文档库 最新最全的文档下载
当前位置:文档库 › 含偕胺肟基聚丙烯腈系螯合纤维吸附金的研究

含偕胺肟基聚丙烯腈系螯合纤维吸附金的研究

含偕胺肟基聚丙烯腈系螯合纤维吸附金的研究
含偕胺肟基聚丙烯腈系螯合纤维吸附金的研究

静电纺丝法制备海水提铀用纳米纤维吸附材料及其性能研究

静电纺丝法制备海水提铀用纳米纤维吸附材料及其性能研究 偕胺肟基对铀酰离子具有很强的络合能力及较高的选择性,是良好的铀酰离子吸附官能团,而通过偕胺肟基改性的高分子纤维吸附材料具有较高的吸附选择性、良好的机械性能、适宜自然海域现场吸附作业等优点,是目前海水提铀用吸附材料研究的热点。降低纤维尺寸能够有效提高材料的比表面积进而提升材料的 吸附性能,因此本论文的研究重点在于制备纳米级纤维吸附材料以使其兼具纤维 材料良好的机械性能及纳米材料较大的比表面积。 本论文通过静电纺丝的方法制备新型海水提铀用偕胺肟基纳米纤维吸附材 料,并进一步构建了含二元配位体系的纳米纤维吸附材料。主要研究了静电纺丝得到的纳米纤维吸附材料的机械性能,吸附性能及二元配位体系的铀酰离子协同吸附效应。 具体研究内容包括以下三个方面:利用静电纺丝-混溶法将聚丙烯腈(Polyacrylonitrile, PAN)的偕肟胺化产物——偕胺肟化聚丙烯腈(Polyamidoxime, PAO)与低分子量的交联剂——聚乙二醇二丙烯酸酯(Polyethylene glycol diacrylate, PGDA)的混合溶液纺丝成纳米尺度的纤维毡,再经辐射交联处理,得到具有一定力学强度的偕胺肟基纳米纤维吸附材料。BET测试结果显示,该材料的比表面积远大于偕胺肟基改性的聚乙烯无纺布。 铀酰离子的吸附结果也表明,该材料的吸附性能明显大于偕胺肟基聚乙烯无纺布的吸附性能。说明通过静电纺丝法制得纳米级纤维,可有效增大材料的比表面积,进而增强材料的吸附性能。 研究证明,低分子量的交联剂的引入能够增强PAO基材的机械性能,但效果有限。而PAO的相容性较差,难以与其他高分子混溶,利用混溶-静电纺丝法制

国内生物基材料的现状及发展

国内生物基材料的现状及发展 姓名:吕远 班级:生工A1101 学号:2011018099 摘要:随着人们对气候变化和化石资源枯竭等问题的关注,低碳、环保,可持续的经济发展模式日益为世界各国政府所重视。将可再生的原料转化为生物高分子材料或者单体,进而开发各种产品,获得环境友好的功能性材料,能够降低碳排放,缓解石油危机,已经成为全球研究的热点领域。本文将对我国生物基材料的现状以及未来发展做出阐明。 生物基材料是指利用可再生生物质,包括农作物、树木和其它植物及其残体和内含物为原料,通过生物、化学以及物理等手段制造的一类新型材料。主要包括生物塑料、生物基平台化合物、生物质功能高分子材料、功能糖产品、木基工程材料等产品,具有绿色、环境友好、原料可再生以及可生物降解的特性。 新材料产业是我国战略性新兴产业主要内容。利用丰富的农林生物质资源,开发环境友好和可循环利用的生物基材料,最大限度地替代塑料、钢材、水泥等材料,是国际新材料产业发展的重要方向。新世纪以来,生物基材料受到发达国家广泛重视,呈现快速发展的势头,以农林生物质为原料转化制造的生物塑料、节能保温材料、木塑复合材料、热固性树脂材料、功能高分子材料等生物基材料和生物基单体化合物、生物基助剂、表面活性剂等生

物基大宗精细化学品快速增加,产品经济性正在逐步增强。拜耳、巴斯夫、埃克森美孚、三星道达尔、杜邦化工等跨国公司长期致力于生物基材料的研发,推动了全球生物基材料的商业化进程。对于一异戊二烯来说,因其可生产轮胎,在工业发展上十分重要。目前,美国丹尼斯克公司与固特异公司正在合作开辟生物基异戊二烯工艺路线,以部门替换石油(petro)基橡胶和苯乙烯基弹性体工艺。生物基异戊二烯可以出产轮胎用的合成橡胶和其他弹性体,可使轮胎产业更少地依靠石油衍生物产物。同样,另一种生物基材料丁二醇也已获得大量工业化生产。 目前,我国生物基材料产业科技取得了显著的成效,形成了如全降解生物基塑料、木基塑料、聚合超大分子聚乳酸、农用地膜等一大批具有自主知识产权的技术。全国性的“木塑热”正逐渐兴起,木塑制品年产销量已超过20万吨,并以20%以上的年增长率高速增长。生物基材料作为石油基材料的升级替代产品,正朝着以绿色资源化利用为特征的高效、高附加值、定向转化、功能化、综合利用、环境友好化、标准化等方向发展。与国际先进水平相比,在产品性能、制造成本、关键技术、技术集成与产业化规模等方面还存在差距,必须加快突破生物基材料制造过程的生物合成、化学合成改性及树脂化、复合成型等关键技术,促进重要生物基材料低成本规模化生产与示范,构建生物基材料研发平台,提升生物基材料企业科技创新能力,实现化石资源的有效替代,为生物基材料产业培育提供科技支撑。

