文档库 最新最全的文档下载
当前位置:文档库 › 基于Cadzow滤波法压制线性干扰

基于Cadzow滤波法压制线性干扰

基于Cadzow滤波法压制线性干扰
基于Cadzow滤波法压制线性干扰

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

粒子滤波原理和仿真

粒子滤波算法原理和仿真 1 引言 粒子滤波(Particle Filter, PF)是一种基于蒙特卡洛(Monte Carlo, MC)方法的递推贝叶斯滤波算法。其核心思想是通过从状态空间寻找的一系列随机样本来近似系统变量的概率密度函数,以样本均值代替积分运算,从而获得状态的最小方差估计。其中从状态空间中抽取的样本称为“粒子”。一般地,随着粒子数目的增加,粒子的概率密度函数就逐渐逼近状态的概率密度函数,从而达到最优贝叶斯估计的效果。 2 粒子滤波原理 2.1 系统的动态空间 对于被观测对象的状态,可以通过以下非线性离散系统来描述: 11(,)t t t x f x w --= (1) (,)t t t z h x v = (2) 以上为系统的状态方程和观测方程。其中,f ( )为状态函数,h ( )为观测函数,x t 是系统在时间t 的状态变量,w t 为对应的过程噪声,z t 是系统在时间t 的观测值,v t 为对应的观测噪声。 从贝叶斯估计角度来看,状态估计问题就是根据观测信息z 0:t 构造状态的概率密度函数p (x 0:t |z 0:t ),从而估计在系统在任何状态下的滤波值。设系统状态序列函数为g t ,则有: []0:0:0:0:0:()()()t t t t t t x E g x g x p x z dx =? (3) 根据蒙特卡洛方法,后验概率分布可以用有限的离散样本来近似,由大数定律,当系统粒子数N →∞时,期望E [g t (x 0:t )]可近似为: []() 0:0:1 1()()N i t t t t i E g x g x N ==∑ (4) 式中{() 0:i t x : i =1,2,...N }为状态空间中按p (x 0:t |z 0:t )得到的采样点。 2.2 重要性采样 在粒子采集过程中,p (x 0:t |z 0:t )往往是未知且多变的,因此可先从一个已知且容易采样的参考分布q (x 0:t |z 0:t )中抽样,再通过对抽样粒子集进行加权求和来估计系统的状态值,即:

第二讲近似高斯滤波

张永安 非线性/非高斯滤波讲义 第二讲 近似高斯滤波 2.1 泰勒线性化和推广卡尔曼滤波 给定随机系统的动态滤波问题,系统包括两个过程: (1) 状态过程(信号过程):具有初始分布0~()0x p x ,转移核为()1|k k p x x ?的马尔科夫过程; (2) 观测过程:观测量与状态量k z k x 有概率关联()|k k p z x 。 若系统具有 设系统具有线性、高斯性,亦即具有以下性质: SSM Σ∈S S (A1) 可以写成线性状态空间模型形式: S ???+=+=Σ?k k k k k k k k v x C z w x A x 1LSSM :(A2) 和服从高斯分布,即k w k v GSSM Σ∈S ; (A3) 状态初始分布为高斯分布: 000?~(;,0)x x x P N 以上(A2)与(A3)合称高斯假设,三个假设合起来线性高斯假设,具有线性高斯假设的模型称为线性高斯模型,其全体记为。则可以证明,若服从高斯分布: LGSSM Σ)|(1:11??k k z x p 11:111|11|1?(|)~(;,k k k k k k k p x z x x P ???????)N )|(1:1?k k z x p 和也是高斯的, )|(:1k k z x p 1:1|1|1?(|)~(;,)k k k k k k k p x z x x P ???N 1:||?(|)~(;,)k k k k k k k p x z x x P N 且这三个高斯分布的参数(状态的均值和协方差阵)满足卡尔曼滤波递推公式,类似于贝叶 斯递推滤波公式,卡尔曼滤波分两部分: 一步预测和测量修正。其算法如下: 算法2.1 (卡尔曼滤波): (1) 给定 0|00|0,P x (2) 递推计算:其中 ",1,0=k (a) 一步预测: k k k k k k q x A x +=???1|11|?? k T k k k k k k Q A P A P +=???1|11|(b) 测量修正:

非线性滤波算法

SINS/CNS组合导航技术 众所周知,SINS和CNS具有很强的互补性。将CNS与SINS组合,构成SINS/CNS自主组合导航系统,既能有效弥补SINS误差随时间积累的缺陷,又能弥补CNS平台结构设计难度大、结构复杂、成本高的缺陷。显然,SINS/CNS 自主组合系统兼备了SINS、CNS两者的优点,相互取长补短,不但抗干扰能力强、而且自主性能好,定位精度高,非常适合飞机对导航系统性能的要求。SINS/CNS组合导航的技术难点 1. 需要设计一套具有实时性和可行性的SINS/CNS自主组合导航系统方案,具体化各子传感器技术指标,使得各子传感器指标可考核;各传感器信息既互相兼容、互补和辅助,又能有效地进行信息交换。 2. 在某些特定情况下,系统的线性化数学模型的确能够反映出实际系统或过程的实际性能和特点。但是,任何实际系统总是存在不同程度的非线性,其中有些系统可以近似看成线性系统,而大多系统则不能仅用线性数学模型来描述,存在于这些系统中的非线性因素不能忽略。 3.SINS/CNS组合导航系统利用CNS输出的位置信息对SINS进行修正,能够克服SINS导航误差随时间积累的缺点,提高导航系统的定位精度。然而,由于CNS导航系统星图匹配及定位时需要耗用的不等的匹配计算时间,导航数据输出存在时延现象,导致其输出的位置及航向信息具有滞后效应,这将严重影响组合导航的解算精度。 本项目为了贴近实际工程系统,建立的自主组合导航系统模型为非线性数学模型。显然,卡尔曼滤波不能满足项目需求,必须建立与之相适应的非线性滤波系统。 扩展卡尔曼滤波(Extended KalmanFilter,EKF)在组合导航系统非线性滤波中得到了广泛应用,但它仍然具有理论局限性,具体表现在:(1)当系统非线性度较严重时,忽略Taylor展开式的高阶项将引起线性化误差增大,导致EKF的滤波误差增大甚至发散;(2)雅可比矩阵的求取复杂、计算量大,在实际应用中很难实施,有时甚至很难得到非线性函数的雅可比矩阵;(3)EKF将状态方程中的模型误差作为过程噪声来处理,且假设为高斯白噪声,这与组合导航系统的实际噪声情况并不相符;同时,EKF是以KF为基础推导得到的,其对系统初始状态的统计特性要求严格。因此EKF关于系统模型不确定性的鲁棒性很差。 模型预测滤波器(Models Predictive Filter,MPF)是基于最小模型误差(Minimum Model Error,MME)准则对系统状态进行估计,模型误差在估计过程中被确定并用于修正系统的动态模型。这种滤波器能够有效地解决存在显著动态模型误差情况下的非线性系统状态估计问题。EKF将模型误差作为过程白噪声

自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波 第1章绪论 (1) 1.1自适应滤波理论发展过程 (1) 1.2自适应滤波发展前景 (2) 1.2.1小波变换与自适应滤波 (2) 1.2.2模糊神经网络与自适应滤波 (3) 第2章线性自适应滤波理论 (4) 2.1最小均方自适应滤波器 (4) 2.1.1最速下降算法 (4) 2.1.2最小均方算法 (6) 2.2递归最小二乘自适应滤波器 (7) 第3章仿真 (12) 3.1基于LMS算法的MATLAB仿真 (12) 3.2基于RLS算法的MATLAB仿真 (15) 组别:第二小组 组员:黄亚明李存龙杨振

