATLAB中运行情况: 2编程解决以下科学计算问题。 (1)某工厂2005年度各季度产值(单位:万元)分别为:450.6、395.9、410.2、450.9,试绘制折线图和饼图,并说明图形的实 际意义。 ①算法说明: 首先用subplot对作图区域进行分区;

非线性方程求跟—不动点迭代法(新)

非线性方程求根——不动点迭代法

一、迭代法的基本思想 迭代法是一种逐次逼近的方法,用某个固定公式反复校正根的近似值,使之逐步精确化,最后得到满足精度要求的结果。例:求方程x 3-x -1=0 在x =1.5 附近的一个根。 解:将所给方程改写成3 1x x =+假设初值x 0=1.5是其根,代入得 3 3101 1.51 1.35721x x =+=+=

x 1≠x 0,再将x 1代入得 3 3211 1.357211 1.33086x x =+=+=x 2≠x 1,再将x 2代入得 3 3321 1.330861 1.32588x x =+=+=如此继续下去,结果如下: k x k k x k 01234 1.5 1.35721 1.33086 1.32588 1.324945678 1.324761.324731.324721.32472仅取六位数字,x 7与x 8相同,即认为x 8是方程的根。x *≈x 8=1.32472

这种逐步校正的过程称为迭代过程。这里用的公式称为迭代公式,即 311k k x x +=+k =0,1,2,……

若x *满足f (x*)=0,称x *为?(x )的一个不动点。 将连续函数方程f (x )=0改写为等价形式:x=?(x ),其中?(x )也是连续函数。 1()k k x x ?+=(k =0,1,……) 不动点迭代法就是指以迭代格式 二、不动点迭代法 进行迭代求解的方法。其中?(x )称为迭代函数。

三、不动点迭代法的实现 ——MATLAB程序function[root,n]=stablepoint_solver(phai,x0,tol) if(nargin==2) tol=1.0e-5; end err=1; root=x0; n=0; while(err>tol) n=n+1; %迭代次数 r1=root; root=feval(phai,r1); %计算函数值 err=abs(root-r1); end

非线性方程的解法

20世纪60年代中期以后,发展了两种求解非线性方程组(1)的新方法。一种称为区间迭代法或称区间牛顿法,它用区间变量代替点变量进行区间迭代,每迭代一步都可判断在所给区间解的存在惟一性或者是无解。这是区间迭代法的主要优点,其缺点是计算量大。另一种方法称为不动点算法或称单纯形法,它对求解域进行单纯形剖分,对剖分的顶点给一种恰当标号,并用一种有规则的搜索方法找到全标号单纯形,从而得到方程(1)的近似解。这种方法优点是,不要求f(□)的导数存在,也不用求逆,且具有大范围收敛性,缺点是计算量大 编辑摘要 目录 ? 1 正文 ? 2 牛顿法及其变形 ? 3 割线法 ? 4 布朗方法 ? 5 拟牛顿法 ? n个变量n个方程(n >1)的方程组表示为 (1) 式中?i(x1,x2,…,x n)是定义在n维欧氏空间R n的开域D上的实函数。若?i中至少有一个非 线性函数,则称(1)为非线性方程组。在R n中记?= 则(1)简写为?(尣)=0。若存在尣*∈D,使?(尣*)=0,则称尣*为非线性方程组的解。方程组(1)可能有一个解或多个解,也可能有无穷多解或无解。对非线性方程组解的存在性的研究远不如线性方程组那样成熟,现有的解法也不象线性方程组那样有效。除极特殊的方程外,一般不能用直接方法求得精确解,目前主要采用迭代法求近似解。根据不同思想构造收敛于解尣*的迭代序列{尣k}(k=0,1,…),即可得到求解非线性方程组的各种迭代法,其中最著名的是牛顿法。 牛顿法基本思想是将非线性问题逐步线性化而形成如下迭代程序:

(2) 式中 是?(尣k)的雅可比矩阵,尣0是方程(1)的解尣*的初始近似。 这个程序至少具有2阶收敛速度。由尣k算到尣k+的步骤为:①由尣k算出?(尣k)及 ;②用直接法求线性方程组的解Δ尣k;③求 。 由此看到迭代一次需计算n个分量函数值和n2个分量偏导数值,并求解一次n阶线性方程组。 为了评价非线性方程组不同迭代法的优劣,通常用效率作为衡量标准,其中P为迭 代法的收敛阶,W为每迭代步计算函数值?i及偏导数值的总个数(每迭代步中求一次逆的工作量相同,均不算在W 内)。效率e越大表示此迭代法花费代价越小,根据效率定义, 牛顿法(2)的效率为。 牛顿法有很多变形,如当奇异或严重病态时,可引进阻尼因子λk,得到阻尼牛顿法,即

4.2 理想流体的运动微分方程讲解

4.2 理想流体的运动微分方程 理想流体是指无粘性的且不可压缩流体,是一种假想的,不存在的流体。实际流体有粘性,粘性流体。 1. Enler 运动微分方程 H G 图 4-3 理想流体的作用力 取微六面体如图4-3所示;中心点为),,(z y x M ,M 处的压强为 ),,,(t z y x p 。作用在六面体的力有质量力z y x X d d d ρ,z y x Y d d d ρ,z y x Z d d d ρ;流体运动时的惯性力z y x d d d ρa ;由压强产生的表面力,在x 向分别为z y x x p p d d )d 21(??- 和z y x x p p d d )2 d (??+-。按牛顿第二定律不难列出x 向的力平衡方程如下: z y x a z y x x p p x x p p z y x X d d d d d )]2 d ()2d [(d d d x ρρ=??+-??-+ 列出y 、z 向力平衡方程。整理x 、y 、z 向力平衡方程(同除m z y x d d d d =ρ)如下

??? ? ? ? ???==??-==??-==??-t u a z p Z t u a y p Y t u a x p X d d 1d d 1d d 1z z y y x x ρρρ (4.2-1a) 上式也可简记为 t u a x p X d d 1i i i i ==??- ρ 3,2,1=i (4.2-1b) 式(4.2-1a)也可写成矢量形式 t p d d 1 u a G = =?- ρ (4.2-1c) 式中 Z Y X k j i G ++=为单位质量的体积力。 式(4.2-1a)便是理想流体的运动微分方程,是Euler 1755年推导出来的,故又称Euler 运动微分方程。 4.3 理想的流体运动方程的积分-Bernoulli 方程 Bernoulli 方程在工程流体力学基本理论中占有重要地位,其形式简单、意义明确,在工程中有着广泛应用。Bernoulli 方程是Euler 方程或葛罗米柯方程的积分形式。 一 运动微分方程在流线上的积分形式 在流线上取质点,不论是否定常运动,经过时间t d ,质点沿流线的微位移z y x d d d d k j i s ++=;s d 的分量,d ,d ,d z y x 可表示为 t u z t u y t u x d d ,d d ,d d z y x === (4.3-1) 对式(4.2-1a )的三式依次乘z y x d ,d ,d ,相加则有 )d d d (1d d d z z p y y p x x p z Z y Y x X ??+??+??- ++ρz t u y t u x t u d d d z y x ??+??+??= t u t u t u t u t u t u d d d z z y y x x ??+??+??= z z y y x x d d d u u u u u u ++= (4.3-2)

流体主要计算公式

主要的流体力学事件有: 1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。 1781年拉格朗日首先引进了流函数的概念。 1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。 1876年雷诺发现了流体流动的两种流态:层流和紊流。 1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。 19世纪末,相似理论提出,实验和理论分析相结合。 1904年普朗特提出了边界层理论。 20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。 理想势流伯努利方程 (3-14) 或(3-15) 物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。 (应用条件:“”所示) 符号说明 物理意义几何意义 单位重流体的位能(比位能)位置水头 单位重流体的压能(比压能)压强水头 单位重流体的动能(比动能)流速水头 单位重流体总势能(比势能)测压管水头