聚丙烯腈基碳纤维增强热固性酚醛树脂复合材料的研制

聚丙烯腈基碳纤维增强热固性酚醛树脂复合材料的研制1.聚丙烯腈基碳纤维(PAN-CF) 碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。 1.1聚丙烯腈基碳纤维的制备 聚丙烯基碳纤维是继粘胶基碳纤维后第二个开发成功的碳纤维。它是目前各种碳纤维中产量最高品种最多发展最快技术最成熟的一种碳纤维。 聚丙烯腈(PAN)是由(AN)聚合而成的链状高分子。 由于PAN在它的熔点317℃以前就开始热分解,因此不能采用熔融纺丝而只能通过溶剂进行湿法或干法纺丝。 聚丙烯腈碳纤维的生产过程分三步:(1)预氧化;(2)高温碳化处理;(3)高温石墨化处理。 (1)聚丙烯腈原丝的预氧化 预氧化的目的就是为了防止原丝在碳化时熔融,通过氧化反应使得纤维分子中含有羟基,羰基,这样可在分子间和分子内形成氢键,从而提高纤维的热稳定性。在聚丙烯腈纤维预氧化过程中可能发生的主要化学反应和氧化脱氢反应。 分析结果表明在大约200℃左右约有75%氰基发生了化学反应。未环化的杂化发生氧化脱氢反应,使纤维中结合一部分氧。一般认为,在制造聚丙烯腈碳纤维时,纤维仅需要部分氧化,含氧量在5%~10%较好。预氧化采用的方法有两种:空气氧化法和催化法。 原丝在200~300℃空气中预氧化时,其颜色从白→黄→棕→黑,说明聚合物发生了一系列的化学变化,并开始形成石墨微晶结构。催化环化是将聚丙烯腈原丝在225℃的SnCl4二苯醚溶液中催化成环。催化法有可能使部分氰基未被氧化,造成结构缺陷。目前工业生产上普遍采用的是空气预氧化法。 同时为了提高碳纤维的力学性能,在原丝预氧化时同时采用引力牵伸。 (2)预氧化的碳化 预氧化的碳化一般是在惰性气氛中,将预氧丝加热至1000~1800℃,从而除去纤维中的非碳原子(如H,O,N等) 。生成的碳纤维的含碳量约为95%。碳化过程中,未反应的聚丙烯腈进一步环化,分子链间脱水,脱氢交联,末端芳构化成氨。随着温度的进一步升高,分子链间的交联和石墨晶体进一步增大。碳化温度对碳纤维的力学性能有很大的影响。在碳化过程中,拉伸强度和弹性模量随温度的升高而升高。但在拉伸强度在1400℃左右达到最大值。这是由于随温度的提高,碳纤维中的石墨晶体增大,定向程度提高,因而拉伸模量升高而拉伸强度趋于下降。 (3)PAN的石墨化 石墨化过程是在高纯度惰性气体保护下于2000~3000℃温度下对碳纤维进行热处理。碳纤维经石墨化温度处理后,纤维中残留的氮,氢等元素进一步脱除,六角碳网平面环数增加,并转化为类石墨结构。 在PAN石墨纤维的制备中,牵伸贯穿生产全过程。不仅在生产PAN原丝时需要多次牵伸。牵伸使微晶沿纤维轴向择优取向,微晶之间堆积更加紧密,从而使密度和模量提高。

亲水型偕胺肟吸附剂的ARGET-ATRP可控制备及其对铀的吸附性能

第52卷第1期 原子能科学技术Vol .52,No .1 2018年1月Atomic Energy Science and Technology Jan .2018 亲水型偕胺肟吸附剂的ARGET‐ATRP 可控制备及其对铀的吸附性能 张 硕1,安 鹏1,文 攀1,胡 胜2,熊 洁2,文 君2,匙芳廷1,*,晏良宏3,* (1.西南科技大学核废物与环境安全国防重点学科实验室,四川绵阳 621010; 2.中国工程物理研究院核物理与化学研究所,四川绵阳 621900; 3.中国工程物理研究院激光聚变研究中心,四川绵阳 621900) 摘要:吸附剂的制备是海水提铀的关键。本文以聚氯乙烯(PVC )为基材,采用电子转移活化再生原子转移自由基聚合(ARGET ‐ATRP )方法在PVC 上引入偕胺肟(AO )和丙烯酸叔丁酯(tBA )基团,合成了偕胺肟基纤维吸附剂(PVC ‐AO ‐tBA )。在不同温度、铀溶液浓度和p H 值条件下进行了PVC ‐AO ‐tBA 吸附铀的实验研究,探讨了亲水单体tBA 的引入对AO 吸附剂吸铀性能的影响。结果表明,在同等条件下,PVC ‐AO ‐tBA 对铀的吸附量由PVC ‐AO 的109mg /g 提高到170mg /g ;PVC ‐AO ‐tBA 对酸碱度的适应范围更宽,最 佳p H 值由6扩展到4~6。动力学分析结果表明,吸附速率也有了明显上升。值得注意的是,在与海水酸碱度接近的弱碱性环境下,平衡吸附量由39mg /g 提高到71mg /g ,可见吸附效果得到明显提升。 关键词:海水提铀;偕胺肟;亲水单体;吸铀性能 中图分类号:TL 212 文献标志码:A 文章编号:1000‐6931(2018)01‐0022‐08 收稿日期:2017‐02‐27;修回日期:2017‐04‐21 基金项目:国家自然科学基金资助项目(21401152);四川省教育厅资助项目(16ZB 0134);核废物与环境安全国防重点学科实验 室预研基金资助项目(15yy hk 08);核废物与环境安全国防重点学科实验室团队资助项目(14tdhk 01);西南科技大学创新基金资助项目(cx 17‐017);西南科技大学创新基金精准资助专项(j z 17‐081);核废物与环境安全国防重点学科实验室开放基金资助项目(16kfhk 04) 作者简介:张 硕(1995—),男,河北石家庄人,硕士研究生,从事高分子吸附剂研究 *通信作者:匙芳廷,E ‐mail :chifangting @163.com ;晏良宏,E ‐mail :y anlianghong @126.com 网络出版时间:2017‐12‐01;网络出版地址:http :∥kns .cnki .net /kcms /detail /11.2044.T L .20171201.1431.002.html doi:10.7538/y zk .2017.y ouxian .0115ControlledPreparationofHydrophilicAmidoximeAdsorbentbyARGET‐ATRPandItsAdsorptionPerformancetoUranium ZHANG Shuo 1,AN Peng 1,WEN Pan 1,HU Sheng 2,XIONG Jie 2 , WEN Jun 2,CHI Fangting 1,*,YAN Lianghong 3,*(1.FundamentalScienceonNuclearWastesandEnvironmentalSafetyLaboratory, SouthwestUniversityofScienceandTechnology,Mianyang621010,China; 2.ChinaAcademyofEngineeringPhysics,P.O.Box919‐214,Mianyang621900,China; 3.ChinaAcademyofEngineeringPhysics,P.O.Box919‐987,Mianyang621900,China) Abstract: T he preparation of adsorbent is the key to the extraction uranium from sea ‐w ater .In this paper ,amidoxime (AO )and tBA were grafted onto the polyvinyl chloride 万方数据

