文档库 最新最全的文档下载
当前位置:文档库 › 自激活白光发射Ba_2TiP_2O_9发光材料的发光特性

自激活白光发射Ba_2TiP_2O_9发光材料的发光特性

自激活白光发射Ba_2TiP_2O_9发光材料的发光特性
自激活白光发射Ba_2TiP_2O_9发光材料的发光特性

!!!!!"

!"

!!!!!"

!"

研究简报

收稿日期:2005-07-05。收修改稿日期:2005-12-07。

通讯联系人。E-mail:liuchunboshiping@yahoo.com.cn

第一作者:刘春波,女,32岁,讲师;研究方向:无机发光材料。

自激活白光发射Ba2TiP2O9发光材料的发光特性

刘春波*

车广波

(吉林师范大学化学学院,四平

136000)

关键词:发光材料;磷酸盐;钛离子;白光;余辉中图分类号:O614.23+3;O614.41+1;O613.51

文献标识码:A

文章编号:1001-4861(2006)03-0503-04

LuminescentPropertiesoftheSelf-activatedWhite-lightEmittingPhosphorBa2TiP2O9

LIUChun-Bo*

CHEGuang-Bo

(DepartmentofChemistry,JilinNormalUniversity,Siping,Jilin136000)

Abstract:TheBa2TiP2O9phosphorwassynthesizedviatheconventionalhigh-temperaturesolid-statemethod.TheBa2TiP2O9phosphorshowedhighluminancewhite-lightemittingwhenexcitedunder254nmradiation.Further-more,obviouslong-lastingphosphorescencecouldbeobservedwhentheUVexcitationsourcehadbeenremoved.XRDandphotoluminescence(PL)spectraaswellastheluminancedecaywereusedtocharacterizethesynthe-sizedphosphor.TheresultsofXRDindicatedthattheproductsobtainedunder1100℃for3hhadagoodcrys-tallization.BoththePLspectraandluminancedecaymeasurementrevealedthatthiskindofphosphorswasanewkindofwhite-light-emittingphosphor.Thethermoluminescencepropertieshavealsobeeninvestigated.Theenergylevelofthe352Kand493KTLpeakshavealsobeencalculatedandfoundthattheirenergylevelvalueswere0.35eVand1.08eV,respectively.The352KTLpeakisresponsiblefortheoriginofthelong-lastingphospho-rescence.

Keywords:phosphor;phosphate;titaniumions;white-light-emitting;afterglow

引言

发光材料,也称为荧光粉,具有非常广泛的应用

范围,如阴极射线管(CRTs)、

背投电视(PTVs)、荧光管和X射线检测器等[1,2]。尽管探找用于CRT和荧光灯的发光材料的工作已经进行了多年,但是研究人员依然继续努力提高荧光粉的稳定性和探找新材料。近年来,随着各国研究及开发机构对量子剪裁、等离子体显示、场发射显示、长余辉发光、白光LED照明等一系列新型发光材料的开发和应用,传统的荧光材料又重新受到人们的普遍关注[1 ̄10]。

在光学高新技术材料领域中,磷酸盐被广泛用于发光材料的研究。磷酸盐具有吸收能力强、转换效率高、在紫外-可见-红外区域有较好的荧光发射效率等优点,且具有良好的物理、化学稳定性,因此磷酸盐具有广阔的发展潜力与应用前景[11]。磷酸盐发光材料可广泛应用于发光、显示、光信息传递、太阳能光电转换、X射线影像、激光、闪烁体等领域,具有诱人的市场应用前景。

白光是非常重要的照明以及其他显示器件的发光颜色,普遍应用于荧光灯管的卤磷酸盐(Ca5(PO4)3

(F,Cl)∶(Sb,Mn)可以高效地将UV发射转化为白光,

第3期2006年3月

Vol.22No.3Mar.,2006

无机化学学报

CHINESEJOURNALOFINORGANICCHEMISTRY

第22卷无机化学学报

它的白光是由蓝色区域(Sb3+)发射和橙色区域(Mn2+)发射组合而成[12]。但是通过组合的方法获得的白光

发射荧光材料的发光颜色会随着使用时间的延长而发生一定程度的改变,这是由于组成白光的黄色发射组分和橙色发射组分具有不同的使用寿命所造成的。随着研究的深入,人们发现,通过单一掺杂离子可以在单一基质中实现白光发射,其中最常用的激活离子为Dy3+[5 ̄7,9]。另外,白光发射还可以通过宽带发射获得。钛离子属于d区过渡金属离子,其作为激活离子在发光或激光材料中的发光行为具有类似于Mn2+离子一样的宽带发射[13]。钛离子作为发光中心在基质中的光谱特性(峰值位置、强度、结构、半高宽等)与自由离子状态时有很大改变,其光谱特性强烈地受到外界条件如晶体场的影响[13,14]。最近,人们报道了钛离子激活的Y

O2S橙色发射发光材料并且发现其具有优良的长余辉性质[14],但是钛离子在磷酸盐中的发光行为尚未见报道。基于上述原因,我们采用高温固相法合成了一种含钛离子的自激活Ba2TiP2O9发光材料,本文主要对它的发光特性进行初步的探讨和研究,并得到了一些有意义的结果。结

果表明,Ba

TiP2O9发光材料在紫外灯照射下可以发出高亮度的白光发射。

1实验部分

1.1样品制备

样品采用高温固相法合成。原料为BaCO

(分析

纯)、TiO

(分析纯)和(NH4)2HPO4(分析纯)。按Ba2TiP2O9的化学计量比称取原料,于玛瑙研钵中研细直至充分混合,置于刚玉坩埚内,用坩埚盖盖严,放入炉体恒温区,先在空气环境中升温到600℃并恒温1h,取出重新研细,升温到1100℃并恒温3h。高温出炉冷却后得到粉末样品。

1.2分析测试

用RigakuD/maxIIB型X射线粉末衍射仪测定样品结构,工作电压为20kV,工作电流为20mA,转速为4°?min-1,采样步宽为0.02°。样品的激发和发射光谱采用HitachiF-4500荧光光谱仪测量,激发光源为150W的Xe灯光源,采用多次测量取平均值的方法来减少误差。余辉光谱通过ZJ-LG03测试,激发光源为1000LX的标准Xe灯,测量前,先用254nm紫外线对样品激发约5min。为研究样品的陷阱能级的分布及陷阱的深度,采用北京核仪器厂的FJ-427A微机热释光剂量仪对样品的热释发光进行测量,升温速度为2K?s-1。色坐标采用HitachiMPF荧光光谱仪测量。除热释发光光谱测试外,所有的测试都在室温下进行。

2结果与讨论

2.1晶体结构表征

图1示出了600℃烧结1h后,再在1100℃烧结3h时的Ba

TiP2O9发光材料的XRD衍射图谱。

如图所示,采用BaCO

、TiO2和(NH4)2HPO4按物质的

量比为2∶1∶2混合时,可制得纯相Ba

TiP2O9发光材料。图中的各衍射峰d值位置以及强度与标准卡片JCPDS(No.36-1467)基本吻合。对XRD图进行Powly拟合,所得的晶胞参数分别为a=1.6714nm,b=0.54386nm,c=0.4806nm,β=9.3928nm,产物为单斜晶系,空间群为I2/m(No.12)。实验表明,严格控

制实验条件对于纯相Ba

TiP2O9发光材料的生成影响很大。先在600℃恒温1h,取出重新研细再次升

温到1100℃并恒温3h,可以生成纯相Ba

TiP2O9。在超过1200℃的温度下烧结,过高的温度使烧结

出的发光材料结块并使发光性能大大降低。

2.2发光特性

图2中分别给出了Ba

TiP2O9自激活发光材料的激发和发射光谱。如图所示,样品的激发光谱为宽带激发,最强激发位于254nm处。当用254nm紫外线对样品进行激发时,样品的发射表现为1个位于350 ̄700nm范围间的宽带,最强发射位于 ̄470nm处,半峰宽约为130nm。该发射宽带可归属为Ti与O之间的电荷转移发光[13,14]。因为这一发光宽带覆盖了从350 ̄700nm之间的光谱范围,其总体表

观色为白色。值得注意的是,在本文报道的Ba

TiP2O9图1在600℃烧结1h后再在1100℃下烧结3h的Ba2TiP2O9产物XRD衍射图

Fig.1XRDpatternofBa2TiP2O9sinteredat600℃for

1handthenat1100℃for3h

504

??