总比能总水头 二、沿流线的积分 1.只有重力作用的不可压缩恒定流,有 2.恒定流中流线与迹线重合: 沿流线(或元流)的能量方程: (3-16) 注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。一般不同流线各不相同(有旋流)。(应用条件:“”所示,可以是有旋流) 流速势函数(势函数)观看录像>> ?存在条件:不可压缩无旋流,即或 必要条件存在全微分d 直角坐标

非线性方程(组)的数值解法

第三章 非线性方程(组)的数值解法 一.取步长1h =,试用搜索法确立3()25f x x x =--含正根的区间,然后用二分法求这个正根,使误差小于310-。 【详解】 因为是要寻找正根,因此,可选含根区间的左端点为0。(0)5f =-, (1)5f =-,(2)1f =-,(3)16f =,因此,(2,3)中有一个正根。这就确立 了含根区间。 接下来,我们用二分法求这个正根,使误差小于310-,计算结果如下表 迭代次数 k a k b k x 0 2 3 2.5 1 2 2.5000 2.250 0 2 2 2.2500 2.125 0 3 2 2.1250 2.062 5 4 2.0625 2.1250 2.093 8 5 2.0938 2.1250 2.109 4 6 2.0938 2.1094 2.101 6 7 2.0938 2.1016 2.097 7 8 2.0938 2.0977 2.095 7 9 2.0938 2.0957 2.094 7 二.对方程2()2sin 20f x x x =--=,用二分法求其在区间[]1.5,2内的根,要求误差小于0.01。

【详解】 用二分法求解方程在[]1.5,2内的根,要求误差小于0.01,计算结果如下表: 迭代次数 k a k b k x 0 1.5 2 1.75 1 1.7500 2.0000 1.8750 2 1.8750 2.0000 1.9375 3 1.9375 2.0000 1.9688 4 1.9375 1.9688 1.9531 5 1.9531 1.9688 1.9609 三.用不动点迭代法,建立适当的迭代格式,求方程 3()10f x x x =--= 在0 1.5x =附近的根,要求误差小于610-。 【详解】 310x x --=,等价于x =。这样,可以建立不动点迭代格式 1k x +=当0x ≥时,总有2311 0(1)133 x -'<=+≤<,因此,迭代 格式对于任意初始值00x ≥总是收敛的。 取0 1.5x =,用所建立的不动点迭代格式求解近似根,要求误差小于610-,计算结果如下表: 迭代次数 k x 1.5

第二节流体流动的基本方程式

第二节 流体流动的基本方程式 化工厂中流体大多是沿密闭的管道流动,液体从低位流到高位或从低压流到高压,需要输送设备对液体提供能量;从高位槽向设备输送一定量的料液时,高位槽所需的安装高度等问题,都是在流体输送过程中经常遇到的。要解决这些问题,必须找出流体在管内的流动规律。反映流体流动规律的有连续性方程式与柏努利方程式。 1-2-1 流量与流速 一、流量 单位时间内流过管道任一截面的流体量称为流量。若流体量用体积来计量,称为体积流量,以V s 表示,其单位为m 3/s ;若流体量用质量来计量,则称为质量流量,以w s 表示,其单位为kg/s 。 体积流量与质量流量的关系为: w s =V s ·ρ (1-16) 式中 ρ——流体的密度,kg/m 3。 二、流速 单位时间内流体在流动方向上所流经的距离称为流速。以u 表示,其单位为m/s 。 实验表明,流体流经管道任一截面上各点的流速沿管径而变化,即在管截面中心处为最大,越靠近管壁流速将越小,在管壁处的流速为零。流体在管截面上的速度分布规律较为复杂,在工程计算中为简便起见,流体的流速通常指整个管截面上的平均流速,其表达式为: A V u s = (1-17) 式中 A ——与流动方向相垂直的管道截面积,m 2。 流量与流速的关系为: w s =V s ρ=uA ρ (1-18) 由于气体的体积流量随温度和压强而变化,因而气体的流速亦随之而变。因此采用质量流速就较为方便。 质量流速,单位时间内流体流过管路截面积的质量,以G 表示,其表达式为: ρρu A V A w G s s === (1-19) 式中 G ——质量流速,亦称质量通量;kg/(m 2·s )。 必须指出,任何一个平均值都不能全面代表一个物理量的分布。式1-17所表示的平均流速在流量方面与实际的速度分布是等效的,但在其它方面则并不等效。 一般管道的截面均为圆形,若以d 表示管道内径,则 2 4d V u s π= 于是 u V d s π4= (1-20) 流体输送管路的直径可根据流量及流速进行计算。流量一般为生产任务所决定,而合理