静电纺纳米纤维膜用于重金属离子吸附的研究进展

静电纺纳米纤维膜用于重金属离子吸附的研究进展 摘要静电纺丝制备的纳米纤维膜具有较高的比表面积和孔隙率,在重金属离子吸附领域有着广泛的应用前景。 本文在简要阐述纳米纤维膜吸附重金属离子机理的基础上,主要从有机纳米纤维膜、有机-无机复合纳米纤维膜、及无机纳米纤维膜等3个方面,介绍了近年来静电纺纳米纤维膜对重金属离子的吸附性能及其相关的研究进展,并针对目前纳米纤维膜吸附重金属离子应用研究中存在的一些问题给出了建议,为纳米纤维膜吸附重金属离子的后续研究提供参考。 关键词静电纺;纳米纤维;吸附;重金属离子 0 引言 随着工业化进程的不断加快,由金属冶炼及化工生产废水排放等人为因素造成的重金属离子污染水源问题日益严峻,严重威胁到人类的健康[1,2]。为此,相关科研人员对重金属离子的污染问题进行了深入的研究,采取了多种措施对受污染的水体进行处理和修复。目前,已报道的去除水体中重金属离子的方法有:反渗透[3]、离子交换[4]、电化学沉降[5]、氧化还原[6]、生物处理及吸附技术[7]。其中,吸附技术因易操作、高效、可重复利用、成本低而备受关注[8,9]。而比表面积大的多孔材料对重金属离子具有良好的吸附效果[2],通过静电纺丝制备的纳米纤维膜恰好具有高比表面积、高孔隙率以及内部连通的开孔结构等突出优势,从而使其在重金属离子的吸附分离方面表现出较好的吸附性能和循环利用性。 1纳米纤维膜吸附重金属离子机理 同大多数吸附材料的原理相同,纳米纤维膜对重金属离子的吸附也是一种传质过程,重金属离子通过物理作用或化学反应从液相转移到纤维膜上[10]。如图1所示[11],纳米纤维膜对水溶液中重金属离子的吸附主要为物理吸附和化学吸附:其中物理吸附主要是通过静电相互作用(带正电荷的重金属离子与带负电基团之间的静电相互作用,约2~4个负性基团结合一个重金属离子),将重金属离子吸附到纤维表面。而化学吸附则是纤维表面的功能基团对重金属离子的螯合吸附作用(由纤维膜上的功能基团提供孤对电子与重金属离子形成配位共价键)。由于纳米纤维膜具有较高的比表面积,从而使纤维表面暴露出更多的功能基团,明显增加了纤维表面对重金属离子的吸附位数量,显著提高了纤维材料对重金属离子的吸附分离性能。 图 1 纳米纤维吸附重金属离子原理示意图 Fig.1 The mechanism of nanofiber mats for heavy metal ion adsorption 2纳米纤维膜吸附重金属研究进展 由于静电纺纳米纤维膜在重金属离子吸附方面展现出的优异性能,近年来,相关的科研人员进行了大量制备和改性的研究工作,本文分别从有机纳米纤维、有机-无机复合纳米纤维、无机纳米纤维等方面进行简要阐述。 2.1 有机纳米纤维 2.1.1 天然高分子纳米纤维

生物基纤维造福人类

生物基纤维造福人类:源于自然的馈赠 生物技术是21世纪最重要的科学技术前沿领域之一。随着绿色环保和可持续发展的理念不断深入人心,生物聚合物技术持续高速发展。依据欧洲生物塑料协会的研究报告,当前开发中的生物高分子材料包括纤维素聚合物,生物基聚酯PLA、PHB、PTT、PBT、PET等、生物基聚酰胺PAll、PA6、PA66、PA69、PA610、生物基聚乙烯、生物基聚丙烯、生物基PVC、生物基TPU以及淀粉基聚合物等。 生物基纤维采用农、林、海洋废弃物、副产物加工而成,是来源于可再生生物质的一类纤维,体现了资源的综合利用与现代纤维加工技术完美融合,产品亲和人体,环境友好,并有特有的功能,引领新的消费趋势。 其中,再生生物基纤维以针叶树、木材下脚料、毛竹、麻类、藻类、虾、蟹等水产品和昆虫等节肢动物的外壳为原料,原料广且环保自然。合成生物基纤维采用农林副产物为原材料,经发酵制得生物基原料,制得生物基PTT、PDT聚酯。它们都是极具发展前景的纺织材料。 背景 政策支撑路径清晰 当前,世界各国特别是发达国家在世界金融危机后,均把发展生物产业作为走出困境、争夺高新技术制高点、重新走向繁荣的国家战略。从20世纪90年代起,美国、欧盟、日本等传统化纤生产强国一方面受石油短缺、环境问题影响,逐渐退出常规化纤生产,另一方面重新定义纤维材料不仅是服装、家纺、产业用纺织品的原料,而且是重要的基础材料和工程材料。他们不断进行产业结构调整,逐步把纤维产业转向利润更高、受资源或环境影响更小的高性能化学纤维和生物基化学纤维的研发和生产。 目前在我国,发改委、财政部、工信部、科技部、中科院等部门正在联合推动“生物基化学纤维及原料专项实施方案”。记者了解到,根据《国民经济和社会发展第十一个五年规划纲要》和《生物产业发展“十一五”规划》的要求,2008年国家发展改革委就已经开始组织“生物基材料国家高技术产业化重大专项”申报工作现改为“生物基材料重大工程实施方案”,“生物基化学纤维及原料专项实施方案”是这个项目下的分支项目。 我国生物基化学纤维的生产目前还处于产业化突破的关键阶段,而当前的主要任务就是尽快实现“三个替代”、“三个结合”和“三个重点”。“三个替代”即原料替代、过程替代和产品替代。“三个结合”即与生物化工产业相结合;与节能环保、废物利用相结合;与功能改进及推广应用相结合。“三个重点”即重点攻克生物多元醇生产及应用技术、聚乳酸纤维原料制备及纤维应用技术以及海洋生物基纤维原料多元化及规模化生产技术。 从国际范围来看,发展方向与路径也逐步清晰。2011年世界生物塑料会议纽约展现出了生物PX/PTA与100%生物聚酯技术高速发展的实例,引起了业界的广泛关注。预计生物路线的PX/PTA/PET产业链将于2015~2016年间实现商业化运行。美国Freedonia公司预测,未来几年间100%生物基PET工业化规模生产将成为现实。 拥有生产此产品完整产业链的公司。企业产PTT生物质差别化纤维5万吨,年产PDO2万吨的项目已经于去年正式投入运营。 除了聚酯PTT,海藻酸盐纤维、纯壳聚糖纤维等品种也在紧锣密鼓的布局中。其中,海藻酸盐纤维挖掘了海洋新资源,同时具有天然抗菌、亲肤的功效。目前,广东百合医疗科技有限公司“海藻酸盐纤维及其生物医用敷料产业化建设”项目的研究成果总体技术达到国际先进水平,其中产品质量指标达到国际领先水平。浙江越隆集团绍兴蓝海科技有限公司百吨级海藻酸盐纤维生产装置试车成功,目前产品已推向市场。