第3期刘春波等:自激活白光发射Ba2TiP2O9发光材料的发光特性

白光发射发光材料中,Ti的物质的量分数可以在0.005%到50%区间内变化,而发光颜色基本不变。

当Ti的组分为按BaCO3、TiO2和(NH4)2HPO4物质的量比为2∶1∶2称取原料时,所得发光材料发光强度最

大。这与传统的无机发光材料中的激活剂的概念明显不同,在本文所报道的体系中,没有明显的浓度猝灭现象

发光材料的发光色度是表征发光材料特性的一个基本参数

。本文中采用CIE

(CommissionInterna-tionaldel′EclairageFrance)标准色度学标准[15]对所合成的样品的色度进行表征。图3给出了自激活Ba2TiP2O9发光材料的CIE色度图,图中所示区域为

白光发射所对应的色坐标值范围。测量结果表明,样品的色坐标值为:x=0.2656,y=0.3448,发光的总体表观颜色为日光白。

我们在目前的实验中发现,自激活Ba2TiP2O9白光发射磷光体具有一定的长余辉现象。图4给出了在254nm紫外线激发5min后所测得的长余辉衰减曲线。我们目前的工作观察到自激活Ba2TiP2O9白光发光材料有明显的长余辉现象。

根据长余辉发光的原理,只要在基质中造成一定浓度和深度的在室温下即可通过热扰动释放出存储的能量的缺陷或陷阱,任何现有的荧光材料通过改变掺杂离子或改变基质成分后都可以在某种特定条件下产生长余辉发光。材料中缺陷能级深度和浓度是影响长余辉材料性能的2个重要因素:能级较浅,电子在室温时较易从陷阱中热致逃逸,从而导致余辉时间过短或观察不到长余辉;能级较深,则室温下从陷阱中逃逸出的电子数量较少或不存在,同样不利于长余辉现象的产生。同时,当材料中的陷阱数量太小时,陷阱可存储的能量不充以产生高亮度的长余辉发光;当陷阱密度过大时,陷阱之间的距离变小使得能量猝灭效应增大,从而降低长余辉发光的效率[7]。从现有的研究结果看,热释光曲线中峰值位置对应于20 ̄110℃之间的陷阱较适于长余辉的产

生[16,17]。为表征样品的陷阱能级的分布及陷阱的深度,图5给出了Ba2TiP2O9的热释光谱。从图中可以看出,样品的热释发光至少包括352K和493K2

个热释发光峰。利用Mckeevers提供的公式[18],可计算每个热释峰对应的陷阱深度,计算陷阱深度公式为:

图2

Ba2TiP2O9的激发光谱(虚线,λem=470nm)和发射

光谱(实线,λexc=254nm)

Fig.2Excitation(dashline,λem=470nm)andemission(solidline,λexc=254nm)spectraofBa2TiP2O9

图3

自激活Ba2TiP2O9白光发光材料的CIE色度图

Fig.3

CIEchromaticitydiagramoftheself-activatedBa2TiP2O9wihte-light-emittingphosphor(λexc=254nm)

图4

自激活Ba2TiP2O9白光发射发光材料的余辉发射衰减曲线

Fig.4Afterglowdecaycurveofself-activatedBa2TiP2O9phosphor(λexc=254nmfor5min)

505??

第22卷

无机化学学报E=(cκTm2/ω)-2kTm

式中,ω=T2-T1;c=2.52+10.2(μg-0.42);μg=(T2-Tm)/(T2-T1);κ为波尔兹曼常数,Tm为峰值温度(K),T1和T2

分别对应于曲线上升阶段与下降阶段半高处所对应的温度(K)。经过计算,352K和493K2个热释峰所对应的缺陷能级分别为0.35eV和1.08eV。低温的

352K热释峰对长余辉发光有贡献,而493K的热

释峰由于所对应的缺陷能级太深,不能产生长余辉。另外,从图中可以看出,高温的493K热释峰强度几乎比低温352K的热释发光强度高一个数量级,表明了352K所对应的陷阱浓度比493K所对应的陷阱浓度要低得多,因此,Ba2TiP2O9中的493K的陷阱分布对长余辉发光不利。进一步实验表明,在样品合成过程中加入2%的助熔剂NH4F时,样品荧光强度略为提高,但是余辉被大大减弱。因此,可以认为

352K的热释峰可归属为由于Ti4+的引入而产生的Ba2+空位所引起(电荷补偿方式为Ti4+→2Ba2+,即1个Ti4+取代2个Ba2+以实现样品整体的电荷平衡)。因为F-离子的加入填充了Ba2+空位,使得对应于352K热释峰的陷阱密度下降从而减弱了长余辉发光。高温范围的493K热释峰可归属为Ba2TiP2O9中

的氧缺陷。

结论

采用高温固相法合成了一种自激活的白光发射发光材料Ba2TiP2O9,该荧光粉在254nm紫外线照射下可发出高亮度的白光发射。Ba2TiP2O9的发射光谱为宽带,最强发射位于470nm处。热释光谱研究表明该发光材料具有352K和493K2个热释峰,

分别对应的能级为0.35eV和1.08eV,其中352K的热释峰对长余辉发光有利,而493K的热释峰对长余辉发光不利。该自激活白光发射荧光粉具有发光亮度高,化学稳定性良好等特性,可以料想,通过进一步的研究和性能优化,通过掺杂不同的激活离子或改变基质组分,有望获得性能优越的白光发射长余辉材料并取得实际应用。参考文献:

[1]YenWM,ShionoyaS.PhosphorHandbook.Boston:CRC

Press,1999.

[2]XUXu-Rong(徐叙瑢),SUMian-Zeng(苏勉曾).Luminescence

andLuminescenceMaterials(发光学与发光材料).Beijing:ChemicalIndustryPress,2004.

[3]WeghRT,DonkerH,OskamKD,etal.Science,1999,283

(5402):663 ̄666

[4]ParkJK,KimCH,ParkSH,etal.Appl.Phys.Lett.,2004,

84(10):1647 ̄1649

[5]LiuB,ShiC,QiZ.Appl.Phys.Lett.,2005,86:191111 ̄

191113

[6]LEIBing-Fu(雷炳富),LIUYing-Liang(刘应亮),YEZe-Ren

(叶泽人),etal.KexueTongbao(ChineseScienceBulletin),2003,48(19):2038 ̄2041

[7]LiuY,LeiB,ShiC.Chem.Mater.,2005,17(8):2108 ̄2113[8]LIUTian-Jun(娄天军),CHENSen-Lin(陈森林),CHENLi-

Miao(陈立妙),etal.WujiHuaxueXuebao(ChineseJournalofInorganicChemistry),2005,21:298 ̄300

[9]LeiB,LiuY,YeZ,etal.ChineseChemicalLetter,2004,15

(3):335 ̄338

[10]SONGChun-Yan(宋春燕),LEIBing-Fu(雷炳富),LIUYing-

Liang(刘应亮),etal.WujiHuaxueXuebao(ChineseJ.Inorg.Chem.),2004,20(1):89 ̄93

[11]HashimotoN,TakadaY,SatoK,etal.J.Lumin.,1991,48 ̄

49:893 ̄897

[12]JenkinsHG,McKeagAH,RanbyPW.J.Electrochem.