第1章绪论 从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过 程称为滤波。相应的装置称为滤波器。实际上,一个滤波器可以看成是 一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、 或者希望得到的有用信号,即期望信号。滤波器可分为线性滤波器和非 线性滤波器两种。当滤波器的输出为输入的线性函数时,该滤波器称为线 性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线 性滤波器。 自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。 1.1自适应滤波理论发展过程 自适应技术与最优化理论有着密切的系。自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。 1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。基于这~准则的最佳滤波器称为维纳滤波器。20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出 了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。这种基于MMSE准则的对于动态系统的离散形式递推算法即卡尔曼滤波算法。这两种算法都为自适应算法奠定了基础。 从频域上的谱分析方法到时域上的状态空间分析方法的变革,也标志 着现代控制理论的诞生。最优滤波理论是现代控制论的重要组成部分。在控制论的文献中,最优滤波理论也叫做Kalman滤波理论或者状态估计理论。 从应用观点来看,Kalman滤波的缺点和局限性是应用Kalman滤波时要求知道系统的数学模型和噪声统计这两种先验知识。然而在绝大多数实际应用问题中,它们是不知道的,或者是近似知道的,也或者是部分知道的。应用不精确或者错误的模型和噪声统计设计Kalman滤波器将使滤波器性能变坏,导致大的状态估计误差,甚至使滤波发散。为了解决这个矛盾,产生了自适应滤波。 最早的自适应滤波算法是最小JY(LMS)算法。它成为横向滤波器的一种简单而有效的算法。实际上,LMS算法是一种随机梯度算法,它在相对于抽头权值的误差信号平方幅度的梯度方向上迭代调整每个抽头权 值。1996年Hassibi等人证明了LMS算法在H。准则下为最佳,从而在理论上证明了LMS算法具有孥实性。自Widrow等人1976年提出LMs自适应滤波算法以来,经过30多年的迅速发展,已经使这一理论成果成功的应用到通信、系统辨识、信号处理和自适应控制等领域,为自适应滤波开辟了新的发展方向。在各种自适应滤波算法中,LMS算法因为其简单、计算量小、稳定性好和易于实现而得到了广泛应用。这种算法中,固定步长因子μ对算法的性能有决定性的影响。若μ较小时,算法收敛速度慢,并且为得到满意的结果需要很多的采样数据,但稳态失调误差

余翊森_贝叶斯框架下B-Splines滤波算法的实现及其并行化

学士学位论文 BACHELOR DISSERTATION 论文题目贝叶斯框架下B-Splines滤波算法的实现及其并行化 学生姓名余翊森 学号2010021070030 专业电子信息工程 学院电子工程学院 指导教师唐续 指导单位电子科技大学 2014年6月4日

摘要 摘要 在理论上贝叶斯滤波可以解决非线性状态估计问题,但在大多数实际应用场景下,状态变量的概率密度函数无解析表达式。这使得贝叶斯滤波中的相关积分运算难以开展。为解决非线性状态估计的问题,学界已提出了诸如扩展卡尔曼滤波,无迹卡尔曼滤波,基于序贯蒙特卡洛(sequential Monte Carlo,SMC)的算法等多种方法,但它们仍存在种种不足。 本文研究的贝叶斯框架下的B-Splines滤波算法,该算法利用B-Splines对状态变量的概率密度函数,转移概率函数进行拟合重构,从而使相关函数以B-Splines的形式参与到贝叶斯滤波的相关运算中。由于其函数形式是多项式,其积分操作十分方便。同时,在对概率密度函数进行拟合时对系统不需要任何线性假设。这使贝叶斯滤波在非线性状态估计问题中得以用非SMC的算法实现。并且,该算法不存在基于SMC的算法中存在的粒子贫化退化的问题。从仿真结果来看,其估计精度高于粒子滤波等SMC算法。 该算法中存在大量向量和矩阵操作,对算法进行并行化可使其运行速度大大提高。本文中采用开源开发工具GPUmat实现了算法的并行化。仿真结果显示,相对于非并行的实现方式,在现有的并行化方法下,单次循环的加速比可达27.8. 关键词:贝叶斯滤波,非线性估计,B-Splines,GPUmat,并行化 I