聚丙烯腈基碳纤维及其增强复合材料_柴晓燕

2011年第7期广东化工 第38卷总第219期https://www.wendangku.net/doc/6911995312.html, · 293 · 聚丙烯腈基碳纤维及其增强复合材料 柴晓燕,朱才镇,刘剑洪 (深圳大学化学与化工学院,广东深圳 518060) [摘要]聚丙烯腈(PAN)基碳纤维作为一种高比强度和高比模量的增强型与功能型高性能纤维材料,在航空航天、国防军工及文体用品等方面都有广泛的应用。文章主要介绍了聚丙烯腈基碳纤维的制备、结构与性能及其在复合材料中的应用。 [关键词]碳纤维;增强;复合材料 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2011)07-0293-03 PAN-based Carbon Fibers And Reinforce Composite Materials Chai Xiaoyan, Zhu Caizhen, Liu Jianhong (College of Chemistry and Chemical Engineering, ShenZhen University, Shenzhen 518060, China) Abstract: Polyacrylonitrile carbon fibers were widely used in many fields, such as aerospace, strategical missile, sports and leisure industries, because of which are the most crucial and imperative part of the reinforce of the composition. The paper mainly introduces the production, structure and property of PAN-based carbon fiber, and the applications in the composite materials. Keywords: carbon fibers;reinforce;composite material 碳纤维是由有机纤维经过一系列的热处理转化而成的含碳量在90 %以上的脆性材料,是一种纤维状的碳材料。作为一种新型材料,碳纤维具有低密度、高比强度、高比模量、耐高温和低温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、热膨胀系数小等一系列的优异性能,结构独特,集众多优异性能于一身,它既可以作为结构材料的增强基承载负荷,又可作为功能材料[1]。由于碳纤维的强度比钢大,相对密度比铝还轻,并且具有上述电学、热学和力学性能,在现代科学技术、现代工业和现代国防的发展中起着重要作用。随着碳纤维产量的提高,碳纤维市场的扩大,价格不断降低,民用应用领域不断扩大。目前碳纤维已经渗透到高尔夫球杆、网球拍、滑雪板、钓鱼竿、游艇、赛艇、汽车构件、火车零件、石油、化工等多个领域,被誉为21世纪最有生命力的新型材料[2]。 碳纤维起源于19世纪60年代,而工业化则起步于20世纪50~60年代,是应宇航工业对耐烧蚀和轻质高强材料的迫切需求而发展起来的。l9世纪末,爱迪生首先用碳丝制作了白炽灯的灯丝,1959年,日本大阪工业试验所的近藤昭男发明了利用聚丙烯腈(PAN)纤维制造碳纤维的新方法,这一工艺很快受到重视,并实现了通用型PAN基碳纤维的工业化生产。而英国在此基础上开发了高性能的PAN基碳纤维的生产技术,处于了领先地位。20世纪70年代后,由于美国航天工业的高速发展,极大地促进了聚丙烯腈基碳纤维的发展[2]。 目前工业生产中主要采用聚丙烯腈(PAN)纤维、沥青纤维和粘胶纤维为原丝来生产碳纤维[3]。其中粘胶基和沥青基碳纤维用途较单一,产量也较为有限,而聚丙烯腈基碳纤维生产工艺简单,产品力学及高温性能优异,具有良好的结构和功能特性,因而发展较快,成为高性能碳纤维发展和应用的最主要和占绝对地位的品种,主要用于高性能结构及功能复合材料,在航天,航空、兵器、船舶等国防领域具有不可替代的作用。 1 PAN基碳纤维 1.1 PAN基碳纤维的制备工艺 PAN基碳纤维的制备包括PAN原丝的纺丝、预氧化和碳化三大工艺过程。优质的PAN原丝是制造高性能碳纤维的首要条件。原丝纺丝工艺有湿法、干法、干湿法和熔融法等[3-5],其中干湿法和熔融法是新的发展趋势,而湿法工艺则相对较为成熟。湿法成形的纤维纤度变化小、残留溶剂少,而且容易控制原丝质量,因而湿法纺丝仍是目前广泛应用的纺丝工艺。PAN基碳纤维的制备工艺流程如图1所示。 PAN原丝的预氧化,又称热稳定化,一般在180~300 ℃的空气气氛中进行。因为当温度低于180 ℃时反应速度很慢,耗时太长,生产效率过低;然而,当温度高于300 ℃时将发生剧烈的集中放热反应,导致纤维熔融断丝。在预氧化过程中要对纤维施加适当牵伸以抑制收缩、维持大分子链对纤维轴向的取向。预氧化的目的是使热塑性PAN线形大分子链转化为非塑性的耐热梯形结构,从而使纤维在碳化高温下不熔不燃,继续保持纤维形态[7-9]。预氧化方法包括恒温预氧化、连续升温预氧化和梯度升温预氧化。其中,前两种预氧化方法效率较低,目前主要用于实验室研究,而梯度升温预氧化则是当前工业化生产所普遍采用的。预氧化温度及其分布梯度、预氧化时间、张力牵伸等是影响预氧化过程的主要工艺参数。恰当的预氧化工艺可以在较短的时间内使纤维得到稳定化,为后期碳化提供均质的预氧丝;而不恰当的预氧化工艺则会造成原丝热稳定化的过度或不足,在高温碳化过程中纤维可能发生熔断或形成较多结构缺陷,严重影响最终碳纤维的性能。预氧化过程在整个碳纤维制备流程中耗时最长,预氧化时间一般为60~120 min,碳化时间为几分钟到十几分钟,而石墨化时间则以秒计算。可见,预氧化过程是决定碳纤维生产效率的主要环节。 碳化过程一般包括低温碳化和高温碳化两个阶段,低温碳化的温度一般为300~1000 ℃,高温碳化的温度为1100~1600 ℃。碳化时需要采用高纯度氮气作为保护气体。在碳化过程中,较小的梯形结构单元进一步进行缩聚,且伴随热解,向乱层石墨结构转化的同时,释放出许多小分子副产物。非碳元素O、N、H 逐步被脱除,C元素逐步富集,最终生成含碳量在90 %以上的碳纤维。 图1 PAN基碳纤维的制备工艺流程[6] Fig.1 The production of PAN-based carbon fiber 1.2 聚丙烯腈基碳纤维的结构 丙烯腈(AN)在一定的聚合条件下双键被打开,生成大分子链,同时放出反应热。氰基中的氮原子电负性大于碳原子,使氰基中的碳原子与氮原子间的电子云偏向氮原子,氮原子呈负电性,碳原子呈正电性。与氰基相连的主链上的碳原子与氰基中碳原子之间的电子云由于诱导作用的影响,偏向氰基碳原子,所以形成了很强的偶极矩。同一条聚丙烯腈大分子链上的氰基极性相同,互相排斥,呈现出僵硬的刚性,按照一定角度排列形成了对称的圆棒体,如图2所示。圆棒体的直径约为0.6 nm,长度约为10~100 nm。几根至几十根圆棒平行排列形成了有序的结晶区,而杂乱堆砌的大分子链则形成非晶区,即无定形区如图3所示。 聚丙烯腈原丝的预氧化过程从无定形区开始,逐渐发展到结晶区。纤维在预氧化初期是半融状态,丝束结构消失后呈块状的堆垛结构;预氧化中期,块状堆垛结构由束状向片状发散排列结构转变,并且在预氧化的后期趋于稳定。碳纤维是由片状石墨微晶沿纤维轴向方向堆砌而成的所谓“乱层”结构,通常也把碳纤维的结构看成由两维有序的结晶和孔洞组成,其中孔洞的含量、 [收稿日期] 2011-06-10 [作者简介] 柴晓燕(1985-),女,浙江人,硕士,助教,主要研究方向为碳纤维的结构与性能。