Soc.,1949,96:1 ̄12

[13]SoultAS,CarterDF,SchreibreHD,etal.J.Phys.Chem.

B,2002,106(36):9266(9273

[14]KangC,LiuR,ChangJ,etal.Chem.Mater.,2003,15:3966 ̄

3968

[15]ButlerKH.FluorescentLampPhosphors.ParkandLondon:

ThePennsylvaniaStateUniversityPress,1980.

[16]MatsuzawaT,AokiY,TakeuchiN,etal.J.Electrochem.

Soc.,1996,143:2670 ̄2673

[17]ZhangT,SuQ.JournaloftheSID,2000,8(1):27 ̄30[18]MckeeverSWS.TranslatedbyCAIGan-Gang(蔡干纲),

WUFang(吴

方).SolidThermoluminescence(固体热释

光).Beijing:AtomicEnergyPress,1993.96

图5

Ba2TiP2O9的热释发光谱图(实线为实际测量的

曲线,虚线为高斯分峰所得曲线)

Fig.5ThermoluminescencespectrumofBa2TiP2O9(solidlineisthemeasuredcurve,dashlineisthesynthesizedGaussians

curves)

506??

发光材料

上海理工大学 目录 一、引言 (1) 二、发光现象及其原理 (1) 2.1荧光现象 (1) 2.2 LED现象 (2) 2.3白炽灯现象 (2) 2.4 HID现象 (2) 2.5有机发光原理 (2) 三、发光材料的应用 (3) 3.1光致发光材料 (3) 3.2阴极射线发光材料 (4) 3.3电致发光材料 (4) 3.4辐射发光材料 (4) 3.5光释发光材料 (5) 3.6热释发光材料 (5) 3.7高分子发光材料 (5) 3.8纳米发光材料 (6) 四、结束语 (6) 五、参考文献 (7)

发光材料 一、引言 众所周知[1],材料、能源和信息是21世纪的三大支柱。发光材料作为人类生活中最为重要的材料之一,有着极其重要和特殊的地位。随着科学技术的进一步发展,发光材料广泛运用于化工、医药食品、电力、公用工程、宇航、海洋船舶等各个领域。各种新型高科技在运用于人类日常生活中,势必都需要用到部分不同成分和性质的发光材料。 从20世纪70年代起,科学家们发现将稀土元素掺入发光材料,可以大大提高材料的光效值、流明数和显色性等性能,从此开启了发光材料发展的又一个主要阶段。世界己经离不开人造光源,荧光灯作为最普遍的人造光源之一己在全世界范围内开始应用,据统计全世界60%以上的人工造光是由荧光灯提供的,而大部分荧光灯就是利用稀土三基色荧光粉发光的。 二、发光现象及其原理 不同发光材料的发光原理不尽相同,但是其基本物理机制是一致的:物质原子外的电子一般具有多个能级,电子处于能量最低能级时称为基态,处于能量较高的能级时称为激发态;当有入射光子的能量恰好等于两个能级的能量差时,低能级的电子就会吸收这个光子的能量,并跃迁到高能级,处于激发态;电子在激发态不稳定,会向低能级跃迁,并同时发射光子;电子跃迁到不同的低能级,就会发出不同的光子,但是发出的光子能量肯定不会比吸收的光子能量大。 2.1荧光现象 荧光发光的主要原理:紫外线的光子的能量比可见光的能量大;当荧光物质被紫外线照射时,其基态电子就会吸收紫外线的光子被激发而跃迁至激发态;当它向基态跃迁时,由于激发态与基态间还有其他能级,所以此时释放的光子能量就会低于紫外线的能量,而刚好在可见光的范围内,于是荧光物质就会发出可见光,这种光就叫做荧光。常见的日光灯发 1

光至发光材料的研究进展(精)

光至发光材料的研究进展 关键字光至发光材料荧光反光 Keyword photoluminescence material fluorescence listen 摘要;综述了光致发光材料的大致研究进展,阐述了光致发光材料的发光原理,常见的发光材料,并对未来光致发光材料发展趋势作了展望。 Abstract It is summarize the investigation of photoluminescence material. And tell us about the theory of photoluminescence material. And familiar photoluminescence material. Future development aspects of researches and applications about the material are proposed 前言 在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂。发光材料分永久性发光材料(放射性辐射激发)和外加能量激发而发光如光激发、电场激发、阴极射线激发、X射线激发等的材料。 光致发光材料又称超余辉的蓄光材料。它是一种性能优良,无需任何电源就能自行发光的材料。 1发展历史 光致发光材料的研究历史非常悠久。最早可追溯到1866 年法国人Sidot 制备的ZnS :Cu 上,它是第一个具有实际应用意义的长余辉蓄光材料。20 世纪初,Lenard 制备出了ZnS :M (M = Cu ,Ag ,Bi ,Mg 等) 发光材料,并研究了荧光衰减曲线,提出了“中心论”。但该类发光材料由于发光亮度不高,寿命短等缺点,人们往其中引入了放射性物质,虽然能解决以上问题,但又会危害人体安全、损害环境,因而人们将目光又投向了其他基质的发光材料领域。1934 年,Haberlandt 在研究天然CaF2 结构时发现,痕量Eu2+ 占据矿石中Ca2+ 的位置时,引起矿石发出蓝光。1964 年, Y2O3 : Eu , Y2O2S : Eu3+发光材料的研制发明,使彩色电视机得到迅速的推广。20 世纪80年代,石春山等对复合氟化物中的光谱特性进行研究,得出Eu2+ 的f - f 跃迁出现的若干判据,推进了我国发光材料的发展。20 世纪80 年代以后,一些制备发光材料的新工艺及一系列超长余辉发光材料的研究成功,为发光材料的应用开辟了广阔的领域。 2发光机理 2.1.反光与发光的区别 在生活中人眼睛能看看到的发光的材料分成两大类。1. 反光材料这种材料可以将照在其表面上的光迅速地反射回来。材料不同,反射的光的波长范围也就不同。反射光的颜色取决于材料吸收何种波长的光并反射何种波长的光,,因此必须要有光照在材料表面,材料表面才能反射光,如各种执照牌、交通标志牌等。光致发光材料是向外发光,而不是反射光。2.荧光材料吸收一定波长的光,立刻向外发出不同波长的光,称为荧光,当入射光消失时,荧光材料就会立刻停止发光。更确切地讲,荧光是指在外界光照下,人眼见到的一些相当亮的颜色光,如绿色、橘黄色、黄色,人们也常称它们为霓虹光。所以反光材料和发光材料有很大的不同,发光机理不一样:光致发光材料是向外发光,而不是反射光。

