文档库 最新最全的文档下载
当前位置:文档库 › 2011量子力学期末考试题目

2011量子力学期末考试题目

2011量子力学期末考试题目
2011量子力学期末考试题目

第一章

⒈玻尔的量子化条件,索末菲的量子化条件。

⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。

⒎普朗克量子假说:

表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。

表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。

表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。

⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。

⒐光电效应有两个突出的特点:

①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。

②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。⒑爱因斯坦光量子假说:

光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程

⒒光电效应机理:

当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。

⒓解释光电效应的两个典型特点:

①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。

②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。

⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。

⒕康普顿效应的实验规律:

①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;

②波长增量Δλ=λ-λ随散射角增大而增大。

⒖量子现象凡是普朗克常数h在其中起重要作用的现象

⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性

⒘与运动粒子相联系的波称为德布罗意波或物质波。

????

?????======n

k h k

n h P h E

λ

ππ

λ

ω

ν2 ,2

⒚光谱线:光经过一系列光学透镜及棱镜后,会在底片上留下若干条线,每个线条就是一条光谱线。所有光谱线的总和称为光谱。

⒛线状光谱:原子光谱是由一条条断续的光谱线构成的。

21.标识线状光谱:对于确定的原子,在各种激发条件下得到的光谱总是完全一样的,也就是说,可以表征原子特征的线状光谱。 22.戴维逊-革末实验证明了什么?

第二章

⒈量子力学中,原子的轨道半径的含义。

⒉波函数的物理意义:某时刻t 在空间某一点(x,y ,z)波函数模的平方与该时刻t 该地点(x,y ,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y ,z,t)成正比。按照这种解释,描写粒子的波是几率波。

⒊波函数的特性:波函数乘上一个常数后,并不改变在空间各点找到粒子的几率,即不改变波函数所描写的状态。 ⒋波函数的归一化条件

)

7-1.2( 1),,,( 2

?=ψ∞

τd t z y x

⒌态叠加原理:若体系具有一系列不同的可能状态Ψ1,Ψ2,…Ψn ,则这些可能状态的任意线性组合,也一定是该体系的一个可能的状态。也可以说,当体系处于态Ψ时,体系部分地处于态Ψ1,Ψ2,…Ψn 中。

⒍波函数的标准条件:单值性,有限性和连续性,波函数归一化。

⒎定态:微观体系处于具有确定的能量值的状态称为定态。定态波函数:描述定态的波函数称为定态波函数。。

⒐定态的性质:⑴由定态波函数给出的几率密度不随时间改变。⑵粒子几率流密度不随时间改变。⑶任何不显含时间变量的力学量的平均值不随时间改变。

⒑本征方程、本征值和本征波函数:在量子力学中,若一个算符作用在一个波函数上,等于一个常数乘以该波函数,则称此方程为该算符的本征方程。常数f n 为该算符的第n 个本征值。波函数ψn 为f n 相应的本征波函数。

⒒束缚态:在无穷远处为零的波函数所描述的状态。基态:体系能量最低的态。

⒓宇称:在一维问题中,凡波函数ψ(x)为x 的偶函数的态称为偶(正)宇称态;凡波函数ψ(x)为x 的奇函数的态称为奇(负)宇称态。

⒔在一维空间内运动的粒子的势能为(μω2x 2

)/2, ω是常数,这种粒子构成的体系称为线性谐振子。

线性谐振子的能级为:???=+=,,,, ),(32102

1n n E n ω ⒕透射系数:透射波几率流密度与入射波几率流密度之比。反射系数:反射波几率流密度与入射波几率流密度之比。

⒖隧道效应:粒子在能量E 小于势垒高度时仍能贯穿势垒的现象。 ⒗求证:在薛定谔方程中

),( )(),(t r r V t r t i ψμψ??

?

???+?-=??222 只有当势能V(r)为实函数时,连续性方程0

=??+??J t

t r w )

,( 才能成立。

⒘设一个质量为μ的粒子束缚在势场中作一维运动,其能量本征值和本征波函数分别为E n ,ψn ,n=1,2,3,4、…。求证:

)( )(

n m dx x x n m ≠=?+∞

-,

0ψψ ⒙对一维运动的粒子,设Ψ1(x)和Ψ2(x)均为定态薛定谔方程的具有相同能量E 的解,求证:

常数='-')( )()( )(x x x x 1221ψψψψ

⒚一粒子在一维势场

??

?

?

???

>∞≤≤--<∞=2 ,2

2 0 2 ,)(a

x a

x a a x x U ,

中运动,求粒子的能级和对应的波函数。

⒛体系处于ψ(x,t)态,几率密度ρ(x,t)=?几率流密度j(x,t)=? x

J

t ??-=??ρ

证明:

21.设粒子波函数为ψ(r,t),写出粒子几率守恒的微分表达式。 22.量子力学的波函数与经典的波场有何本质性的区别?

答: 量子力学的波函数是一种概率波,没有直接可测的物理意义,它的模方表示概率,才有可测的意义;经典的波场代表一种物理场,有直接可测的物理意义。

23.什么是量子力学中的定态?它有什么特征?

24.设),(t p C 为归一化的动量表象下的波函数,写出dp

t p C 2

),( 的物理意义。

25.设质量为μ粒子处于如下势垒中

)1( 0 )(00

0??

???≤>=x x x x U x U

若U 0>0,E>0,求在x=x 0处的反射系数和透射系数。 26.设质量为μ粒子沿x 轴正方向射向如下势垒

)(0??

???<>=00

0x x x x V x U 若V 0>0,E>0,求在x=x 0处的反射系数和透射系数。 27.一个粒子的波函数为

都是常数。其他,b a A b x a a b x b A a x a x

A x ,, ,, ,)()

(, ,)( ???

?

?????≤≤--≤≤=00ψ

求:①归一化常数A ;②画出)(x ψ与x 关系图,并求粒子出现最大几率的点。③在a

x ≤≤0区间找到粒子的几率。在a b =和a

b

2=时的几率。④x 的平均值。

28.I A =2?,I 为单位矩阵,则算符A ?

的本征值为__________。

29.自由粒子体系,__________守恒;中心力场中运动的粒子___________守恒。 30.力学量算符应满足的两个性质是 。厄密算符的本征函数具有 。

第三章

⒈算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。

⒉厄密算符的定义:如果算符F ?满足下列等式() ? ?dx F dx F φψφψ*

*??