纤维素基吸附剂的研究进展

纤维素基吸附剂的研究进展 Q U R J 曲荣君1,2*,孙向荣1,王春华1,孙昌梅1,成国祥1,2 (1.烟台师范学院化学与材料科学学院,山东烟台264025; 2.天津大学材料科学与工程学院,天津370002) 摘 要: 纤维素作为自然界中储量最大的天然高分子材料,具有价廉易得、易被微生物降解、不会给环境带 来第二次污染等特点,长期以来对其开发利用一直是科技工作者研究的热点。本文主要综述了近年来纤维素 基吸附剂的研究进展,并简要介绍了其作为金属离子吸附剂、特殊用途吸附剂等的结构性能特点,展望了其发 展前景。 关键词: 纤维素基吸附剂;吸附 中图分类号:T Q 352 文献标识码:A 文章编号:0253-2417(2004)03-0102-05 PROGRESS IN ST U DIES ON PREPARA T ION AN D PROPERT IES OF CELLU LO SE BASED ADSORBENT S QU Rong jun 1,2,SUN Xiang rong 1,WANG Chun hua 1,SU N Chang mei 1,CHENG Guo x iang 1,2 (1.School of Chemistry and Materials Science,Yantai Normal University ,Yantai 264025,China; 2.School o f Materials Science and Engineer ing ,Tianj in University ,Tianj in 370002,China) Abstract:As one of the most abundant renewable natural polymers on earth,cellulose is readily available and inexpensive.Also it can be biodegraded easily w ithout pollution on environment.M any inv est igators have done w orks on the development and utilization of cellulose for a long time.I n this paper,the preparation of adsorbents based on cellulose is review ed.T he structures and properties of t he modified cellulose as metal ion adsorbents and special adsorbents are introduced.T he long term potential development of cellulose based adsorbents is mentioned. Key words:cellulose based adsorbent;adsorption 纤维素是无水葡萄糖残基通过 -1,4糖苷键连接的立体规整性高分子,是自然界中最为丰富的可再生资源。纤维素分子内含有许多亲水性的羟基基团,是一种纤维状、多毛细管的高分子聚合物,具有多孔和比表面积大的特性,因此具有亲和吸附性,但天然纤维的吸附(如吸水、吸油、吸重金属等)能力并不很强,必须通过化学改性使其具有更强或更多的亲水基团,才能成为性能良好的吸附材料。 纤维素吸附剂的研究和应用早在20世纪50年代初就已开始,近年来,随着生命科学的飞速发展和人们对纯天然化工产品的需求日益扩大,纤维素作为天然高分子材料用来作吸附剂使用愈来愈广泛;同 收稿日期:2003-10-13 基金项目:国家自然科学基金资助项目(29906008);山东省自然科学基金资助项目(Q99B15);中国博士后科学基 金(2003034330);山东省中青年学术骨干学术带头人基金资助项目(无编号) 作者简介:曲荣君(1963-),男,山东荣城人,教授,博士后,主要研究方向:功能高分子。 第24卷第3期 2004年9月林 产 化 学 与 工 业Chemistry and Industry of Forest Products Vol.24No.3 Sept.2004