宽禁带半导体

半导体材料种类繁多,分类方法各不相同,一般将以硅(Si)、锗(Ge)等为代表的元素半导体材料称为第一代半导体材料;以砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等为代表的化合物半导体材料称为第二代半导体材料;以碳化硅(SiC)、氮化镓(GaN)、氮化铝(AlN)、氧化锌(ZnO)、金刚石为代表的宽禁带半导体材料称为第三代半导体材料[1]。以硅材料为代表的第一代半导体材料的发展是从20世纪50年代开始,它取代了笨重的电子管,导致了以集成电路为核心的微电子工业的发展和整个IT产业的飞跃,广泛应用于信息处理和自动控制等领域[2]。 20世纪90年代以来,随着移动无限通信的飞速发展和以光纤通信为基础的信息高速公路和互联网的兴起,第二代半导体材料开始兴起。由于其具有电子迁移率高、电子饱和漂移速度高等特点,适于制备高速和超高速半导体器件,目前基本占领手机制造器件市场[3]。 当前,电子器件的使用条件越来越恶劣,要适应高频、 大功率、耐高温、抗辐照等特殊环境。为了满足未来电子器件需求,必须采用新的材料,以便最大限度地提高电子元器件的内在性能。近年来,新发展起来了第三代半导体材料--宽禁带半导体材料,该类材料具有热导率高、电子饱和速度高、击穿电压高、介电常数低等特点[4],这就从理论上保证了其较宽的适用范围。目前,由其制作的器件工作温度可达到600℃以上、抗辐照1×106rad;小栅宽GaNHEMT器件分别在4GHz下,功率密度达到40W/mm;在8GHz,功率密度达到30W/mm;在18GHz,功率密度达到9.1W/mm;在40GHz,功率密度达到10.5W/mm;在80.5GHz,功率密度达到2.1W/mm,等。因此,宽禁带半导体技术已成为当今电子产业发展的新型动力。从目前宽禁带半导体材料和器件的研究情况来看,研究重点多集中于碳化硅(SiC)和氮化镓(GaN)技术,其中SiC技术最为成熟,研究进展也较快;而GaN技术应用广泛,尤其在光电器件应用方面研究比较深入[5]。氮化铝、金刚石、氧化锌等宽禁带半导体技术研究报道较少,但从其材料优越性来看,颇具发展潜力,相信随着研究的不断深入,其应用前景将十分广阔。 1宽禁带半导体材料 1.1碳化硅单晶材料 在宽禁带半导体材料领域就技术成熟度而言,碳化硅是这族材料中最高的,是宽禁带半导体的核心。SiC材料是IV-IV族半导体化合物,具有宽禁带(Eg:3.2eV)、高击穿电场(4×106V/cm)、高热导率(4.9W/cm.k)等特点[6]。从结构上讲,SiC材料属硅碳原子对密排结构,既可以看成硅原子密排,碳原子占其四面体空位;又可看成碳原子密排,硅占碳的四面体空位[7]。对于碳化硅密排结构,由单向密排方式的不同产生各种不同的晶型,业已发现约200种[8]。目前最常见应用最广泛的是4H和6H晶型。4H-SiC特别适用于微电子领域,用于制备高频、高温、大功率器件;6H-SiC特别适用于光电子领域,实现全彩显示。 第一代、第二代半导体材料和器件在发展过程中已经遇到或将要遇到以下重大挑战和需求[9,10]: (1)突破功率器件工作温度极限,实现不冷却可工作在300℃~600℃高温电子系统。 (2)必须突破硅功率器件的极限,提高功率和效率,从而提高武器装备功率电子系统的性能。 (3)必须突破GaAs功率器件的极限,在微波频段实现高功率密度,实现固态微波通讯系统、雷达、电子对抗装备更新换代。 (4)必须拓宽发光光谱,实现全彩显示、新的光存储、紫外探测以及固态照明。 随着SiC技术的发展,其电子器件和电路将为系统解决上述挑战奠定坚实基础。因此SiC材料的发展将直接影响宽禁带技术的发展。 SiC器件和电路具有超强的性能和广阔的应用前景,因此一直受业界高度重视,基本形成了美国、 欧洲、日本三足鼎立的局面。目前,国际上实现碳化硅单晶抛光片商品化的公司主要有美国

发光材料

发光材料 连新宇豆岁阳董江涛陈阳郭欣高玮婧 北京交通大学材料化学专业100044 摘要:本文简要介绍了发光材料的发光机理,并根据机理分类介绍了几种典型的发光材料。补充介绍了新型发光材料并对发光材料的现状进行了介绍对其应用和发展前景做了展望。 关键词:发光材料分类新型展望 1 引言 发光材料已成为人们日常生活中不可缺少的材料,被广泛地用在各种显示、照明和医疗等领域,如电视屏幕、电脑显示器、X射线透射仪等。目前发光材料主要是无机发光材料,从形态上分,有粉末状多晶、薄膜和单晶等。最近,有机材料在电致发光上获得了重要应用。[1] 2 发光材料 发光是一种物体把吸收的能量,不经过热的阶段,直接转换为特征辐射的现象。发光现象广泛存在于各种材料中,在半导体、绝缘体、有机物和生物中都有不同形式的发光。 发光材料分为有机和无机两大类。通常把能在可见光和紫外光谱区发光的无机晶体称为晶态磷光体,而将粉末状的发光材料称为荧光粉。[2] 常用的发光材料按激发方式分为: (1) 光致发光材料,由紫外光、可见光以及红外光激发而发光,按照发光性能、应用范 围的不同,又分为长余辉发光材料、灯用发光材料和多光子发光材料。 (2) 阴极射线发光材料,由电子束流激发而发光的材料,又称电子束激发发光材料。 (3) 电致发光材料,由电场激发而发光的材料,又称为场致发光材料。 (4) X射线发光材料,由X射线辐射而发光的材料。 (5) 化学发光材料,两种或两种以上的化学物质之间的化学反应而引起发光的材料。 (6) 放射性发光材料,用天然或人造放射性物质辐照而发光的材料。 2.1光致发光材料 2.1.1光致发光材料的定义 发光就是物质内部以某种方式吸收能量以后,以热辐射以外的光辐射形式发射出多余的能量的过程。用光激发材料而产生的发光现象,称为光致发光。光致发光材料一个主要的应用领域是照明光源,包括低压汞灯、高压汞灯、彩色荧光灯、三基色灯和紫外灯等。其另一个重要的应用领域是等离子体显示。