数值分析第七章非线性方程求根习题答案

第七章非线性方程求根 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数() f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内 仅有一个根.令00,a a b b ==,计算0001()2x a b =+和 0()f x .若0()0f x =则*x x =,结束计算;若 00()()0 f a f x >,则令 10,1a x b b ==,得新的有根区间 11[,] a b ;若 00()()0 f a f x <,则令 10,10a a b x ==,得新的有根区间11[,]a b .0011[,][,]a b a b ?,11001 () 2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区 间套 1100...[,][,]...[,] n n n n a b a b a b --???? 且110011 *,0,1,2,...,()...() 22n n n n n n a x b n b a b a b a --<<=-=-==-. 故 1 lim()0,lim lim ()* 2n n n n n n n n b a x a b x →∞→∞→∞-==+=

第一章 1[1].1流体流动静力学基本方程分析

第一章流体流动 1-0 概述 一学习本章的意义: 1.流体存在的广泛性。在化工厂中,管道和设备中绝大多数物质都是流体(包括气体、液体或气液混合物)。只是到最后,有些产品才是固体。 2 .通过研究流体流动规律,可以正确设计管路和合理选择泵、压缩机、风机等流体输送设备,并且计算其所需的功率。 3 .流体流动是化工原理各种单元操作的基础,对强化传热、传质具有重要的实践意义。因为热量传递,质量传递,以及化学反应都在流动状态下进行,与流体流动密切相关。 所以大家要认真学习这一章,充分打好基础。 二流体流动的研究范畴 1 流体定义:具有流动性的液体和气体统称为流体。 2 连续性介质假定:流体是由大量的单个分子组成,而每个分子之间彼此有一定的间隙,它们将随时都在作无规则随机的运动。所以,若把流体分子作为研究对象,则流体将是一种不连续介质,这将使研究非常困难。好在在化工生产过程中,我们对流体流动规律的研究感兴趣的并非是单个分子的微观运动,而是流体宏观的机械运动。所以我们不取单个分子作为考察对象,而取比分子平均自

由程大得多,比设备尺寸小得多的这样一个流体质点作为最小考察对象,质点是由大量分子组成的微团,它可以代表流体的性质。流体可以看成是由大量微团组成的,质点间无空隙,而是充满所占空间的连续介质,从而可以使用连续函数的数学工具对流体的性质加以描述。 提高:连续性介质假定 如图1所示,考虑一个微元体积内流体平均密度的变化情况:取包含P(x,y,z)点在内的微元体积⊿V,其中包含流体的质量为⊿m,则微元流体的平均密度为⊿m/⊿V,微元流体的平均密度随体积的变化如图2所示。当微元体积⊿V从非常小逐渐增大,趋向一个特定的微元体积V时,流体的平均密度逐渐趋向一个极限值,且不再随微元体积的继续增大而发生变化。当微元体积⊿V比δV小时,这时微元体积内所包含的流体分子数目是那样少,以致流体分子由于其无规则的热运动,进入或离开微元体积的流体分子数目已足以引起该微元体积内流体平均密度的随机波动。只有当微元体积大于δV后,其中