=,则称F ?为厄密算符。式中ψ和φ为任意波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。 推论:量子力学中表示力学量的算符都是厄密算符。

⒊厄密算符的性质:厄密算符的本征值必是实数。厄密算符的属于不同本征值的两个本征函数相互正交。

⒋简并:对应于一个本征值有一个以上本征函数的情况。

简并度:对应于同一个本征值的本征函数的数目。

⒌氢原子的电离态:氢原子中的电子脱离原子的束缚,成为自由电子的状态。

电离能:电离态与基态能量之差

⒍氢原子中在半径r 到r+dr 的球壳内找到电子的概率是: 

dr r r R dr

r W nl

nl 22)()(=

在方向(θ,φ)附近立体角dΩ内的概率是: d ΩY d Ωw lm lm 2

),(),(?θ?θ=

⒎两函数ψ1和ψ2正交的条件是: 0τ =?*d 21ψψ式中积分是对变量变化的全部区域进行的,则称函数ψ1和ψ2相互正交。

⒏正交归一系:满足正交条件的归一化本征函数φk 或φl 。

⒐厄密算符本征波函数的完全性:如果φn (r)是厄密算符F ?的正交归一本征波函数,λn 是本征值,则任一波函数ψ(r)可以按φn (r)展开为级数的性质。或者说φn(r)组成完全系。 ⒑算符与力学量的关系:当体系处于算符F ?的本征态φ时,力学量F 有确定值,这个值就是算符F ?在φ态中的本征值。力学量在一般的状态中没有确定的数值,而有一系列的可能值,这些可能值就是表示这个力学量的算符的本征值。每个可能值都以确定的几率出现。

⒒算符对易关系:[]A B B A B ,A

??????-≡ 。 可对易算符:如果[]0??=B ,A

,则称算符A ?与B ?是可对易的; 不对易算符:如果[]0??≠B ,A

,则称算符A ?与B ?是不对易的。 ⒓两力学量同时有确定值的条件:

定理1:如果两个算符G F

? ?和有一组共同本征函数φn ,而且φn 组成完全系,则算符对易。

定理2:如果两个算符G F

? ?和对易,则这两个算符有组成完全系的共同本征函数。 ⒔测不准关系:当两个算符不对易时,它们不能同时有确定值,

G)(F)( 224

2

k ≥???∴

⒕量子力学中力学量运动守恒定律形式是:

01=??

????+??=H F i t F dt F d ?,?

量子力学中的能量守恒定律形式是:

1=??

????=H H i dt H d ?,??

⒖空间反演:把一个波函数的所有坐标自变量改变符号(如r →-r)的运算。

宇称算符:表示空间反演运算的算符。 宇称守恒:体系状态的宇称不随时间改变。 ⒗一维谐振子处在基态t

i x e

x ω-

α-

π

α=

ψ2

2

2

2)(,求:

(1) 势能的平均值2

2

2

1x

U

μω=;

(2) 动能的平均值μ

=

22

p

T

(3) 动量的几率分布函数。

π

α

-=

?

++α-0

1

21

22

)!12(2

2n n x

n n dx e

x

⒘证明下列关系式:

μννδμ i p =??

?????,,

),,( ,,?z y x L L ==??

?

???μμ02

L i L L z y x L i L L L i L L L i L L y x z x z y z

y x ??? ),,( L ?L ?

??,??

?,??

?,? =?==??

?????????????=?????

?=?????

?=?????

?综合写成:,,μμμ0

y i z L y i x L x i y L x i z L z i x L z i y L z y x L x z z y y x -=??

?

???=??????-=?????

?=??????-=??

?

???=??????==??????,?;,? ,?;,? ,? ;,?

),,( ,?,μμμ0

y z x y x z x y z x z y z x y z y x p i p L p i p L p i p L p i p L p i p L p i p L z y x p L ??,?;??,? ??,?;??,???,? ;??,? ),,( ,??, -=??

????=??????-=??????=??????-=??

????=??????==??????μμμ0

⒙量子力学中的力学量用什么算符表示?为什么?力学量算符在自身表象中的矩阵是什么形式?

⒚表示力学量的厄密算符的所有本征函数构成 ;力学量的取值范围就是该算符的所有 。

⒛厄密算符有什么性质?①试证明厄密算符的本征值必是实数。②试证明厄密算符的属于不同本征值的两个本征函数相互正交。 21. 证明算符关系:

p i p L L p x f p p x f i p x f p x x f p i x f p x x x x x x x 2???? ,)(??)(?)(?, ),(?2)(?,2=?+???

? ??+=??????=??????

22. 试证明算符y

z x

p z p y L ???

-=是厄密算符。

23. 写出角动量分量x L ?和y L ?之间的对易关系。

24. )(x f 是x 的可微函数,证明:x

x f i x f p x

??-=??

????)

()(,?

25.

B

A ?

,?各为厄密算符,试证明:B A ?

?也是厄密算符的条件是B A ??

与对易。

26. 粒子在宽度为a 的非对称一维无限深势阱中,其本征能量和本征波函数为:

???==,3,2,1 ,2222

2n n a

E n μπ )( )sin()(a x x a

n a x n <<=

02πψ 当体系处于状态 )()(x a Ax x -=ψ时(A 是归一化常数),证明:

①96012

5316π=∑

???,,,n

;②9614

5314π=∑

???=,,n n

27. 氢原子处在基态0

1a r e a r -=π?θψ),,(,求:

(1) r 的平均值; (2) 势能r

e 2-

的平均值

(3) 动量的几率分布函数。 28. 一维运动粒子的状态是

??

??

?><≥=-0000λψλ其中 )(x x A x e x x

求:(1) 粒子动量的几率分布函数;(2)粒子的平均动量。 (利用公式?∞

+-=

1

m x m m dx e x αα!

29. 设氢原子处在状态

)

,()(),()(),()(),,(?θ?θ?θ?θψ1121113110213

32

13

5

-+

-

=

Y r R Y r R Y r R r

试求氢原子能量、角动量平方及角动量z 分量的可能值,这些可能值出现的几率和这些力学量的平均值。

30. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:

∑=n

n n x c x )()(ψψ,写出展开式系数n c 的表达式。

31. 设粒子的波函数为

???

???

?≥<=b x b

x bx b

x πππψ222 0 ,sin ,)(

A .给出在该态中粒子动量的可能测量值及相应的几率振幅;

B .求出几率最大的动量值。

32. 力学量算符在自身表象中的表示是一个 矩阵;同一个力学量算符在不同表象中的表示通过一个 矩阵相联系。

33. 设一力学量为???

?