自适应滤波器毕业设计论文

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波

随机过程知识点

第一章:预备知识 §1、1 概率空间 随机试验,样本空间记为Ω。 定义1、1 设Ω就是一个集合,F 就是Ω的某些子集组成的集合族。如果 (1)∈ΩF; (2)∈A 若F ,∈Ω=A A \则F; (3)若∈n A F , ,,21=n ,则 ∞=∈1n n A F; 则称F 为-σ代数(Borel 域)。(Ω,F )称为可测空间,F 中的元素称为事件。 由定义易知: . 216\,,)5)4(111F A A A i F A F B A F B A F i i n i i n i i i ∈=∈∈∈∈?∞ === ,,则,,,)若(; 则若(; 定义1、2 设(Ω,F )就是可测空间,P(·)就是定义在F 上的实值函数。如果 ()()()()∑∞ =∞==???? ???=?≠=Ω≤≤∈1121,,,31210,)1(i i i i j i A P A P A A j i A A P A P F A 有 时,当)对两两互不相容事件(; )(; 任意 则称P 就是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。 定义1、3 设(P F ,,Ω)就是概率空间,F G ?,如果对任意 G A A A n ∈,,,21 , ,2,1=n 有: (),1 1∏===???? ??n i i n i i A P A P 则称G 为独立事件族。 §1、2 随机变量及其分布 随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函 数,{}T t X t ∈,就是独立的。 §1、3随机变量的数字特征 定义1、7 设随机变量X 的分布函数为)(x F ,若?∞ ∞-∞<)(||x dF x ,则称 )(X E =?∞ ∞-)(x xdF 为X 的数学期望或均值。上式右边的积分称为Lebesgue-Stieltjes 积分。 方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 DY DX B XY XY = ρ 为X 、Y 的相关系数。若,0=XY ρ则称X 、Y 不相关。 (Schwarz 不等式)若,,22∞<∞

贝叶斯滤波与卡尔曼滤波的区别

课程:现代信号处理专业:信号与信息处理

贝叶斯与卡尔曼滤波的区别 贝叶斯原理的实质是希望用所有已知信息来构造系统状态变量的后验概率密度,即用系统模型预测状态的先验概率密度,再用最新的观测数据进行修正,得到后验概率密度。通过观测数据来计算状态变量取不同值的置信度,由此获得状态的最优估计。

卡尔曼滤波是贝叶斯滤波的一种特例,是在线性滤波的前提下,以最小均方误差为最佳准则的。采用最小均方误差准则作为最佳滤波准则的原因在于这种准则下的理论分析比较简单,因而可以得到解析结果。贝叶斯估计和最大似然估计都要求对观测值作概率描述,线性最小均方误差估计却放松了要求,不再涉及所用的概率假设,而只保留对前两阶矩的要求。 扩展卡尔曼滤波和无迹卡尔曼滤波都是递推滤波算法,它们的基本思想都是通过采用参数化的解析形式对系统的非线性进行近似,而且都是基于高斯假设。 EKF其基本思想是围绕状态估值对非线性模型进行一阶Taylor展开,

然后应用线性系统Kalman滤波公式。主要缺陷有两点:(1)必须满足小扰动假设,即假设非线性方程的理论解与实际解之差为小量。也就是说EKF只适合非线性系统,对于强非线性系统,该假设不成立,此时EKF性能极不稳定,甚至发散;(2)必须计算Jacobian矩阵及其幂。 UKF是基于UT变换,采用一种确定性抽样方法来计算均值和协方差。相对于EKF的一阶精确,UKF的估计精确度提高到了对高斯数据的三阶精确和对任何非线性的非高斯数据的二阶精确,可出来非加性噪声情况以及离散系统,扩展了应用范围,而且UKF对滤波参数不敏感,鲁棒性强,对复杂的非线性系统,UKF比EKF具有更大的优越性。 如何使卡尔曼滤波后的状态估计误差的相关矩阵的迹最小? Kalman 滤波器是一个最小均方误差估计器,先验状态误差估计可表示为我们最小化这个矢量幅度平方的期望值,这等价于最小化后验估计协方差矩阵的迹,通过展开合并?公式,可得