非线性方程求根

第二章非线性方程求根 线性方程是方程式中仅包含未知量的一次方项和常数项的方程,除此之外的方程都是非线性方程(nonlinear equation). 例如,大家熟知的“一元二次方程”就是一个非线性方程. 多元线性方程组的求解是数值计算领域的一个重要问题,在后续几章将专门讨论. 本章介绍求解非线性方程的数值方法,主要针对实数域,重点是单个非线性方程的求根问题. 2.1引言 2.1.1非线性方程的解 记要求解的单变量非线性方程为 f(x)=0(2.1) 其中函数f: ?→?. 一般而言,非线性方程的解的存在性和个数是很难确定的,它可能无解,也可能有一个或多个解. 例2.1 (非线性方程的解):分析下列非线性方程的解是否存在和解的个数. (1) e x+1=0. 此方程无解. (2) e?x?x=0. 此方程有一个解. (3) x2?4sinx=0. 此方程有两个解. (4) x3?6x2+5x=0. 此方程有三个解. (5) cosx=0. 此方程有无穷多个解. 在实际问题中,往往要求的是自变量在一定范围内的解,比如限定x∈[a,b]. 函数f一般为连续函数,则可记为f(x)∈C[a,b],C[a,b]表示区间[a,b]上所有连续实函数的集合. 假设在区间[a, b]上方程(2.1)的根为x?,也称x?为函数f(x)的零点. 方程的根可能不唯一,而且同一个根x?也可能是方程(2.1)的多重根. 定义2.1:对光滑函数f,若f(x?)=f′(x?)=?=f(m?1)(x?)=0,但f(m)(x?)≠0,则称x?为方程(2.1)的m重根. 当m=1时,即f(x?)=0,f′(x?)≠0时,称x?为单根. 对于多项式函数f(x),若x?为m重根,则f(x)可因式分解为 f(x)=(x?x?)m g(x) 其中g(x)也是多项式函数,且g(x?)≠0. 很容易验证,f(x?)=f′(x?)=?=f(m?1)(x?)=0,但f(m)(x?)≠0,即多项式方程重根的概念与定义2.1是一致的. 对一般的函数f,x?是方程(2.1)的重根的几何含义是,函数曲线在x?处的斜率为0,且在该点处与x轴相交. 非线性方程的一个特例是n次多项式方程(n≥2),根据代数基本定理可知,n次方程在复数域上有n个根(m重根计为m个根). 当n=1, 2时,方程的求解方法是大家熟知的. 当 n=3, 4时,虽然也有求根公式,但已经很复杂,在实际计算时并不一定适用. 当n≥5时,不存在一般的求根公式,只能借助数值求解方法来求根. 2.1.2问题的敏感性 根据问题敏感性的定义,这里需要考虑输入数据的扰动对方程的根有多大影响. 要分析敏感性首先应假设问题中的数据如何扰动,一种易于分析的情况是将非线性方程写成: f(x)=y 的形式,然后讨论y在0值附近的扰动造成的问题敏感性. 此时,求根问题变成了函数求值

流体运动方程与能量方程

第一章流体力学基础——流体运动的微分方程 西安建筑科技大学 粉体工程研究所

质量传递——连续性方程动量传递——纳维-斯托克斯方程能量传递——能量方程状态方程 流体运 动微分方程组 所有流体运动传递过程的通解 质量守恒定律 动量定理能量守恒定律

1.3流体运动的微分方程 ?质量守恒定律——连续性方程?动量定理——纳维-斯托克斯方程?能量守恒定律——能量方程 ?定解条件

1.3.1 质量守恒定律——连续性方程 ?质量既不能产生,也不会消失,无论经历什么形式的运动,物质的总质量总是不变的。 ?质量守恒在易变形的流体中的体现——流动连续性。 18世纪,达朗贝尔推导不可压缩流体微分形式连续性方程 在控制体内不存在源的情况下,对于任意选定的控制体 单组分流体运动过程中质量守恒定律的数学描述:流入控制体的质量速率 流出控制体的质量速率 控制体内的质量累计速率 = A B

τ时刻A 点流体密度为,速度沿x ,y ,z 三坐标轴的分量为1.3.1 质量守恒定律——连续性方程 连续性方程的推导边长为dx ,dy ,dz 的控制体微元 )ρ(x,y,z, τ)(x,y,z,u τ z y x ,u ,u u 单位时间内通过左侧控制面流入微元控制体的质量(即质量流量) x 方向 dydz ρu x 通过右侧控制面流出微元控制体的质量速率 dydz dx x )(ρρu x x ?? ???? ??+u dxdydz x ) (ρx ??-u