项目名称:聚丙烯腈基碳纤维原丝制备新技术

项目名称: 聚丙烯腈基碳纤维原丝制备新技术 来源: 第十二届“挑战杯”作品 小类: 能源化工 大类: 科技发明制作A类 简介: 碳纤维是一种高科技纤维,具有重要战略意义。本课题依托我校与吉林化纤公司联合自主研发 的三元无机水相悬浮聚合,湿法二步法制备聚丙烯腈基碳纤维原丝新技术。该技术具有工艺流 程短,成本低,质量稳定,产量高,适合大规模工业生产等特点,是国内首家独创。吉林化纤 公司采用该技术正进行万吨级原丝生产线的建设,建成后将成为国内最大PAN基碳纤维原丝生 产企业,并可实现年增销售收入12亿元,年增利润7亿元。 详细介绍: 碳纤维产品以其优异的特殊性能已成为经济发展和国防事业的重要战略物资,美、日等发达国 家极为重视并大力发展,但由于我国碳纤维原丝质量不过关一直影响碳纤维产品的质量,美、 日等国家又严格限制对我国出口碳纤维,从而极大制约了我国军事及航天事业的发展,同时也 限制了相关民用领域的开发。为打破制约我国碳纤维产业发展的关键技术、关键装备及其相关 配套技术,提高我国碳纤维产业的整体研发、生产技术水平具有重要战略意义。吉林化纤股份 有限公司是当今世界最大腈纶生产企业,具有丰富的腈纶生产经验。2008年3月,公司抽调出 具有丰富经验的专家及技术人员组成20余人的攻关小组,研发碳纤维。攻关组依托企业自身腈 纶生产工艺和技术优势,积极联系相关科研部门和院校,合作研发碳纤维生产技术。并于2009 年1月与我校合作,开展T300级PAN基碳纤维原丝工业化攻关。攻关组整合了实验室成果与 工业化腈纶生产控制技术,集成创新出生产PAN基碳纤维原丝的工业化生产技术。双方科研人 员共同设计并制造了实验室聚合釜,2009年2月研发出PAN基碳纤维原丝用聚合配方,2009 年4月,用自主研发的聚合釜和聚合配方生产出30 kg碳纤维原丝用聚合物,先后在意大利蒙 特公司的实验线和化纤公司现有设备改造的生产线上进行试纺,生产出了第一批碳纤维原丝, 其各项技术指标达到国内碳纤原丝指标水平,尽管存在一定不足,但有了突破性进展。2009年 5月,双方共同设计并制造了年产30吨聚合釜,5月末完成设备安装调试并投入使用,生产出 碳纤维原丝用聚合物,同时对化纤公司已有的纺丝生产线进行改造。经过两个月时间,30 吨/ 年聚合釜和改造后的纺丝线工艺设备都具备了试生产碳纤维原丝条件,09年8月正式生产。在 此基础上,公司又对已有的生产线进行了进一步改造,将生产能力提高到1500吨/年,并于2010 年2月21日正式投产。到目前为止,年产1500吨生产装置已稳定生产出各项指标达到或超过 日本东丽公司T300的水平的碳纤维原丝,且已全部投放市场,产品供不应求。公司生产的1K 丝,目前已应用于中国航天科技集团(43所)、北京玻璃钢研究所(251所)等单位的尖端产 品上。目前,国内碳纤维原丝生产技术均采用一步法,即通过溶液聚合直接纺丝方法生产碳纤 维原丝,但此方法由于反应后期体系粘度过大,造成体系换热困难,因此该反应反应釜不能太 大,到目前为止,采用该方法制备碳纤维原丝的生产厂家最大的反应釜只有一吨。我们生产碳 纤维原丝的方法是建立在吉林化纤原有腈纶生产方法之上,采用无机氧化还原引发、三元水相 悬浮聚合法生产PAN基碳纤维原丝聚合物,湿法、二步法生产碳纤维原丝,与一步法相比,由 于两步法聚合反应在水相中进行,换热容易,聚合釜可以做的很大,其容量可达28吨,大大超 过一步法生产用聚合釜。因此本方法具有产量高、适合大规模生产、产品质量稳定、生产成本 低等特点,是国内首家独创。吉林化纤公司生产的碳纤维原丝经碳化后性能指标可达到或超过