非线性滤波除噪技术综述

非线性滤波除噪技术综述 马义德张祥光 兰州大学信息科学与工程学院,兰州 730000 (Email: ydma@https://www.wendangku.net/doc/6a12123952.html, ) 【摘要】本文阐述了以中值滤波为代表的传统非线性滤波方法以及以形态滤波为代表的新型非线性滤波方法的发展现状,指明自然图像的多样性和噪声本身的复杂性是实现图像滤除噪声的难点,只有将自适应机制、自组织能力、自学习能力与传统的成熟滤波算法相结合,才能使非线性滤波算法彻底摆脱图像多样性和噪声复杂性的困扰。 【关键词】图像复原中值滤波形态滤波遗传算法模糊数学神经网络 1、引言 在不同的应用场合中,存在着不同类型的噪声影响。按噪声对信号的影响可分为加性噪声和乘性噪声两大类[1]。在计算机视觉和数字图像处理中,噪声的消除一直是人们关注的重点。在一些应用领域,例如基于计算图像导数的算子中,图像中的任何一点噪声都会导致严重的错误。噪声与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。噪声可被译成或多或少的极值,这些极值通过加减作用于一些象素的真实灰度级上,在图像上造成黑白亮暗点干扰,极大降低了图像质量,影响图像复原、分割、特征提取、图像识别等后继工作的进行。因而对其抑制处理是图像处理中非常重要的一项工作。 在数字信号处理和数字图像处理的早期研究中,线性滤波器是噪声抑制处理的主要手段。线性滤波器简单的数学表达形式以及某些理想特性使其很容易设计和实现。然而,当信号频谱与噪声频谱混叠时或者当信号中含有非叠加性噪声时(例如由系统非线性引起的噪声或存在非高斯噪声等),线性滤波器的处理结果就很难令人满意。在处理图像时,传统的线性滤波器在滤除噪声的同时,往往会严重模糊图像细节(如边缘等),而且不能有效滤除椒盐噪声。就是说,线性滤波器在信号与噪声彼此相关情况下不能很好工作。虽然人类视觉的确切特性目前还未完全揭示出来,但许多实验表明,人类视觉系统的第一处理级是非线性的。基于上述原因,早在1958年维纳(Wiener)就提出了非线性滤波理论。非线性滤波器在一定程度上克服了线性滤波器的这一缺点。由于它能够在滤除噪声的同时,最大限度地保持了图像信号的高频细节,使图像清晰、逼真,从而得到广泛应用和研究。目前已有很多比较经典的非线性滤波算法,如:中值滤波[2]、形态滤波[3]、层叠滤波[4]以及基于中值滤波的一些改进滤波算法等。 一般图像处理过程如图1-1图像处理链状图所示,包含以下五项不同的工作: ①图像预处理:具体又分为噪声去除、图像增强、边缘检测以及去模糊等。 ②数据简化:具体又分为图像压缩和特征提取等。 ③分割:具体包括纹理分割、颜色识别和分类等。 ④目标识别:具体包括模板匹配以及基于特征的识别等。 1

自适应滤波器的dsp实现

学号: 课程设计 学院 专业 年级 姓名 论文题目 指导教师职称 成绩 2013年 1 月 10 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 自适应滤波器原理 (2) 2 自适应滤波器算法 (3) 3 自适应滤波算法的理论仿真与DSP实现 (5) 3.1 MATLAB仿真 (5) 3.2 DSP的理论基础 (7) 3.3 自适应滤波算法的DSP实现 (9) 4 结论 ............................................... 错误!未定义书签。致谢 ................................................. 错误!未定义书签。参考文献 ............................................. 错误!未定义书签。