??=λμμλ ?

F

,求F ?

的本征值和本征函数。

34. 电子在均匀电场()

00 , , ε=E 中运动,哈密顿量为x e P H ? ??εμ

-=

22

,试判断 z

y x L L L ? ,? ,?各量中哪些是守恒量,为什么?

第四章

⒈基底:设 e 1, e 2, e 3 为线性无关的三个向量,空间内任何向量 v 必是e 1, e 2, e 3 的线性组合,则e 1, e 2, e 3 称为空间的基底。正交规范基底:若基底的向量互相垂直,且每一向量的长度等于1,这样的基底叫做正交规范基底。

⒉希耳伯特空间:如果把本征波函数Φm 看成类似于几何学中的一个矢量(这就是波函数有时称为态矢量或态矢的原因),则波函数的集合{φm }构成的一个线性空间。 ⒊表象:量子力学中,态和力学量的具体表示方式。

⒋设已知在2L ?和z L ?的共同表象中,算符x L ?和y L ?的矩阵分别为

????

?

??=?????

??=0 i 0i 0 i 0 i ?

0 1 01 0 10 1 ?02

2022 y x L L ;

求它们的本征值和归一化的本征函数。

第五章

⒈ ⒉斯塔克效应:在外电场中,原子光谱产生分裂的现象。 ⒊分别写出非简并态的一级、二级能量修正表达式。

⒋周期微扰产生跃迁的条件是:ωεεωω ±=±=k m m k 或,说明只有当外界微扰含

的近似求解方法。

求出,由求出微扰论:由n n n n E E ψψ)

0()0(

有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收或发射的能量是mk ω ,这表明周期微扰产生的跃迁是一个共振跃迁。

⒌光的吸收现象:在光的照射下,原子可能吸收光的能量由较低的能级跃迁到较高的能级的现象。

⒍原子的受激辐射(跃迁)现象:在光的照射下,原子从较高的能级跃迁到较低的能级而放出光的现象。

⒎原子的自发辐射(跃迁)现象:在无光照射时,处于激发态的原子跃迁到较低能级而发光的现象。

⒏自发发射系数mk A :表示原子在单位时间内,由m ε能级自发跃迁到k ε能级,并发射出能量为mk ω 的光子的几率。

⒐受激发射系数mk B :作用于原子的光波在ωωωd +→频率范围内的能量密度是

ω

ωd I )(,则在单位时间内,原子由m ε能级受激跃迁到能级k ε、并发射出能量为mk ω 的

光子的几率是)(mk mk I B ω。

⒑吸收系数km B :原子由低能级k ε跃迁到高能级m ε、并吸收能量为mk ω 的光子的几率是)(mk km I B ω。

⒒给出跃迁的黄金规则公式,简单说明式中各个因子的含义。 ⒓在H 0表象中,若哈密顿算符的矩阵形式为:

?????

?

??=**03020100E a b E a E H b ?

其中030201E E E <<。利用微扰理论求能量至二级近似。

⒔设一体系未受微扰作用时只有两个能级E 01及E 02,现在受到微扰的作用。微扰矩阵元为

b H H a H H ='='='='22112112,; a, b 都是实数。用微扰公式求能量至二级修正值。

⒕质量为μ的粒子处于势能

??

??

?∞≤≤= , , a

x x V 其他)(00

中。假设它又经受微扰2?

x H λ=',试求基态与第一激发态能量的一级修正。

⒖一粒子在)(0,2a 的一维无限深势阱中运动,若微扰为

??

??

?≤≤+≤≤-='a x a b a x b H 20 , ,?

求近似到一级修正的粒子能量。

⒗一维无限深势阱中的粒子受到微扰)()(为常数k kx x H ='的作用,求能量的一级修正。

⒘已知在0H ?表象中,体系的哈密顿H ?

??

???

??+??

???

?

??=a a a a E E E H 200000001 0 0 0 0 0 0 0 ?)

(3)

(2)(

其中a,b 为小量,a 为实数,)

(3)(2)(0001E E E ≠≠,求近似到二级修正的能量值。

⒙一粒子在一维无限深势阱中运动,若微扰为

??

?

?

???><∞≤≤-≤≤=a x x a

x a b a

x x V , , , ,)( 02

200

b 为小量,求近似到一级修正的粒子能量。 ⒚微扰理论适用的条件和情况。

第七章

⒈斯特恩-革拉赫实验证明电子存在自旋理由。

⒉塞曼效应:在外磁场中,每一条光谱线劈裂成一组相邻谱线的现象。

简单(正常)塞曼效应:无外磁场时的一条光谱线,在磁场中将分裂为三条光谱线。 产生的条件是:当外磁场足够大时,自旋和轨道运动间相互作用可以忽略。 复杂(反常)塞曼效应:无外磁场时的一条光谱线,在磁场中将分裂为更多条光谱线。 产生的条件是:在弱外磁场中,必须考虑自旋和轨道运动间相互作用。 ⒊两个电子自旋角动量耦合的自旋总角动量S :

)(1+=

s s S ,012121 ,,=-+=s s s s s

所以两个电子自旋角动量耦合的自旋总角动量只能有两个可能值。 ⒋两个电子轨道角动量耦合的轨道总角动量L :

21212121211l l l l l l l l l l l L -???-+-++=+=

, , , , ,)(

对于两个电子,就有几个可能的轨道总角动量。

⒌电子自旋角动量与轨道角动量耦合为一个总角动量J 1:

2

1

111111=-+=s s l s l J ,,

每个电子只有两个J 1值。 ⒍LS 耦合总角动量J :

s l s l s l s l j j j J -???-+-++=+=

, , , , ,)(211

⒎jj 耦合总角动量J :

21212121211j j j j j j j j j j j J -???-+-++=+=

, , , , ,)(

⒏价电子:原子最外层的电子。原子的化学性质以及光谱特性都决定于价电子。 ⒐内层电子:原子中除价电子外的剩余电子。

⒑原子实:原子核与内层电子组成一个完整而稳固的结构。 ⒒电子组态:价电子所处的各种状态。 ⒓原子态:原子中电子体系的状态。 ⒔原子态符号:用来描述原子状态的符号。

⒕原子态符号规则:用轨道总量子数l 、自旋总量子数s 和总角动量量子数j 表示

①轨道总量子数l =0,1,2,···,对应的原子态符号为S ,P ,D ,F ,H ,I ,K ,L ,···; ②原子态符号左上角的数码表示重数,大小为2s +1,表示能级的个数。 ③原子态符号右下角是j 值 ,表示能级对应的j 值 。 形式为:???++++, , , ,j s j s j s j s F D P S 12121212