宽禁带半导体功率器件

综 述 宽禁带半导体功率器件 刘海涛 陈启秀 (浙江大学信电系功率器件研究所,杭州310027) 摘要 阐述了宽禁带半导体的主要特性与Si C、金刚石等主要宽禁带半导体功率器件的最新发展动态及其存在的主要问题,并对其未来的发展作出展望。 关键词 宽禁带半导体 功率器件 碳化硅 金刚石 W ide Bandgap Sem iconductor Power D ev ices L iu H aitao,Chen Q ix iu (Institu te of P o w er D ev ices,Z hej iang U niversity,H ang z hou310027) Abstract T he p ap er p resen ts the m ain characteristics of w ide bandgap sem iconduc2 to rs,and elabo rates the latest developm en t of Si C and diam ond pow er devices.A t the sam e ti m e,the fu tu re developm en t of Si C and diam ond pow er devices is fo rcasted. Keywords W ide bandgap sem iconducto r Pow er devices Si C D iam ond 1 引 言 由于Si功率器件已日趋其发展的极限,尤其在高频、高温及高功率领域更显示出其局限性,因此开发研制宽带半导体器件已越来越被人们所关注。所谓宽带半导体(W B G)主要是指禁带宽度大于212电子伏特的半导体材料,包括 —O、 —S、 —Se、 —N、Si C、金刚石以及其他一些化合物半导体材料。这些材料一般均具有较宽的禁带、高的击穿电场、高的热导率、高的电子饱和速率,因此他们比Si及GaA s更适合于制作高温、高频及高功率器件。其中John son优值指数(JFOM=E c v s 2Π,E c 为临界电场;v s为电子饱和速率)、Keyes优值指数(KFOM=Κ[C v s 4ΠΕ]1 2,其中C为光速;Ε为介电常数)和B aliga优值指数(B FOM=ΕΛE G3,其中E G为禁带宽度,Λ为迁移率)分别从功率频率能力、耐热能力及导通功率损耗三方面说明了这一科学事实[1]。表1[2]列出了常见宽带半导体与Si,GaA s的比较。 由表1可知宽禁带半导体具有许多优点: 1)W B G具有很高的热导率(尤其是Si C与金刚石),使得它们能够迅速转移所产生的热量,广泛用于高温及高功率领域;2)由于W B G的禁带宽度很大,因此相应器件的漏电流极小,一般比Si半导体器件低10~14个数量级,有利于制作CCD器件及高速存储器;3)W B G具有比普通半导体更低的介电常数及更高的电子饱和速率,使之比Si,GaA s更适合于制作毫米波放大器及微波放大器。除此之外,W B G还具有负的电子亲和势及很高的异质结偏置电势,使得它们特别适合于阴极发射的平板显示器。 鉴于近几年Si C与金刚石材料的生长技术及氧化、掺杂、欧姆接触等工艺的成熟,使得Si C与金刚石器件得到了突飞猛进的发展,下面我们将主要评述Si C及金刚石的最新发展。 2 Si C功率器件 近年来Si C功率器件的研究引起了世界科学界的高度重视,尤其是美国、欧洲等发达国

上转换发光机理与发光材料整理

上转换发光机理与发光材料 一、背景 早在1959年就出现了上转换发光的报道,Bloemberge在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年,Auzel在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、H03+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。 二、上转换发光机理 上转换材料的发光机理是基于双光子或者多光子过程。发光中心相继吸收两个或多个光子,再经过无辐射弛豫达到发光能级,由此跃迁到基态放出一可见光子。为了有效实现双光子或者多光子效应,发光中心的亚稳态需要有较长的能及寿命。稀土离子能级之间的跃迁属于禁戒的f-f 跃迁,因此有长的寿命,符合此条件。迄今为止,所有上转换材料只限于稀土化合物。 三、上转换材料 上转换材料是一种红外光激发下能发出可见光的发光材料,即将红外光转换为可见光的材料。其特点是所吸收的光子能量低于发射的光子能量。这种现象违背了Stokes定律,因此又称反Stokes定律发光材料。 1、掺杂Yb3+和Er3+的材料Yb3+(2F7/2→2F5/2)吸收近红外辐射,并将其传

递给Er3+,因为Er3+的4I11/2能级上的离子被积累,在4I11/2能级的寿命为内,又一个光子被Yb3+吸收,并将其能量传递给Er3+,使Er3+离子从4I11/2能级跃迁到4F7/2能级。快速衰减,无辐射跃迁到4S3/2,然后由 4S 3/2能级产生绿色发射( 4S 3/2 → 4I 15/2 ) ,实现以近红外光激发得到绿 色发射。 2、掺杂Yb3+和Tm3+的材料 通过三光子上转换过程,可以将红外辐射转换为蓝光发射。第一步传递之后,Tm3+的3H5能级上的粒子数被积累,他又迅速衰减到3F4能级。在第二部传递过程中,Tm3+从3F4能级跃迁到3F2能级,并又快速衰减到3H4。紧接着,在第三步传递中,Tm3+从3H4能几月前到1G4能级,并最终由此产生蓝色发射。 3、掺杂Er3+或Tm3+的材料 仅掺杂有一种离子的材料,是通过两步或者更多不的光子吸收实现上转换过程。单掺Er3+的材料,吸收800nm的辐射,跃迁至可产生绿色发射的4S3/2能级。单掺Tm3+的材料吸收650nm的辐射,被激发到可产生蓝色发射的1D2能级和1G4能级。 四、优点 上转换发光具有如下优点:①可以有效降低光致电离作用引起基质材料的衰退;②不需要严格的相位匹配,对激发波长的稳定性要求不高;③输出波长具有一定的可调谐性。 五、稀土上转换材料的应用 随着频率上转换材料研究的深入和激光技术的发展,人们在考虑

光致发光高分子材料

光致发光高分子材料 摘要:稀土高分子发光材料由于兼具稀土离子发光强度高、色纯度高和高分子材料优良的加工成型性能等优点而倍受瞩目。本文就稀土光致发光材料进行了分类,对其发光特性作了简要介绍,综述了其开发与应用的历史与现状,并介绍了其目前在各个领域的应用产品。 关键词:稀土;高分子;光致发光材料;长余辉材料 1前言 光致发光材料又称超余辉的蓄光材料。长余辉光致发光材料是吸收光能后进行蓄光而后发光的物质。它是一种性能优良,无需任何电源就能自行发光的材料。可利用其制成各种危险标识、警告牌;做成各种安全、逃生标志;在应付突发事件、事故中可发挥巨大的作用。在发生突发事故时,电源往往被切断,这使得许多依靠电源发光照明的安全标志失去了作用,而采用长余辉发光材料的安全标志此时将发挥其特殊的作用。因此长余辉光致发光材料的研究,具有重要的科学意义和实用性[1]。现在我们已开发出很多实用的发光材料。在这些发光材料中,稀土元素起的作用非常大[2,3]根据激发源的不同,稀土发光材料可分为光致发光材料、阴极射线(CRT)发光材料、X射线发光材料以及电致发光材料[4]。本文主要介绍光致发光材料. 2光致发光材料的发光原理[5] 发光材料被外加能量(光能)照射激发后,能量可以直接被发光中心吸收(激活剂或杂质),也可被发光材料的基质吸收。在第一种情况下,吸收或伴有激活剂电子壳层内的电子向较高能级的跃迁或电子与激活剂完全脱离及激活剂跃迁到离化态(形成“空穴”)。在第二种情况下,基质吸收能量时,在基质中形成空穴和电子,空穴可能沿晶体移动,并被束缚在各个发光中心上,辐射是由于电子返回到较低(初始)能量级或电子和离子中心(空穴)再结合(复合)所致。即当外加能量(光能)的粒子与发光基质的原子发生碰撞而引起它们激发电离。电离出来的自由电子具有一定的能量,又可引起其他原子的激发电离,当激发态或电离态的原子重新回到稳定态时,就引起发光[6]。发光基质将所吸收的能量转换为光辐射,这