A :流入与流出微元控制体的质量速率之差x 方向dxdydz x )(ρx ??-u y 方向z 方向 dxdydz y )(ρ??-y u dxdydz z )(ρ??-z u dxdydz z )(ρy )(ρx )(ρ????????+??+??-z y x u u u B :微元控制体内的质量累计速率 τ时刻 ρdxdydz ρ 密度 质量 τ+d τ时刻dxdydz d ρρ?? ? ?? ??+τττ τ d ρ ρ??+dxdydz ρd ρdxdydz dxdydz d ρρτ τ ττ??=-?? ? ?? ??+

第三章 流体流动的基本概念与基本方程

第三章 流体流动的基本概念与方程 质量守恒定律、牛顿第二定律、能量守恒定律等是物质运动的普遍原理,流体作为一类物质也应该遵循这些原理。这些原理刚体运动的方程式在物理学和理论力学中大家已经学习过,适用于流体运动的方程式将在本章讨论。本章首先介绍描述流体流动的一些基本概念,然后推导出流体流动的基本方程,即连续方程、动量方程、能量方程等。这些基本概念与方程在流体运动学中的研究中是十分重要的。 3.1 描述流体流动的方法 在流体力学的研究中,描述流体的运动一般有两种方法,即拉格朗日法与欧拉法。 3.1.1 拉格朗日法 拉格朗日法着眼于单个流体质点是怎样运动的,以及流体质点的特性是如何随时间变化的。为了区别流体质点,使用某特定质点在某瞬时的坐标(a, b, c)是比较方便的,坐标(a, b, c)描述的只是某一特定的质点。 在任何瞬时质点的位置可表示为 (3.1) 对于一给点的坐标(a, b, c),上述方程组代表的是一特定流体质点的轨迹。 此时,质点是速度可以通过将质点是位置矢量对时间求导数得到。在笛卡尔坐标系中,质点的速度可表示为 (3.2) 加速度为

(3.3) 3.1.2欧拉法 流体是由无数流体质点组成的连续介质,充满流动流体的空间称为流场。 表示流体速度的一种方法就是着眼于空间的某一点,观察流经该点的流体质点随时间的运动。这种研究流体质点运动的方法称为欧拉法。在更一般的意义上,欧拉法可以通过以下方面描述整个流场: (1)在空间某一点流动参数,如速度、压强等,随时间的变化; (2)这些参数相对于空间邻近点的变化。 此时,流动参数是空间点的坐标与时间的函数: (3.4) 或 (3.4a) (3.5) 流体质点随时间将从一点运动到另一点,这意味着流体质点的位置也是时间的函数。 利用多元函数的微分连锁律,可将流体质点在x方向的加速度表示为: (3.6a) 同样 (3.6b) (3.6c) 或写成矢量的形式

非线性方程不动点算法及

本科生毕业论文

(20 14届) 本科生毕业论文 非线性方程求解的不动点算法及研究

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

正态总体参数的区间估计

第19讲 正态总体参数的区间估计 教学目的:理解区间估计的概念,掌握各种条件下对一个正态总体的均值和方差进行 区间估计的方法。 教学重点:置信区间的确定。 教学难点:对置信区间的理解。 教学时数: 2学时。 教学过程: 第六章 参数估计 §6.3正态总体参数的区间估计 1. 区间估计的概念 我们已经讨论了参数的点估计,但是对于一个估计量,人们在测量或计算时,常不以得到近似值为满足,还需估计误差,即要求知道近似值的精确程度。因此,对于未知参数θ,除了求出它的点估计?θ外,我们还希望估计出一个范围,并希望知道这个范围包含参数θ真值的可信程度。 设?θ为未知参数θ的估计量,其误差小于某个正数ε的概率为1(01)αα-<<,即 ?{||}1P θθεα -<=- 或 αεθθεθ-=+<<-1)??(P 这表明,随机区间)?,?(εθεθ+-包含参数θ真值的概率(可信程度)为1α-,则这个区间)?,?(εθεθ+-就称为置信区间,1α-称为置信水平。 定义 设总体X 的分布中含有一个未知参数θ。若对于给定的概率1(01)αα-<<,存在两个统计量1112(,,,)n X X X θθ= 与2212(,,,)n X X X θθ= ,使得 12{}1P θθθα <<=-