⒖光谱的精细结构:用分辨率足够高的仪器观察类氢原子的光谱线,会发现每一条光谱线并不是简单的一条线,而是由二条或三条线组成的结构,这种结构称为光谱的精细结构。 ⒗原子态能级的排序(洪特定则):

(1)从同一电子组态形成的、具有相同L 值的能级中,那重数最高的,即S 值最大的能级位置最低;

(2)从同一电子组态形成的、具有不同L 值的能级中,那具有最大L 值的位置最低。 ⒘辐射跃迁的普用选择定则:

1、选择定则:原子光谱表明,原子中电子的跃迁仅发生在满足一定条件的状态之间,这些条件称为选择定则。

2、原子的宇称:如果原子中各电子的l 量子数相加,得到偶数,则原子处于偶宇称状态;如果是奇数,则原子处于奇宇称状态。

3、普遍的选择定则:跃迁只能发生在不同宇称的状态间,偶宇称到奇宇称,或奇宇称到偶宇称。电子能否有跃迁首先要考虑这一条,然后按照耦合类型再有以下定则。 ⒙LS 耦合选择定则:

①0 =?S ,要求单一态电子只能跃迁到单一态,三重态电子只能跃迁到三重态。 ②10±=? ,l ,当0=?l 时,要考虑宇称奇偶性改变的要求。 ③ ,10±=?j ,00==j j 至的跃迁是禁止的。

jj 耦合选择定则: ①()

1021±=?? , j j

②10±=? ,j ,00==j j 至的跃迁是禁止的。

⒚全同粒子:质量、电荷、自旋等固有性质完全相同微观粒子。

⒛全同粒子的特性:全同粒子具有不可区分性,只有当全同粒子的波函数完全不重叠时,才是可以区分的。

21.全同性原理: 在全同粒子所组成的体系中,两全同粒子相互代换不引起物理状态的改变。 22.对称波函数:设q i 表示第i 个粒子的坐标和自旋,Φ(q 1,…,q i ,q j ,…,t)表示体系的波函数。如果两粒子互换后波函数不变,则Φ是q 的对称波函数。

23.反对称波函数:设q i 表示第i 个粒子的坐标和自旋,Φ(q 1,…,q i ,q j ,…,t)表示体系的波函数。如果两粒子互换后波函数变号,则Φ是q 的反对称波函数。

24.对称性守恒原理:描写全同粒子体系状态的波函数只能是对称的或反对称的,它们的对称性不随时间改变。如果体系在某一时刻处于对称(反对称)的状态,则它将永远处于对称(反对称)的状态上。

25.费密子:自旋为2

或2

奇数倍的全同粒子。费密子的特点:组成体系的波函数是反对称

的,服从费密—狄拉克统计。

26.玻色子:自旋为零、 或 整数倍的全同粒子。玻色子的特点:组成体系的波函数是对称的,服从玻色—爱因斯坦统计。

27.交换简并:由全同粒子相互交换而产生的简并。

28.泡利不相容原理:不能有两个或两个以上的费密子处于同一状态。

29.交换能的出现,是由于全同粒子的波函数必须是对称波函数或反对称波函数的缘故。 30.交换能J 与交换密度有关,其大小决定于两个电子波函数重叠的程度。重叠程度越大,交换能就越大。

31.LS 耦合引起的精细结构分析。如n=3能级中,有一个p 电子和d 电子所引起的能级差别(原子态)。

32. 对氢原子,不考虑电子的自旋,能级的简并度,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度,如再考虑自旋与轨道角动量的耦合,能级的简并度。

33. 反常塞曼效应的特点,引起的原因。(碱金属原子能级偶数分裂;光谱线偶数条;分裂能级间距与能级有关;由于电子具有自旋。)

34. 什么是简单塞曼效应?写出与其相应的哈密顿量。

35. 在简单塞曼效应中,没有外磁场时的一条谱线在外磁场中分裂为几条? 36. 写出Pauli 矩阵和它们的对易关系。

37. 写出两个电子的对称自旋波函数和反对称自旋波函数。

38. 对于全同粒子体系,由于任意交换两个粒子,体系的状态 ,所以体系的状态只能用 或 波函数表示。

39. 什么是全同性原理和泡利不相容原理?二者是什么关系?

40. 什么是光谱的精细结构?产生精细结构的原因是什么?考虑精细结构后能级的简并度是多少?

41. 若S ?

是电子的自旋算符,求?

?

???? =x y x z x S S S S S

42. 证明:i z y x =σσσ

43. 求???

?

??=0 11 ?

02 x

S 及???

?

??=0 i i - ?

02 y

S 的本征值和所属的本征函数。

44. ;,2

±±±=σσσ

σ求若y x

i

量子力学期末考试试卷及答案集复习过程

量子力学期末考试试卷及答案集

量子力学试题集 量子力学期末试题及答案(A) 选择题(每题3分共36分) 1.黑体辐射中的紫外灾难表明:C A. 黑体在紫外线部分辐射无限大的能量; B. 黑体在紫外线部分不辐射能量; C.经典电磁场理论不适用于黑体辐射公式; D.黑体辐射在紫外线部分才适用于经典电磁场理论。 2.关于波函数Ψ的含义,正确的是:B A. Ψ代表微观粒子的几率密度; B. Ψ归一化后,ψ ψ* 代表微观粒子出现的几率密度; C. Ψ一定是实数; D. Ψ一定不连续。 3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片; B.偏振光子先改变偏振方向,再通过偏振片; C.偏振光子通过偏振片的几率是不可知的; D.每个光子以一定的几率通过偏振片。 4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:A A. * ψ 一定也是该方程的一个解; B. * ψ 一定不是该方程的解; C. Ψ与* ψ 一定等价; D.无任何结论。 5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D粒子不能穿过势垒。 6.如果以∧ l表示角动量算符,则对易运算] , [ y x l l 为:B A. ih ∧ z l 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 B. ih ∧ z l C.i ∧ x l D.h ∧ x l 7.如果算符 ∧A 、∧B 对易,且∧ A ψ =A ψ,则:B A. ψ 一定不是∧ B 的本征态; B. ψ一定是 ∧ B 的本征态; C.*ψ一定是∧ B 的本征态; D. ∣Ψ∣一定是∧ B 的本征态。 8.如果一个力学量 ∧ A 与H ∧ 对易,则意味着 ∧ A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒; D.其本征值出现的几率会变化。 9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。 10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev 11.三维各向同性谐振子,其波函数可以写为nlm ψ ,且 l=N-2n ,则在一确定的能量 (N+23 )h ω下, 简并度为:B A. )1(21 +N N ;