宽禁带半导体ZnO材料的调研开题报告

山东建筑大学毕业论文开题报告表班级: 姓名: 论文题目宽禁带半导体ZnO的调研一、选题背景和意义 Zn0是一种新型的II-VI族宽禁带半导体材料,具有优异的晶格、光电、压电和介电特性,和III-V族氮化物及II-VI族硒化物比具有很多潜在的优点。首先,它是一种直接带隙宽禁带半导体,室温下的禁带宽度为,与GaN()相近,而它的激子结合能()却比GaN()高出许多,因此产生室温短波长发光的条件更加优越;而且ZnO薄膜可以在低于500℃温度下获得,不仅可以减少材料在高温西制备时产生的杂质和缺陷,同时也大大简化了制备工艺;同时ZnO来源丰富,价格低廉,又具有很高的热稳定性和化学稳定性。ZnO在UV、蓝光LED和LDS器件等研究方面被认为是最有希望取代GaN的首选材料,ZnO已经成为国内外半导体材料领域一个新的研究热点。国内外有很多科研团队都在进行ZnO的研究.虽然Zn0暂时不能完全取代si 在电子产业中的基础地位,但是ZnO以其特殊的性质成为Si电路的补充。 国内外对于ZnO的研究一直是近几年半导体材料研究的热点。无论是薄膜ZnO、纳米ZnO或是体单晶ZnO,文献很好地总结了2003年之前的国外ZnO晶体的研究与发展状况。随着高质量、大尺寸单晶ZnO 生产已经成为可能,单晶ZnO通过加工可以作为GaN衬底材料。ZnO与GaN的晶体结构、晶格常量都很相似。晶格失配度只有2.2%(沿〈001〉方向)、热膨胀系数差异小,可以解决目前GaN生长困难的难题。GaN作为目前主要的蓝、紫外发光半导体材料,在DVD播放器中有重要的应用。由于世界上能生产ZnO单晶的国家不多,主要是美国、日

本。所以ZnO单晶生产具有巨大的市场潜力。近年来,材料制备技术的突破,纳米ZnO半导体的制备、性能及其应用成为材料学的一个研究热点。 本文介绍了ZnO薄膜具有的许多优异特性,优良的压电性、气敏性、压敏性和湿敏性,且原料廉价易得。这些特点使其在表面声波器件(SAW)、太阳能电池、气敏元件等领域得到广泛的应用。随着对ZnO紫外受激发射特性的研究和P型掺杂的实现,ZnO作为光电材料在紫外探测器、LED、LD等领域也有着巨大的应用潜力。另外本文还介绍了纳米氧化锌的许多优点和在许多方面的应用。 目前,我国各类氧化锌处于供不应求的状况,而以活性氧化锌和纳米氧化锌取代传统氧化锌是不可阻挡的趋势,可见,今后纳米氧化锌必会有非常广阔的市场前景。 二、课题关键问题及难点 要深入研究该方面的知识,就要涉猎很多方面的知识。作为本科学生,如何在现有知识的基础上,阅读并理解有关书目、文献,总结归纳相关理论和研究方法,是本课题首先要解决的关键问题。 首先,要了解氧化锌作为宽禁带半导体的特性,然后再细致的查找氧化锌薄膜的诸多性质和这些性质在哪些方面的应用。同时要寻找纳米氧化锌材料与普通氧化锌材料相比有哪些优点、在发展中存在的问题和以后的研究方向。查询相关资料并阅读和理解之后,合理的安排介绍氧化锌作为宽禁带半导体材料的性质和应用。 三、文献综述 当前,电子器件的使用条件越来越恶劣,要适应高频、大功率、耐高温、抗辐照等特殊环境。为了满足未来电子器件需

南京大学宽禁带半导体第三作业

第三次作业 1. 金属与半导体的接触类型强烈依赖于其功函数之差,请阐述其对应关系,但 对p型掺杂的宽禁带半导体而言,金属功函数已无法满足实现其欧姆接触的要求,请以p型氮化镓为例说明人们是如何实现其欧姆接触的。 2. 半导体的表面态对最终金属与半导体接触的性质有较大影响,例如人们在实 际应用中往往发现金属与宽禁带半导体的接触势垒的高低往往与金属的功函数依赖关系较小,这主要是由于高密度的表面态的存在对电子或空穴的陷阱作用所导致的表面费米能级的钉扎现象所致,这将导致欧姆接触或肖特基接触性能变差,请以氮化镓为例说明研究人员如何通过控制氮化镓的表面性质去优化其肖特基接触特性和欧姆接触特性的? 3. 氮化镓与氧化锌作为极性半导体,其Ga/Zn面与N/O面具有完全不同的性 质,请阐述这两种不同的表面对材料生长、掺杂、光学性质以及电接触性质(包括肖特基与欧姆接触)的影响,说明产生这些差异的物理原因。 4. 半导体薄膜中的霍尔迁移率与载流子浓度随着测量温度的变化规律强烈依赖 于薄膜中的掺杂浓度,请分别就低浓度、中等浓度与重掺杂的情形加以阐述,并说明其物理原因。在表征蓝宝石上异质外延氮化镓与氧化锌薄膜的霍尔效应测量中,其测量到的载流子浓度往往表现出更为复杂的变化规律,这主要是由于低温下位于薄膜与蓝宝石之间的界面存在高缺陷密度的高导层的贡献,请阐述这一现象,并以公式说明人们是如何去解决这一问题的。 5. 半导体薄膜中的迁移率大小是表征半导体材料晶体质量与电学性能的关键参 数,这主要是由于半导体中的位错密度对迁移率具有严重的影响。而从光学性质来说,半导体中的位错线往往也是电子或空穴的陷阱,导致深能级发光

宽禁带半导体材料与工艺

宽禁带半导体材料与工艺 1.1 宽禁带半导体的概念和发展 宽禁带半导体(WBS)是自第一代元素半导体材料(Si)和第二代化合物半导体材料(GaAs、GaP、InP等)之后发展起来的第三代半导体材料。这类材料主要包括SiC(碳化硅)、C-BN(立方氮化硼)、GaN(氮化镓、)AlN(氮化铝)、ZnSe(硒化锌)以及金刚石等。 第二代半导体GaAs与Si相比除了禁带宽度增大外,其电子迁移率与电子饱和速度分别是Si的6倍和2倍,因此其器件更适合高频工作。GaAs场效应管器件还具有噪声低、效率高和线性度好的特点但相比第三代半导体GaN和SiC,它的热导率和击穿电场都不高,因此它的功率特性方面的表现不足。为了满足无线通信、雷达等应用对高频率、宽禁带、高效率、大功率器件的需要从二十世纪九十年代初开始,化合物半导体电子器件的研究重心开始转向宽禁带半导体。 我们一般把禁带宽度大于2eV的半导体称为宽禁带半导体。宽禁带半导体材料具有宽带隙、高临界击穿电场、高热导率、高载流子饱和漂移速度等特点,在高温、高频、大功率、光电子及抗辐射等方面具有巨大的应用潜力。 1.2 主要的宽禁带半导体材料 近年来,发展较好的宽禁带半导体材料主要是SiC和GaN,其中SiC的发展更早一些,碳化硅、氮化镓、硅以及砷化镓的一些参数如下图所示:

图1-1 半导体材料的重要参数 如上图所示,SiC和GaN的禁带宽度远大于Si和GaAs,相应的本征载流子浓度小于硅和砷化镓,宽禁带半导体的最高工作温度要高于第一、第二代半导体材料。击穿场强和饱和热导率也远大于硅和砷化镓。 2.1 SiC材料 纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。 SiC是IV-IV族二元化合物半导体,也是周期表IV族元素中唯一的一种固态化合物。构成元素是Si和C,每种原子被四个异种原子所包围,形成四面体单元(图25a)。原子间通过定向的强四面体SP3键(图25b)结合在一起,并有一定程度的极化。SiC具有很强的离子共价键,离子性对键合的贡献约占12%,决定了它是一