则随机区间12(,)θθ称为参数θ的置信水平为1α-的置信区间,1θ称为置信下限,2θ称为置信上限,1α-称为置信水平。 注(1)置信区间的含义:若反复抽样多次(各次的样本容量相等,均为n ),每一组样本值确定一个区间12(,)θθ,每个这样的区间要么包含θ的真值,要么不包含θ的真值。按伯努利大数定理,在这么多的区间中,包含θ真值的约占100(1)%α-,不包含θ真值的约仅占100%α。例如:若0.01α=,反复抽样1000次,则得到的1000个区间中,不包含θ真值的约为10个。 (2)置信区间的长度表示估计结果的精确性,而置信水平表示估计结果的可靠性。对于置信水平为1α-的置信区间12(,)θθ,一方面置信水平1α-越大,估计的可靠性越高;另一方面区间12(,)θθ的长度(2)ε越小,估计的精确性越好。但这两方面通常是矛盾的,提高可靠性通常会使精确性下降(区间长度变大),而提高精确性通常会使可靠性下降(1α-变小),所以要找两方面的平衡点。 在学习区间估计方法之前,我们先介绍标准正态分布的α分位点概念。 设 () ~0,1X N ,若 z α 满足条件 { },01 P X z α αα>=<<,则称点z α为标准正态分布的α分位点。例如求0.01z 。按照α分位点定义,我们有 {}0.010.01P X z >=,则{}0.010.99P X z ≤=,即0.01()0.99z φ=。查表可得0.01 2.327z =. 又 由()x ?图形的对称性知1z z αα-=-。下面列出了几个常用的z α值: 2. 正态总体均值μ的区间估计 设已给定置信水平为1α-,总体()2~,X N μσ,12,,,n X X X 为一个样本,2 ,X S 分别是样本均值和样本方差。

运动微分方程

JLU 物理与光电工程学院第一章质点力学之1.4运动微分方程

JLU 物理与光电工程学院§1.4 质点运动定律 1. 第一定律是第二定律所不可缺少的前提, 因为第一定律为整个力学体系选定了一类特殊的参考系-----惯性参考系 着重明确: 力的独立作用原理牛顿三定律完整的牛顿力学理论体系牛顿力学:牛顿三定律为基础的动力学理论和牛顿的万有引力定律(引力理论).

JLU 物理与光电工程学院3. 牛顿第三定律 两个质点间的作用力和反作用力总是同时成对出现, 大小相等, 方向相反, 作用在同一条直线上. 2.第二定律中的质量是惯性质量,与万有引力中的质量相比,近年来的实验结果已经证实相差不到10-12. 爱因斯坦把引力质量等于惯性质量作为广义相对论的基本公设.

JLU 物理与光电工程学院4. 力的独立作用原理: 如果一个质点同时受多个力的作用, 这些力各自产生的动力学效果不受其他力存在的影响. m F a 11r r =m F a 22r r =m F a n n r r =… n a a a a r L r r r +++=21n a m a m a m a m r L r r r +++=21∑=+++=i n F F F F r r L r r 21),,(t r r F r m i &r r r &&r ∑=力的独立作用原理指出, 力不可以是加速度的函数.

JLU 物理与光电工程学院5.经典力学中的力 1)在牛顿力学中, 力由牛顿第二定律定义. 牛顿第二、第三定律指出: 力是物体间的相互作用, 力的动力学效果是使受力质点产生加速度. 2)万有引力定律: 任何两质点间均存在相互作用引力, 方向沿两质点连线, 大小为: 2 2 1 /r m Gm F =3)经典力学中其他常见的力:重力;弹簧弹性力;柔软绳的张力;刚性线或面的支撑力;刚性线或面的摩擦力;洛伦兹力;质点在流体中受流体阻力.6.力学相对性原理和经典力学时空观 (1)力学相对性原理:对任何惯性系,力学运动规律完全相同.或者说,对力学运动规律而言,一切惯性系都是等价的.

相关文档
相关文档 最新文档