量子力学期末考试题解答题

1. 你认为Bohr 的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。 (简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?) 答:Bohr 理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。首先,Bohr 的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr 理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr 理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr 理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr 理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。 2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的? 答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完 成的。(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。 3.简述量子力学中的态叠加原理,它反映了什么? 答:对于一般情况,如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加:1122c c ψψψ=+(12c c ,是复数)也是这个体系的一个可能状态。这就是量子力学中的态叠加原理。态叠加原理的含义表示当粒子处于态1ψ和2ψ的线性叠加态ψ时,粒子是既处于态1ψ,又处于态2ψ。它反映了微观粒子的波粒二象性矛盾的统一。量子力学中这种态的叠加导致在叠加态下观测结果的不确定性。 4. 什么是定态?定态有什么性质? 答:体系处于某个波函数()()[]exp r t r iEt ψψ=-,所描写的状态时,能量具有确定值。这种状态称为定态。定态的性质:(1)粒子在空间中的概率密度及概率流密度不随时间变化;(2)任何力学量(不显含时间)的平均值不随时间变化;(3)任何力学量(不显含时间)取各种可能测量值的概率分布也不随时间变化。 5. 简述力学量与力学量算符的关系? 答:算符是指作用在一个波函数上得出另一个函数的运算符号。量子力学中采用算符来表示微观粒子的力学量。如果量子力学中的力学量F 在经典力学中有相应的力学量,则表示这个力学量的算符?F 由经典表示式F (r,p )中将p 换为算符?p 而得出的,即:

《大学物理aii》作业 no08 量子力学基出 参考解答

《大学物理AII 》作业No.08量子力学基础 班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求**************************** 1、掌握物质波公式、理解实物粒子的波粒二象性特征。 2、理解概率波及波函数概念。 3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。 4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。 5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧穿效应。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量E 和动量P 的实物粒子也具波动性,这种波称为(物质)波;其联系的波长λ和频率ν与粒子能量E 和动量P 的关系为(νh E =)、(λh p =)。德布罗意的假设,最先由(戴维 孙-革末)实验得到了证实。因此实物粒子与光子一样,都具有(波粒二象性)的特征。 2、玻恩提出一种对物质波物理意义的解释,他认为物质波是一种(概率波),物质波的强度能够用来描述(微观粒子在空间的概率密度分布)。 3、对物体任何性质的测量,都涉及到与物体的相互作用。对宏观世界来说,这种相互作用可以忽略不计,但是对于微观客体来说,这种作用却是不能忽略。因此对微观客体的测量存在一个不确定关系。其中位置与动量不确定关系的表达式为(2 ≥???x p x );能量与时间不确定关系的表达式为(2 ≥???t E )。 4、薛定谔将(德布罗意公式)引入经典的波函数中,得到了一种既含有能量E 、动量P ,又含有时空座标的波函数),,,,,(P E t z y x ψ,这种波函数体现了微观粒子的波粒二象的特征,因此在薛定谔建立的量子力学体系中,就将这种波函数用来描述(微观粒子的运动状态)。

2014-2015量子力学期中试卷(A)——含答案及评分标准

广东第二师范学院 量子力学期中考试试卷 2014-2015 学年 第 一 学期 考试日期:2014年11月 日 考试地点:海珠校区 楼 课室 一、填空题(每空2分,共20分) 1、德布罗意的物质波理论认为粒子的能量E 、动量P 与物质波的频率v 和波长λ的关系为( νh E = )、( n h p λ = 或λ h p = ) 。 2、量子力学中用(波函数)描写微观体系的状态。 3、()2 ,t r Ψ 是粒子t 时刻(在r 处的概率密度),()2 ,t p c 是粒子t 时刻(具有动量p 的概 率密度)。(注:照最后一道大题写是概率分布函数的也算对了,但是只写是概率就不对) 4、扫描隧道显微镜是利用(隧道效应)制成的。 5、氢原子电子的第n 个能级是(2 n )度简并的。 6、F ?的本征值λ组成连续谱,则本征函数λφ的正交归一性表达式( 书P70 ()λλτφφλλ'-=' ?δd * ) 。

7、坐标和动量的不确定关系式(()() 422 2 ≥??x p x 或()()2 ≥??x p x )。 8、如果两个算符对易,则这两个算符有组成完全系的(共同本征函数)。 二、求角动量算符的对易关系[] y x L L ?,?(5分) 证明:书P77

三、证明当氢原子处于基态时,电子在与核的距离为0a r (玻尔半径)处出现的概率最大(10分)书P67

四、证明厄米算符的属于不同本征值的两个本征函数相互正交。(10分)证明:书P69

五、一粒子在一维势场 , ()0, , x a U x a x a x a ∞<- ? ? =-≤≤ ? ?∞> ? 中运动,求粒子的能级和对应的波函数(20 分) 解:书P26例题

量子力学期末考试试卷及答案集

量子力学期末考试试卷及答案集 量子力学期末试题及答案(A) 选择题(每题3分共36分) 1.黑体辐射中的紫外灾难表明:C A. 黑体在紫外线部分辐射无限大的能量; B. 黑体在紫外线部分不辐射能量; C.经典电磁场理论不适用于黑体辐射公式; D.黑体辐射在紫外线部分才适用于经典电磁场理论. 2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度; B. Ψ归一化后, ψψ* 代表微观粒子出现的几率密度; C. Ψ一定是实数; D. Ψ一定不连续. 3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片; B.偏振光子先改变偏振方向,再通过偏振片; C.偏振光子通过偏振片的几率是不可知的; D.每个光子以一定的几率通过偏振片. 4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:A A. *ψ 一定也是该方程的一个解; B. *ψ一定不是该方程的解; C. Ψ 与* ψ 一定等价; D.无任何结论. 5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒. 6.如果以∧ l 表示角动量算符,则对易运算] ,[y x l l 为:B A. ih ∧ z l B. ih ∧ z l C.i ∧ x l D.h ∧ x l 7.如果算符 ∧A 、∧B 对易,且∧ A ψ =A ψ,则:B A. ψ 一定不是∧B 的本征态; B. ψ一定是 ∧ B 的本征态; C.*ψ一定是∧ B 的本征态; D. ∣Ψ∣一定是∧ B 的本征态.