自适应滤波器算法的DSP实现 学生姓名:学号: 学院:专业: 指导教师:职称: 摘要:本文从自适应滤波器的基本原理、算法及设计方法入手。本设计最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP 实现了自适应滤波器。 关键词:DSP(数字信号处理器);自适应滤波器;LMS算法;FIR结构滤波器 DSP implementation of the adaptive filter algorithm Abstract:In this article, starting from the basic principles of adaptive filter and algorithms and design methods. Eventually the design use improved the LMS algorithm for FIR adaptive filter,and use MATLAB simulation, adaptive filter using DSP. Key words:DSP;adaptive filter algorithm;LMS algorithm;FIR structure adaptive filter 引言 滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率的信号予以很小的衰减,让该部分信号顺利通过;而对其他不需要的频率信号则予以很大的衰减,尽可能阻止这些信号通过。在电子系统中滤波器是一种基本的单元电路,使用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以很多国家非常重视滤波器的理论研究和产品开发[1]。近年来,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信

第二章 贝叶斯状态估计与粒子滤波

第二章 贝叶斯状态估计与粒子滤波 视觉跟踪可视为状态估计问题[16,54],即根据视觉目标在先前帧的状态信息估计其在当前帧的状态,从而实现视觉跟踪。状态估计一直都是自动控制、通讯、航空与航天等领域的经典研究主题之一[69,70]。贝叶斯状态估计是处理不确定性条件下状态估计问题的有力理论工具[21,22,71]。为了有效处理非高斯、非线性状态估计问题,二十世纪九十年代人们提出了粒子滤波[19-22,71],粒子滤波是基于Monte Carlo 随机模拟的贝叶斯滤波方法。本章将简单介绍贝叶斯状态估计和粒子滤波相关理论问题。首先,通过介绍贝叶斯状态估计相关理论,引出贝叶斯状态滤波问题及实现贝叶斯状态滤波的两大理论工具:卡尔曼系滤波器和粒子滤波。然后,简单介绍了卡尔曼系滤波器的相关理论和算法。最后,详细介绍了粒子滤波理论框架、收敛性问题及经典采样策略。 2.1 贝叶斯状态估计 估计理论是概率论和数理统计的一个分支,所研究的对象是随机现象。它是根据受干扰的观测数据来估计关于随机变量、随机过程或系统的某些特性的一种数学方法[70]。所谓估计,就是从带随机噪声干扰的观测信号中提取有用信息,可定义如下: 定义 2.1 如果假设被估计量为n 维向量()t X ,而其观测量为m 维向量()t Z ,且观测量与被估计量之间具有如下关系 ()()(),t h t t =????Z X V (2.1) 其中,[]h ?是已知的m 维向量函数,由观测方法决定;()t V 是观测误差向量,通常为一个随机过程。那么,所谓估计问题,就是在时间区间[]0,t t 内对()t X 进行观测,从而在得到观测数据(){}0,t t ττ=≤≤Z Z 的情况下,要求构造一个观测数据的函数()?X Z 去估计()t X 的问题,并称()?X Z 是()t X 的一个估计量,或称()t X 的估计为()?X Z [69,70]。 一般地,估计问题可以分为两类:状态估计和参数估计。状态和参数的基本差别在于,前者是随时间变化的随机过程,后者是不随时间变化或随时间缓慢变化的随机变量。因此,