纤维素基吸附剂

纤维素基吸附剂 ——绿色、经济的水处理材料 摘要介绍了一类基于天然纤维素的水处理用吸附剂.对纤维素修饰羧基等阴离子基团,可以用来吸附水 中的重金属阳离子(如Cd2+、Cu2+、Hg2+、Ni2+、Pb2+).对纤维素修饰铝铁或胺基等成分,可以吸附水中含砷 阴离子、氟离子等有害阴离子.在纤维素上修饰疏水链,可以吸附水中氯苯、染料等危害健康的有机物. 关键词纤维素,水处理,重金属,有害阴离子,有机物. 1 我国的水资源现状 我国是严重缺水的国家.首先,从人均占有的水资源上看,我国属于世界上人均水资源较少的13个 贫水国之一,目前我国还有三分之二的城市供水不足.第二,我国饮用水的质量不高,全国农村有3亿多 人仍在饮用不合格的水,其中约有1. 9亿人的饮用水中有害物质含量严重超标.第三,随着经济的高速 发展,我国的废水排放量逐年递增,使许多河流受到了相当严重的污染,进而还影响了近岸海域.目前, 我国已有36. 6%的河段水质属于五类或劣五类,其中的27. 9%已完全丧失直接使用的功能. 2 水的污染种类及治理方法 水资源的污染主要是由生活污水和工业废水造成的,它们的排放造成了环境污染并严重影响了人 类可持续发展.要想治理这些污染,首先需要了解污染物的性质.根据水中污染物的种类,可以将水污染 大体分为三类:重金属阳离子污染、有害阴离子污染和有机物污染. 2. 1 重金属阳离子污染 “重金属”是对原子密度大于6g·cm-3的一类金属和非金属的总称,常见的有镉(Cd, cadmium)、铬 (Cr, chromium)、铜(Cu, copper)、汞(Hg,mercury)、镍(N,i nickel)、铅(Pb, lead)、锌(Zn, zinc).由于重金 属不能降解、不易代谢、趋于在体内积累,所以大量重金属的摄入会导致一系列的生理紊乱和疾病.例如 过量的铜会导致虚弱、嗜睡以及精神性厌食;高浓度的汞会导致神经错乱,以及一些能力障碍,例如读写 困难、注意力分散、智力低下等等;长期接受过量的镉会导致肾脏以及骨骼方面的病变. 2. 2 有害阴离子污染 水中有害的阴离子有氟离子,含砷阴离子、含氮阴离子、含磷阴离子等等,其中危害最大的是砷和 氟.砷已被美国疾病控制中心(CDC)和国际癌症研究机构(IARC)确定为第一类致癌物质,它以三价和 五价两种形式存在,分别为亚砷酸根(AsO-2)和砷酸根(AsO3-4),砷的摄入会导致心血管疾病和神经系 统疾病,还会大大提高皮肤、肺、肝、膀胱、肾癌变的几率.氟是哺乳动物牙齿和骨骼生长的必需元素,但 是从食物和水中摄入过量的氟会导致一些慢性疾病,如牙齿长斑,骨质疏松,以及一些神经系统的疾病. 我国存在的一些“黄板牙村”就是因为村民长期饮用高氟水导致的.我国对

生物基化学纤维的研发现状浅探

龙源期刊网 https://www.wendangku.net/doc/6911995312.html, 生物基化学纤维的研发现状浅探 作者:程德宝 来源:《科学导报·学术》2018年第27期 摘要:生物基化学纤维及其原料是我国战略性新兴生物基材料产业的重要组成部分,具有生产过程环境友好、原料可再生以及产品可生物降解等优良特性,有助于解决当前经济社会发展所面临的严重的资源和能源短缺以及环境污染等问题,同时能满足消费者日益提高的物质生活需要,增加供给侧供应,促进消费回流。 关键词:生物基化学纤维;研发现状;发展趋势 尽管生物基合成纤维正在持续高效地发展,仍不能取代现有的石油基材料,生物基高分子材料的实用性研究尚处于初期阶段,生物可降解聚合物的开发也面临着诸多挑战,生物基纤维材料不仅是服装、家纺、产业用纺织品的原料,还是重要的基础材料和工程材料,在很多领域可以有更多更广的应用。 一、生物基化学纤维的研发现状 1.PLA纤维 PLA纤维是一种可生物降解的热塑性脂肪族聚酯,它来源于可再生资源,如玉米淀粉、甘蔗等。它最大的优点在于环保性,可完全生物降解,兼有天然纤维和合成纤维的特点,作为纺织材料,具有吸湿排汗均匀、快干、阻燃性低、烟尘小、热散发小、无毒性、熔点低、回弹性好、折射指数低、色彩鲜艳、不滋长细菌和气味、保留指数低等优点。20世纪90年代,生物发酵制备PLA技术进入快速发展时期。目前,国内PLA的生产规模较大的公司是海正集团。 2.PTT纤维 PTT纤维具有初始模量低、弹性回复性好、伸缩性好、手感柔软、悬垂性好、染色性好、耐氯性好、抗污性好等优点。PTT纤维的玻璃化转变温度低,为45—65℃,故其染色性能优于PET纤维,能够在无载体的条件下,用分散染料常压浮染。PTT纤维广泛应用于非织造布 领域,PTT基的非织造布可以用PTT短纤维做原料,通过针刺法或水刺法制造,也可以采用 纺粘法或熔喷法直接制造。熔喷法制造的PTT薄型非织造布与相同类型的聚丙烯(PP)非织造布相比,柔软性好、抗紫外线能力强,更适合于医用纺织品的要求。此外,PTT纤维在卫生巾、一次性尿布、棉胎、外衣、装饰布、汽车坐垫和建筑安全网等方面发展潜力巨大。 3.壳聚糖纤维

聚丙烯腈基碳纤维简介及其发展概况

聚丙烯腈基碳纤维简介及其发展概况 摘要:聚丙烯腈基碳纤维为人造合成纤维,是一种力学性能优异的新材料,在航空航天、建筑、体育、汽车、医疗等领域得到广泛的应用。生产碳纤维采用特殊组分且性能优异的专用PAN基纤维即PAN原丝。本文简要介绍国内外PAN基碳纤维的发展概况和现状,PAN基碳纤维的应用,重点介绍了PAN基碳纤维的结构、性能、纺丝、制备等技术,以及分析我国碳纤维与世界先进国家之间的差距及存在的问题且提出一些建设性意见。 关键词:聚丙烯腈基碳纤维纺丝国内外发展比较差距 碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基生产工艺简单,产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的的品种。 一、碳纤维及其发展史 1.1碳纤维的先驱——斯旺和爱迪生 碳纤维的起源可追溯到19世纪60年代,1860年,英国人约瑟夫·斯旺用碳丝制作灯泡的灯丝早于美国人爱迪生。十九世纪后期他俩各自设计出了白炽灯泡.他是研制碳丝的第一人,同时他的利用挤压纤维素成纤技术为后来合成纤维的问世起到了启迪作用。 爱迪生解决了碳丝应用与白炽灯的灯丝问题,他发明的电灯,这也是碳丝第一次得到了实际应用。1910年库里奇发明了拉制钨丝取代了碳丝作为灯丝,从此碳丝的研制工作停止了下来。指导了20世纪50年代碳丝的研制又重新出现在现在的材料科学的舞台上,但研究的目的是为了解决战略武器的耐高温和耐烧耐腐蚀材料,今天的碳纤维已经形成了一个举足轻重的新型材料体系,已广泛应用于航空、军事和民用工业领域,而且仍在强劲发展.1.2碳纤维的三大原料路线 黏胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维,其中以聚丙烯腈基碳纤维应用最为广泛,也是本文将要为大家介绍的。 1.3聚丙烯腈碳纤维的发明者――近藤昭男 近藤昭男从业于大阪工业大学技术实验所,在碳研究室从事于碳素的崩散现象和碳素的崩散碳素胶状粒子的研究。他研究了应运腈纶在一系列热处理过程中物性和结构的变化,即开始研制PAN基碳纤维。虽然近藤昭男发明了用PAN原丝制造碳纤维的方法,但英国人瓦特在预氧过程中施加张力牵伸,打通了制取高性能碳纤维的工艺流程,从而牵伸贯穿了氧化和碳化的始终,成为研制碳纤维的重要工艺参数。所以近藤昭男发明了用PAN基原丝制造碳纤维的新方法,瓦特打通了制造高性能PAN基碳纤维新工艺。 1.4从日本东丽公司碳纤维发展历程看PAN基原丝的重要性。 日本东丽公司无论碳纤维的质量还是产量都居世界之首,以该公司研发碳纤维历程给人们一个启迪,即原丝是制取高性能碳纤维的前提,没有质量好的原丝就不可能产出好的碳纤维 东丽公司成立于1926年,1962年开始研制PAN基碳纤维,原丝为民用腈纶,产不出