量子力学习题集及答案

09光信息量子力学习题集 一、填空题 1. 设电子能量为4电子伏,其德布罗意波长为( 6.125ο A )。 2. 索末菲的量子化条件为=nh pdq ),应用这量子化条件求得一维谐振 子的能级=n E ( ηωn )。 3. 德布罗意假说的正确性,在1927年为戴维孙和革末所做的( 电 )子衍 射实验所证实,德布罗意关系(公式)为( ηω=E )和( k p ρηρ = )。 4. 三维空间自由粒子的归一化波函数为()r p ρ ρψ=( r p i e ρ ρη η?2 /3) 2(1π ), () ()=? +∞ ∞ -*'τψψd r r p p ρρρρ( )(p p ρ ρ-'δ )。 5. 动量算符的归一化本征态=)(r p ρ ρψ( r p i e ρ ρηη?2/3)2(1π ),=' ∞ ?τψψd r r p p )()(*ρρρρ( )(p p ρ ρ-'δ )。 6. t=0时体系的状态为()()()x x x 2020,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 522 0)(2)(--+ )。 7. 按照量子力学理论,微观粒子的几率密度w =2 ),几率流密度= ( () ** 2ψ?ψ-ψ?ψμ ηi )。 8. 设)(r ρψ描写粒子的状态,2)(r ρψ是( 粒子的几率密度 ),在)(r ρψ中F ?的平均值为F =( ??dx dx F ψψψψ* *? ) 。 9. 波函数ψ和ψc 是描写( 同一 )状态,δψi e 中的δi e 称为( 相因子 ), δi e 不影响波函数ψ1=δi )。 10. 定态是指( 能量具有确定值 )的状态,束缚态是指(无穷远处波函数为 零)的状态。 11. )i exp()()i exp()(),(2211t E x t E x t x η η-+-=ψψψ是定态的条件是 ( 21E E = ),这时几率密度和( 几率密度 )都与时间无关。 12. ( 粒子在能量小于势垒高度时仍能贯穿势垒的现象 )称为隧道效应。 13. ( 无穷远处波函数为零 )的状态称为束缚态,其能量一般为( 分立 )谱。 14. 3.t=0时体系的状态为()()()x x x 300,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 732 0)()(--+ )。 15. 粒子处在a x ≤≤0的一维无限深势阱中,第一激发态的能量为

量子力学期末考试试卷及答案集

量子力学试题集 量子力学期末试题及答案(A) 选择题(每题3分共36分) 1.黑体辐射中的紫外灾难表明:C A. 黑体在紫外线部分辐射无限大的能量; B. 黑体在紫外线部分不辐射能量; C.经典电磁场理论不适用于黑体辐射公式; D.黑体辐射在紫外线部分才适用于经典电磁场理论。 2.关于波函数Ψ的含义,正确的是:B A. Ψ代表微观粒子的几率密度; B. Ψ归一化后,ψ ψ* 代表微观粒子出现的几率密度; C. Ψ一定是实数; D. Ψ一定不连续。 3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片; B.偏振光子先改变偏振方向,再通过偏振片; C.偏振光子通过偏振片的几率是不可知的; D.每个光子以一定的几率通过偏振片。 4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:A A. * ψ 一定也是该方程的一个解; B. * ψ 一定不是该方程的解; C. Ψ与* ψ 一定等价; D.无任何结论。 5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D粒子不能穿过势垒。 6.如果以∧ l表示角动量算符,则对易运算] , [ y x l l 为:B A. ih ∧z l

B. ih ∧ z l C.i ∧ x l D.h ∧ x l 7.如果算符 ∧A 、∧B 对易,且∧ A ψ =A ψ,则:B A. ψ 一定不是∧ B 的本征态; B. ψ一定是 ∧ B 的本征态; C.*ψ一定是∧ B 的本征态; D. ∣Ψ∣一定是∧ B 的本征态。 8.如果一个力学量 ∧ A 与H ∧ 对易,则意味着 ∧ A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒; D.其本征值出现的几率会变化。 9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。 10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev 11.三维各向同性谐振子,其波函数可以写为nlm ψ ,且 l=N-2n ,则在一确定的能量 (N+2 3 )h ω下, 简并度为:B A. )1(21 +N N ;

量子力学期末考试试卷及答案

量子力学期末试题及答案 红色为我认为可能考的题目 一、填空题: 1、波函数的标准条件:单值、连续性、有限性。 2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。 3、一个量的本征值对应多个本征态,这样的态称为简并。 4、两个力学量对应的算符对易,它们具有共同的确定值。 二、简答题: 1、简述力学量对应的算符必须是线性厄米的。 答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。 2、一个量子态分为本征态和非本征态,这种说法确切吗? 答:不确切。针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。 3、辐射谱线的位置和谱线的强度各决定于什么因素? 答:某一单色光辐射的话可能吸收,也可能受激跃迁。谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。 三、证明题。

2、证明概率流密度J不显含时间。 四、计算题。 1、

第二题: 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球, 计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r r πε=-() )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 024)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r E d r e r U )( ???????≥≤=??=)( 4 )( ,43441 02 003003303 420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε

结构化学练习之量子力学基础习题附参考答案

结构化学练习之量子力学基础习题附参考答案

量子力学基础习题 一、填空题(在题中的空格处填上正确答案)1101、光波粒二象性的关系式为_______________________________________。1102、德布罗意关系式为____________________;宏观物体的λ值比微观物体的λ值_______________。1103、在电子衍射实验中,│ψ│2对一个电子来说,代表___________________。 1104、测不准关系是_____________________,它说明了_____________________。 1105、一组正交、归一的波函数ψ1,ψ2,ψ3,…。 正交性的数学表达式为,归一性的表达式为。1106、│ψ(x1,y1,z1,x2,y2,z2)│2

代表______________________。 1107、物理量xp y- yp x的量子力学算符在直角坐标系中的表达式是_____。 1108、质量为m的一个粒子在长为l的一维势箱中运动, (1)体系哈密顿算符的本征函数集为_______________________________ ; (2)体系的本征值谱为____________________,最低能量为____________ ; (3)体系处于基态时,粒子出现在0 ─l/2间的概率为_______________ ; (4)势箱越长,其电子从基态向激发态跃迁时吸收光谱波长__________ ; (5)若该粒子在长l、宽为2l的长方形势箱