宽禁带半导体光电材料研究进展

宽禁带半导体光电材料的研究及其应用 宽禁带半导体材料(Eg大于或等于3.2ev)被称为第三代半导体材料。主要包 括金刚石、SiC、GaN等。和第一代、第二代半导体材料相比,第三代半导体材料具有禁带宽度大,电子漂移饱和速度高、介电常数小、导电性能好,具有更高的击穿电场、更高的抗辐射能力的特点,其本身具有的优越性质及其在微波功率器件领域应用中潜在的巨大前景,非常适用于制作抗辐射、高频、大功率和高密度集成的电子器件。 以氮化镓(GaN)为代表的Ⅲ族氮化物作为第三代半导体材料,是一种良好的直 接宽隙半导体光电材料,其室温禁带宽度为3.4eV,它可以实现从红外到紫外全可见光范围的光辐射。近年来已相继制造出了蓝、绿色发光二极管和蓝色激光器等光电子器,这为实现红、黄、蓝三原色全光固体显示,制备大功率、耐高温、抗腐蚀器件,外空间紫外探测,雷达,光盘存储精细化、高密度,微波器件高速化等奠定了基础。 氮化镓和砷化镓同属III-V族半导体化合物,但氮化镓是III-V族半导体化合物中少有的宽禁带材料。利用宽禁带这一特点制备的氮化镓激光器可以发出蓝色激光,其波长比砷化镓激光器发出的近红外波长的一半还要短,这样就可以大大降低激光束聚焦斑点的面积,从而提高光纪录的密度。与目前常用的砷化镓激光器相比,它不仅可以将光盘纪录的信息量提高四倍以上,而且可以大大提高光信息的存取速度。这一优点不仅在光纪录方 面具有明显的实用价值,同时在光电子领域的其他方面也可以得 到广泛应用。虽然人们早就认识到氮化镓的这一优点,但由于氮 化镓单晶材料制备上的困难以及难于生长出氮化镓PN结,氮化 镓发光器件的研究很长时间一直没有获得突破。经过近20年的 努力,1985年通过先进的分子束外延方法大大改善了氮化镓材

OLED-材料的发光原理

掌握未来显示技术:OLED材料的发光原理 2016-11-11OLED新技术 众所周知,OLED显示器不需要背光源,在通电的情况下OLED材料可以主动发出红绿蓝三色光。那OLED发光的原理是什么呢? 首先上一张大家已经看腻的图:OLED器件结构。 OLED器件结构(来源:百度百科) 从图中可以看出,OLED器件自下而上分为: 玻璃基板(TFT)、阳极、空穴注入/传输层、有机发光层、电子注入/传输层和金属阴极(顺便吐槽一下百度百科里各层名字的叫法。。。)

发光的部位在器件中间的有机发光层(再具体点就是发光层中的掺杂材料),发光机理如下图所示: 有机发光层的发光机理(来源:网络) OLED器件是电流驱动型,在通电的情况下,空穴从阳极进入器件,穿过空穴注入/传输层,电子从阴极进入器件,穿过电子注入/传输层,两者最终到达有机发光层。

接下来要讲解的内容可能会比较生涩,为便于不同层次读者的理解,小编用不同的内容分成基础班和进修班,请各位读者对号入座。 基础班: 空穴和电子在发光层中相遇,然后复合,形象一点讲的话,就像久未相见的恋人,一见面便紧紧抱在一起;电子空穴复合时会产生能量,释放出光子,你可以将光子理解为下图中情侣头上的心形;我们能看见的光是由无数的光子组成,就像情侣头上不断冒出的小心心;光的颜色由光子的能量决定,如果能量的高低用情侣的亲密程度比喻的话:特别亲密的发出蓝色(能量高发出蓝光),比较亲密的发出绿色(能量适中的发出绿光),一般亲密的发出红色(能量低的发出红光)。

进修班: 在讲解OLED发光原理之前,我们先学习一个概念:能级; 能级:原子核外电子的状态是不连续的,因此各状态对应的能量也是不连续的,这些能量值就是能级; 能级就像楼梯的台阶,只存在1阶、2阶这样的整数,不会出现诸如1.5阶、2.1阶这样的情况,能级的示意图如下; 能级(来源:百度百科) 在正常状态下,原子处于最低能级,即电子在离核最近的轨道上运动,这种状态称为基态;

宽禁带半导体材料特性及生长技术_何耀洪

宽禁带半导体材料特性及生长技术 何耀洪, 谢重木 (信息产业部电子第46所,天津,300220) 摘要:叙述了宽带半导体材料SiC、G aN的主要特性和生产长方法,并对其发展动态和存在问题进行了简要评述。 关键词:宽禁带半导体材料;碳化硅;氮化硅 中图分类号:TN304 文章编号:1005-3077(1999)-04-0031-09 The Characteristics and Growth Methods of Wide Bandgap Semiconductor Materials HE Yaohong, XIE Chongmu (T he46th Research Institute,M.I.I.,T ianjin,300220) A bstract:The paper presents the main characteristics and g rowth methods o f wide bandgap semiconduc- tor materials,In aditio n,the lastest developments and problems o n SiC and GaN to be reviewed. Key words:w ide bandgap semiconductor materials;SiC;G aN 1 引 言 在半导体工业中,人们习惯地把锗(Ge)、硅(Si)为代表的元素半导体材料称为第一代半导体材料,把砷化镓(GaAs)、磷化铟(InP)为代表的化合物半导体材料称为第二代半导体材料,而把碳化硅(SiC)、氮化镓(GaN)为代表的化合物半导体材料称为第三代半导体材料,由于SiC和GaN材料的禁带宽度较Si、GaAs等材料更宽,因而它们一般具有高的击穿电场、高的热导率、高的电子饱和速率及更高的抗辐射能力,因而更适合于制作高温、高频及大功率器件,故称这类材料为宽禁带半导体材料,也称高温半导体材料。它们在微电子和光电子领域中具有十分广阔的应用潜在优势,如AlGaN HFET最大振荡频率超过100GHz,功率密度大于5.3W/m m(在10GHz时),4H-SiC M EFET在850M Hz(CW)和10GHz(PW)时功率密度3.3W/mm,4H-SiC PIN二极管击穿电压高达5.5kV;在可见光全光固体显示、高密度存储、紫外探测及在节能照明(半导体激光光源能耗仅为相当亮度白炽灯泡的十分之一,而寿命长达10~15年)等方面开创了广阔的应用前景。 2 SiC材料特性及生长技术 近年来,随着半导体器件在航空航天、石油勘探,核能、汽车及通信等领域应用的不断扩 收稿日期:1999-11-30

led灯的结构及发光原理(精)

led灯的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 led灯结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、什么是led光源,led光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50%

5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7.颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色 8. 价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成。 三、单色光led灯的种类及其发展历史 最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。 到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。 四、单色光LED的应用 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12 英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。 另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。 五、白光led灯的开发 对于一般照明而言,人们更需要白色的光源。1998年发白光的led灯开发成功。这种led灯是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含