偕胺肟改性聚丙烯腈纤维的研究进展

28 河南科技2010 . 1下 科技动态与观 察 近年来,螯合纤维作为一种高性能吸附材料具有比表面积大、吸附选择性好、吸附和脱附速率快等优点,而且还能够以线、无纺布、织物等多种形式使用,因此被广泛应用于废水的处理,以及金属离子分离富集和回收分析等方面,并被认为是吸附材料的主要发展方向。聚丙烯腈纤维作为一种主要的合成纤维,柔软性、保暖性和回弹性能优异,而且具有良好的耐光性、耐气候性及化学稳定性[1],在服装领域和产业领域均有着广泛的应用。更为重要的是,聚丙烯腈纤维上的氰基是具有很强功能潜力的基团,通过氰基的化学转化反应,可以制得系列含功能基团的聚丙烯腈螯合纤维,这些螯合纤维在水处理、贵金属回收以及痕量金属离子分析等方面都有着广泛的应用。近年来,聚丙烯腈基功能纤维在整个螯合纤维研究领域占有相当大的比重,也取得了丰富的成果。其中,含有偕胺肟基团(H2N-C=N-OH)的改性聚丙烯腈纤维通过简单的化学反应即可制备,而且对多种类型的金属离子均具有螯合性能,因此受到广泛关注。国内外对于偕胺肟改性聚丙烯腈纤维的研究比较早也比较系统,早在1963年,美国的Fetscher[2]就通过将聚丙烯腈纤维与羟胺的水溶液或醇溶液作用制备了偕胺肟基纤维材料,并指出这些材料对U等元素具有较高的选择性和吸附量。尽管之后一段时间内有关这种材料的进一步研究鲜见报道,而近年来国内外对这类材料的研究又开始活跃起来。本文将从偕胺肟改性聚丙烯腈纤维的制备反应、与金属离子的相互作用及其应用等方面对其进行综述。 1. 偕胺肟改性聚丙烯腈纤维的制备反应 偕胺肟改性聚丙烯腈纤维可通过聚丙烯腈纤维与羟胺在一定条件下进行反应制得,该反应受到pH 值、反应物浓度、反应温度和时间等多种因素的影 偕胺肟改性聚丙烯腈纤维的研究进展 郭袈 ,谷瑞 摘要:偕胺肟改性聚丙烯腈纤维制备简单而且对金属离子吸附性能优异,因此成为吸附材料中的研究热点。本文对近年来偕胺肟基聚丙烯腈纤维的制备方法及其与金属离子的相互作用,以及该材料在应用方面的研究现状进行了综述,并对其发展前景进行了展望。 关键词:偕胺肟;聚丙烯腈;金属离子 响,反应条件不同所制备的改性纤维的性能也各异。1984年蔡水源[3]等直接采用聚丙烯腈纤维与盐酸羟胺在60-75℃下回流反应一定时间后得到偕胺肟改性纤维,然而其机械强度及稳定性能均较差。1991年曾汉民等[4]将聚丙烯腈纤维和盐酸羟胺置于碳酸钠溶液中进行反应,发现制得的偕胺肟改性纤维不仅机械性能良好,而且显示出对Au3+极强的吸附性能。随后其课题组对反应条件与纤维结构性能相互关系进行了一系列研究[5-7],指出纤维中的偕胺肟基含量随着羟胺浓度提高或反应时间延长而提高到一定值后变化趋于平缓,而反应温度也对纤维氰基的转化率和机械性能具有显著影响。当反应在70℃或更高温度条件下进行时,纤维蕴晶区开始融化,导致纤维氰基转化率急剧增加,然而其机械性能却明显下降,尤其当温度达到80℃后,反应一定时间后纤维的蕴晶区几乎完全遭到破坏,导致其断裂强度大幅度下降。因此为获得偕胺肟基含量高、力学性能良好的改性聚丙烯腈纤维,其偕胺肟化反应宜在略低于70℃的温度下以较短时间进行。之后陶庭先、陈国华和李玉泉等[8-10]先后对聚丙烯腈纤维与盐酸羟胺反应的pH值、温度和时间等因素进行了考察,结果表明偕胺肟反应在pH为5-7、温度为70℃左右、时间为2-3h的条件下进行可得到功能基团含量较高而且保持纤维性质的螯合纤维。 2. 偕胺肟改性聚丙烯腈纤维与金属离子的相互作用 2.1 吸附模式研究 曾汉民课题组[11-13]考察了偕胺肟改性聚丙烯腈纤维对Au3+的吸附行为,结果显示该纤维对Au3+的吸附量极高,而且在含Au3+、Cu2+、Zn2+和Cr3+的溶液中对Au3+具有相当高的吸附选择性。提高纤维中偕胺肟基的含量及吸附温度和Au3+的初始浓度等均有利于

相关文档
相关文档 最新文档