中运动, 则其本征函数集为____________,本征 值 谱 为 _______________________________。 1109、质量为m 的粒子被局限在边长为a 的立方箱中运动。波函数ψ 211(x ,y ,z )= _________________________;当粒子处于状态 ψ 211 时,概率密度最大处坐标是 _______________________;若体系的能量为 2 247ma h ,其简并度是_______________。 1110、在边长为a 的正方体箱中运动的粒子,其能级E = 2 243ma h 的简并度是_____,E '= 2 2827ma h 的简 并度是______________。 1111、双原子分子的振动,可近似看作是质量为μ= 2 121m m m m +的一维谐振子,其势能为V =kx 2/2,它 的 薛 定 谔 方 程 是

2011量子力学期末考试题目

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性

清华大学《大学物理》习题库试题及答案__10_量子力学习题

一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红 限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射, 发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作 半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0 λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子 能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各 谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为 -0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时 氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨 道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ] 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?=ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 [ ] 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定 粒子动量的精确度最高的波函数是哪个图? [ ]

量子力学期末考试试题和答案A

2002级量子力学期末考试试题和答案 A 卷 一、简答与证明:(共25分) 1、什么是德布罗意波?并写出德布罗意波的表达式。 (4分) 2、什么样的状态是定态,其性质是什么?(6分) 3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。(4分) 4、证明 )??(2 2x x p x x p i -是厄密算符 (5分) 5、简述测不准关系的主要内容,并写出坐标x 和动量x p ?之间的测不准关系。(6分) 二、(15分)已知厄密算符B A ?,?,满足1??22==B A ,且0????=+A B B A ,求 1、在A 表象中算符A ?、B ?的矩阵表示; 2、在B 表象中算符A ?的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S 。 三、(15分)设氢原子在0=t 时处于状态 ),()(21),()(21),()(21)0,(112110311021?θ?θ?θψ-+-=Y r R Y r R Y r R r ,求 1、0=t 时氢原子的E 、2L ?和z L ?的取值几率和平均值; 2、0>t 时体系的波函数,并给出此时体系的E 、2L ?和z L ?的取值几率和平均值。 四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符 由下面的矩阵给出 ?? ??? ??+????? ??-=C C C H 000000200030001? 这里,H H H '+=???)0(,C 是一个常数,1<

量子力学试题2008年含答案

2008~2009郑州大学物理工程学院电子科学与技术专业 光电子方向量子力学试题(A 卷) (说明:考试时间120分钟,共6页,满分100分) 计分人: 复查人: 一、填空题:(每题 4 分,共40 分) 1. 微观粒子具有波粒二象性。 2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。 3.根据波函数的统计解释,dx t x 2 ),(ψ的物理意义为:粒子在x —dx 范围内的几率 。 4.量子力学中力学量用厄米算符表示。 5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i =h 。 6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量 F 所得的数值,必定是算符F ?的本征值。 7.定态波函数的形式为:t E i n n e x t x η -=)(),(?ψ。 8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。 9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的________。 10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为:2 η ± 。

二、证明题:(每题10分,共20分) 1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明: z y x L i L L? ] ?, ?[η = ] ? ? , ? ? [ ] ?, ?[ z x y z y x p x p z p z p y L L- - = ] ? ? , ? [ ] ? ? , ? [ z x y z x z p x p z p z p x p z p y- - - = ] ? , ? [ ] ? , ? [ ] ? , ? [ ] ? , ? [ z y x y z z x z p x p z p z p z p x p y p z p y+ - - = ] ? , ? [ ] ? , ? [ z y x z p x p z p z p y+ = y z z y z x x z p p x z p x p z p p z y p z p y?] ? , [ ] ? , ?[ ?] ? , [ ] ? , ?[+ + + = y z x z p p x z p z p y?] ? , [ ] ? , ?[+ = y z y z x z x z p p x z p p z x p z p y p p yz? ?] , [ ?] ?, [ ?] , ?[ ] ?, ?[+ + + = y x p i x p i y?) ( ?) (η η+ - = ] ? ? [ x y p y p x i- =η z L i?η =

量子力学期中考试考试

量子力学期中考试试题 物理常数:光速:8 1 2.99810c m s -=??;普朗克常数:34 6.62610 h J s -=??;玻尔兹曼常数: 231.38110/B k J K -=?;电子质量:319.10910e m kg -=?;碳原子质量:2612 2.00710C m u kg -==?;电子电荷:19 1.60210 e C -=? 一、填空题: 1、 量子力学的基本特征是 。 2、 波函数的性质是 。 3、1924年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于具有一定动量p 的自由粒子,满足德布洛意关系: ; 假设电子由静止被150伏电压加速,求加速后电子的的物质波波长: (保留1位有效数字);对宏观物体而言,其对应的德布洛意波波长极短,所以宏观物体的波动性很难被我们观察到,但最近发现介观系统(纳米尺度下的大分子)在低温下会显示出波动性。计算1K 时,60C 团簇(由60个C 原子构成的足球状分子)热运动所对应的物质波波长:_______________(保留2位有效数字)。 4.一粒子用波函数Φ(,) rt 描写,则在某个区域dV 内找到粒子的几率为 。 5、线性谐振子的零点能为 。 6、厄密算符的本征值必为 。 7、氢原子能级n =5 的简并度为 。 8、完全确定三维空间的自由粒子状态需要三个力学量,它们是 。 9、测不准关系反映了微观粒子的 。 10. 等人的实验验证了德布罗意波的存在。 11. 通常把 称为束缚态。 12. 波函数满足的三个基本条件是: 。 13.一维线性谐振子的本征能量与相应的本征函数分别为: 14.两力学量对易的说明: 。 15. 坐标与动量的不确定关系是: 。 16. 氢原子的本征函数一般可以写为: 。 17. 何谓定态: 。 1. 束缚态、非束缚态及相应能级的特点。 2. 简并、简并度。 3. 用球坐标表示,粒子波函数表为 ()?θψ,,r ,写出粒子在立体角Ωd 中被测到的几率。 4. 用球坐标表示,粒子波函数表为 ()?θψ,,r ,写出粒子在球壳()dr r r +,中被测到的几率。 5. 一粒子的波函数为()()z y x r ,,ψψ= ,写出粒子位于dx x x +~间的几率。 6. 写出一维谐振子的归一化波函数和能级表达式。 7. 写出三维无限深势阱 ?? ?∞<<<<<<=其余区域,0,0,0,0),,(c z b y a x z y x V 中粒子的能级和波函数。