发光材料综述

结构与物性结课作业 发 光 材 料 综 述 学院:物理与电子工程学院 专业:材料物理13-01 学号:541311020102 姓名:陈强

发光材料综述 摘要: 能够以某种方式吸收能量,将其转化成光辐射(非平衡辐射)物质叫做发光材料。发光是辐射能量以可见光的形式出现。辐射或任何其他形式的能量激发电子从价带进入导带,当其返回到价带时便发射出光子(能量为 1.8~3.1eV)。如果这些光子的波长在可见光范围内,那么,便产生了发光现象。 0引言 发光材料是国家重要战略能源,在人们的日常生活中也占据着重要地位,被广泛应用于各个领域,因此对发光材料的研制和运用受到越来越多的关注。 本文基于发光材料研究现状,分析发光材料种类和制备方式,并介绍几种不同发光材料在生活中的应用,以期推动我国发光材料研究探索,为国家建设和人们生活水平提高提供助力。发光材料是人类生活重要材料之一,在航天科技、海洋运输、医学医疗、出版印刷等各个领域被广泛应用,具有极为重要的战略地位。 随着科学技术的发展,发光材料研究已经成为了我国科学界广泛关注的焦点,其运用技术直接关系到人们日常生活质量和国防建设,因此如何推动发光材料研制,将其更加安全、合理、高效的应用于生产生活中,成为了亟待解决的问题。 1发光材料分类 发光材料按激发的方式可分为以下几类: 1.1光致发光材料 用紫外、可见及红外光激发发光材料而产生的发光称为光致发光,该发光材料称为光致发光材料。 光致发光过程分为三步:①吸收一个光子;②把激光能转移到荧光中心;③

由荧光中心发射辐射。 发光的滞后时间约为10-8s的称为荧光,衰减时间大于10-8s的称为磷光。 光致发光材料一般可分为荧光灯用发光材料、长余辉发光材料和上转换发光材料。 按发光驰豫时间分类,光致发光材料分为荧光材料和磷光材料。 图1 1.2电致发光材料 所谓电致发光是在直流或交流电场作用下,依靠电流和电场的激发使材料发光的现象,又称场致发光。这种发光材料称为电致发光材料,或称场致发光材料。 1. 本征式场致发光 简单地说,本征式场致发光就是用电场直接激励电子,电场反向后电子与中心复合而发光的现象。 2. 注入式发光 注人式场致发光是由Ⅱ- Ⅳ族和Ⅲ - Ⅴ族化合物所制成的有 p - n 结的二极管,注人载流子,然后在正向电压下,电子和空穴分别由 n 区和 p 区注人到结区并相互复合而发光的现象。又称p-n结电致发光 目前大概可以有以下几种材料: 1.2.1直流电压激发下的粉末态发光材料 目前常用的直流电致发光材料有Zn S:Mn,Cu,其发光亮度大约为350 cd/m。

宽禁带半导体器件对比

宽禁带半导体功率器件 刘海涛陈启秀 摘要阐述了宽禁带半导体的主要特性与SiC、金刚石等主要宽禁带半导体功率器件的最新发展动态及其存在的主要问题,并对其未来的发展作出展望。 关键词宽禁带半导体功率器件碳化硅金刚石 Wide Bandgap Semiconductor Power Devices Liu Haitao,Chen Qixiu (Institute of Power Devices,Zhejiang University,Hangzhou 310027) Abstract The paper presents the main characteristics of wide bandgap semiconductors,and elaborates the latest development of SiC and diamond power devices.At the same time,the future development of SiC and diamond power devices is forcasted. Keywords Wide bandgap semiconductor Power devices SiC Diamond 1 引言 由于Si功率器件已日趋其发展的极限,尤其在高频、高温及高功率领域更显示出其局限性,因此开发研制宽带半导体器件已越来越被人们所关注。所谓宽带半导体(WBG)主要是指禁带宽度大于2.2电子伏特的半导体材料,包括Ⅱ—O、Ⅱ—S、Ⅱ—Se、Ⅲ—N、SiC、金刚石以及其他一些化合物半导体材料。这些材料一般均具有较宽的禁带、高的击穿电场、高的热导率、高的电子饱和速率,因此他们比Si及GaAs更适合于制作高温、高频及高功率器件。其中Johnson优值指数(JFOM= E c.v s/2π,E c为临界电场;v s为电子饱和速率)、Keyes优值指数(KFOM =λ[C.v s/4πε]1/2,其中C为光速;ε为介电常数)和Baliga优值指数(BFOM=εμE G3,其中E G为禁带宽度,μ为迁移率)分别从功率频率能力、耐热能力及导通功率损耗三方面说明了这一科学事实[1]。表1[2]列出了常见宽带半导体与Si,GaAs的比较。 表1 宽禁带半导体材料的基本特性

氮化物宽禁带半导体—第三代半导体技术

氮化物宽禁带半导体一第三代半导体技术 张国义1,李树明2 北掌大学韵曩最,卜蘑■一目毫重点宴■宣 ‘2北大董光科技酣青曩公司 北囊1∞耵1 i盲謦。 莳耍曰曩了量化精半导体曲主要持征和应用■量.巨督圈辱上和重内的主曩研兜理状.市场分析与攮测.由此-u蚪再}11.氯化韵帕研究已妊成为高科技鬣壤田际竟争的■膏点之一.t为第三代半■体拄术,育形成蠢科技臣夫产_t群的r口艟 性.也存在着蠢积的竞争和蕞{;‘翻舶风龄. 众所周知,以Ge,Si为基础的半导体技术,奠定丁二十世纪电子工业的基础.其主要产品形式是以大规模集成电路为主要技术的计算机等电子产品.形成了巨大的徽电子产业 群。其技术水平标志是大的晶片尺寸和窄的线条宽度.如12英寸/0.15微米技术.是成 功的标志,被称之为第一代半导体技术.以G“s.InP.包括G吐l^s,IfIGaAsP,InGaAlP瞢 III—v族砷化物和碑化韵半导体技术,奠定了二十世纪光电子产业的基础,其主要产品形 式是以光发射器件,如半导体发光二极管(L肋)和激光嚣(LD)等.为基础的光显示. 光通讯,光存储等光电子系统,形成了巨大的信息光电产业群。其技术水平标志是使通讯 速度,信息容量,存储密度大幅度提高,被称之为第二代半导体技术. 对徽电子和光电子领域来说,二十世纪存在的问矗和二十一世纪发晨趋势是人们关心的问题.高速仍然是微电子的追求目标,高温大功率还是没有很好解决的问题;光电子的 主要发展趋势是全光谱的发光器件,特别是短波长(绿光.蓝光.咀至紫外波段)LED和 LD.光电集成(0EIc)是人们长期追求的目标,由于光电材料的不兼容性,还没有很好的 实现。事实上.这些问题是第一代和第二代半导体材料本身性质决定,不可舱解决的问 题。它需要寻找一种高性能的宽禁带半导体材料.而这一工作二十世纪后半叶就已经开 始.在世纪之交得以确认。那就是第三代半导体技术一III一族氮化物半导体技术. GaN、AlN和InN以及由它们组成的三元合金是主要的III族氰化物材料.所有氮化物晶体的稳定结构是具有六方对称性的纤锌矿结构,而在一些特定的条件下,例如在立方豸多。 衬底上外延时,GaN和InN能够形成立方对称性的闪锌矿结构.这两种结构只是原子层的 堆积次序不同,它们的原予最近邻位置几乎完全相同,而次近邻位置有所不同,因而它们 的性质根接近。三元合金A1GaN,InGaN也是重要的氰化物材料。它们的禁带宽度基本符 合vegard定理[1,2]。№tsuoka[3]通过计算指出AlN与GaN可咀组成组份连续变化的合 金,IrIN与GaN则存在较大的互熔间隙. 以氮化镓为基础的宽禁带半导体可以用来,并已经广泛用来制备高亮度蓝。绿光平"白光LED,蓝光到紫外波段的激光器(LD),繁外光传感器,等光屯子器件:高温人功率场 设麻品体管(FET).双极晶体管(HBT),高电子迁移率晶体管(HEMT)等徽电子器 什:这些器件构成了全色火屏幕LED显示和交通信号灯等应Hj的RGB1:鞋:向光LED将构 ?17?

相关文档
相关文档 最新文档