最新大学物理-量子力学基础习题思考题及答案

大学物理-量子力学基础习题思考题及答案

习题 22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。 解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式, 22224 0E c p m c =+ 可得 p = = = h p λ= = 834 -= 131.210m -=? (2)对于质子,利用德布罗意波的计算公式即可得出: 3415h 9.110m p λ--====? 22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。 解:(1)用非相对论公式: m meU h mE h 123 193134108.71025106.1101.921063.622p h ----?=???????====λ(2)用相对论公式: 4 20222c m c p +=E eU E E k ==-20c m

m eU eU c m h mE h 122 20107.722p h -?=+= == ) (λ 22-3.一中子束通过晶体发生衍射。已知晶面间距nm 1032.72-?=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角. 解:先利用德布罗意波的计算公式即可得出波长: 34 11 h 1.410p m λ--====? 再利用晶体衍射的公式,可得出:2sin d k ?λ= 0,1,2k =… 1111 1.410sin 0.095227.3210k d λ?--?===?? , 5.48?= 22-4.以速度m/s 1063?=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长 A 1=λ,电子在此场中应该飞行多长的距离? 解:34 10 h 110p m λ--====? 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。 22-5.设电子的位置不确定度为 A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。 解:由测不准关系: 34 2410 1.0510 5.2510220.110h p x ---??===???? 由波长关系式:E c h =λ 可推出: E E c h ?=?λ 2 151.2410E E E J hc pc λ-??===?? 22-6.氢原子的吸收谱线 A 5.4340=λ的谱线宽度为 A 102 -,计算原子处在被激发态上的平均寿命。 解:能量hc E h νλ == ,由于激发能级有一定的宽度ΔE ,造成谱线也有一定宽度Δλ,两 者之间的关系为:2 hc E λ λ?=? 由测不准关系,/2,E t ??≥平均寿命τ=Δt ,则

量子力学试题及答案

2002级量子力学期末考试试题和答案 B 卷 一、(共25分) 1、厄密算符的本征值和本征矢有什么特点?(4分) 2、什么样的状态是束缚态、简并态和偶宇称态?(6分) 3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数。(4分) 4、在一维情况下,求宇称算符P ?和坐标x 的共同本征函数。(6分) 5、简述测不准关系的主要内容,并写出时间t 和能量E 的测不准关系。(5分) 二、(15分)已知厄密算符B A ?,?,满足1??22==B A ,且0????=+A B B A ,求 1、在A 表象中算符A ?、B ?的矩阵表示; 2、在A 表象中算符B ?的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S 。 三、(15分)线性谐振子在0=t 时处于状态 )21exp(3231)0,(2 2x x x ααπαψ-??????-=,其中 ημω α=,求 1、在0=t 时体系能量的取值几率和平均值。 2、0>t 时体系波函数和体系能量 的取值几率及平均值 四、(15分)当λ为一小量时,利用微扰论求矩阵

??? ?? ? ?++λλλλλλ23303220 21的本征值至λ的二次项,本征矢至λ的一次项。 五、(10分)一体系由三个全同的玻色子组成, 玻色子之间无相互作用. 玻色子只有两个可能的单粒子态. 问体系可能的状态有几个? 它们的波函数怎样用单粒子波函数构成? 一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的。 2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函数相同,则称该波函数具有偶宇称。 3、全同玻色子的波函数是对称波函数。两个玻色子组成的全同粒子体系的波函数为: [])()()()(21 12212211q q q q S ????φ+= 4、宇称算符P ?和坐标x 的对易关系是:P x x P ?2],?[-=,将其代入测不准关系知,只有当0?=P x 时的状态才可能使P ?和x 同时具有确定值,由)()(x x -=δδ知,波函数)(x δ满足上述要求,所以)(x δ是算符P ?和x 的共同本征函数。 5、设F ?和G ?的对易关系k ?i F ?G ?G ?F ?=-,k 是一个算符或普通的数。以F 、G 和k 依次表示F ?、G ?和k 在态ψ中的平均值,令 F F ?F ?-=?,G G ?G ?-=?, 则有 42 2 2 k )G ?()F ?(≥???,这个关系式称为测不准关系。 时间t 和能量E 之间的测不准关系为: 2η ≥ ???E t 二、1、由于1?2=A ,所以算符A ?的本征值是1±,因为在A 表象中,算符A ?的矩阵是对角矩阵,所以,在A 表象中算符A ?的矩阵是:???? ??-=1001)(?A A

量子力学导论期末考试试题内含答案

量子力学试题(1)(2005) 姓名 学号 得分 一. 简答题(每小题5分,共40分) 1. 一粒子的波函数为()()z y x r ,,ψψ= ,写出粒子位于dx x x +~间的几率。 2. 粒子在一维δ势阱 )0()()(>-=γδγx x V 中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。 3. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开: ∑=n n n x c x )()(ψψ, 写出展开式系数n c 的表达式。 4. 给出如下对易关系: [][][] ?,? ,? ,===z x y z L L p x p z 5. 何谓几率流密度?写出几率流密度),(t r j 的表达式。 6. 一维运动中,哈密顿量)(22 x V m p H +=,求[][]?,?,==H p H x 7. 一质量为μ的粒子在一维无限深方势阱?? ?><∞<<=a x x a x x V 2,0, 20,0)( 中运动,写出其状态波函数和能级表达式。 8. 已知厄米算符A 、B 互相反对易:{}0,=+=BA AB B A ;b 是算符B 的本征态: b b b B =,本征值0≠b 。求在态b 中,算符A 的平均值。

二. 计算和证明题 1. 设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 2. 考虑如下一维波函数:0/0()n x x x x A e x ψ-?? = ??? , 其中0,,A n x 为已知常数。利用薛定谔 方程求位势()V x 和能量E 。对于它们,该波函数为一本征函数(已知当,()0x V x →∞→)。 3.一质量为m 的粒子沿x 正方向以能量E 向0=x 处 的势阶运动。当0≤x 时,该势为0;当0>x 时,该势为 E 4 3 。问在0=x 处粒子被反射的的几率多大?(15分) 0 X 4.设粒子处于()?θ,lm Y 状态下, 1)证明在的本征态下,0==y x L L 。(提示:利用x y z z y L i L L L L =-, []y L i =-=z x x z x z L L L L L ,L 求平均。) 2)求()2 x L ?和() 2 y L ? (附加题)5. 设),(p x F 是p x ,的整函数,证明 [][]F , F,,p i F x x i F p ?? =??-= 整函数是指),(p x F 可以展开成∑∞ ==0 ,),(n m n m mn p x C p x F 。

相关文档
相关文档 最新文档