自适应滤波算法理解与应用

自适应滤波算法理解与应用 什么是自适应滤波器自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。 对于一些应用来说,由于事先并不知道所需要进行操作的参数,例如一些噪声信号的特性,所以要求使用自适应的系数进行处理。在这种情况下,通常使用自适应滤波器,自适应滤波器使用反馈来调整滤波器系数以及频率响应。 总的来说,自适应的过程涉及到将代价函数用于确定如何更改滤波器系数从而减小下一次迭代过程成本的算法。价值函数是滤波器最佳性能的判断准则,比如减小输入信号中的噪声成分的能力。 随着数字信号处理器性能的增强,自适应滤波器的应用越来越常见,时至今日它们已经广泛地用于手机以及其它通信设备、数码录像机和数码照相机以及医疗监测设备中。 下面图示的框图是最小均方滤波器(LMS)和递归最小平方(en:Recursive least squares filter,RLS,即我们平时说的最小二乘法)这些特殊自适应滤波器实现的基础。框图的理论基础是可变滤波器能够得到所要信号的估计。 自适应滤波器有4种基本应用类型:1)系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2)逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。3)预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤

基于粒子滤波和贝叶斯估计的目标跟踪

大庆石油学院学报 第32卷第3期2008年6月J OU RNAL OF DAQ IN G PETROL EUM INSTITU TE Vol.32No.3J un.2008 收稿日期:2007212224;审稿人:付光杰;编辑:郑丽芹 作者简介:任伟建(1963-),女,博士生导师,教授,主要从事复杂系统的控制及故障诊断方面的研究. 基于粒子滤波和贝叶斯估计的目标跟踪 任伟建1,山茂泉1,谢 锋2,王文东3 (1.大庆石油学院电气信息工程学院,黑龙江大庆 163318; 2.大庆油田有限责任公司第二采油厂,黑龙江大庆  163414; 3.大庆钻井技术服务公司钻井工具分公司,黑龙江大庆 163461) 摘 要:针对颜色直方图的彩色物体的运动目标,在各种噪声的干扰下多呈现非线性和非高斯的特点,利用粒子滤 波的方法进行运动估计和跟踪.利用粒子滤波对非线性和非高斯的有效逼近的性质,获得粒子的后验概率分布,估计目 标状态,实现目标的有效跟踪.采用累加权值概率并且引入随机正态分布进行采样,保证粒子的多样性,有效避免粒子退 化问题.仿真结果表明该方法的有效性. 关 键 词:粒子滤波;贝叶斯估计;目标跟踪;彩色直方图 中图分类号:TP182 文献标识码:A 文章编号:100021891(2008)0320067204 0 引言 目标存在变化多样和跟踪设备对环境适应性不完善等问题,复杂环境下的运动目标跟踪是个难题[1,2].为了有效跟踪运动目标,必须对运动对象进行有效的估计,利用已有的信息,获得当前运动物体估计状态,然后利用现有观察数据对运动状态进行修正.该类问题经常采用广义卡尔曼滤波方法.广义卡尔曼滤波依赖于模型的线性化和高斯假设.在估计系统状态和方差时,由于线性逼近,可能导致滤波发散.且如果密度函数不是高斯分布,该方法估计精度不高.近年来出现一种新的最优非线性方法———粒子滤波,它源自序列蒙特卡罗方法[3].该方法不受动态系统各个随机变量的限制,能够有效地应用于非线性、非高斯的运动系统中. 文中首先对选定区域目标建立颜色直方图模型,然后在选定区域附近产生目标粒子区域,利用巴特查理亚系数测量粒子区域和选定区域2种分布之间的相似度,运用粒子滤波估计方法实现运动目标的跟踪.在跟踪过程中,粒子存在退化现象.文献[4]采取重采样方法在一定程度上解决了退化问题,但由于重采样是根据权值大小进行的,导致采样后的粒子由大量重复的粒子构成,失去了多样性.文中采取概率累加的方法保持粒子的多样性,防止粒子退化,取得较好的效果. 1 运动目标模型 在确定运动目标后,建立基于指数分布的统计模型.在区域中心,属于运动目标的概率为1,在偏离中心的距离大于阈值时,概率属于指数衰减[5]: p pos (z i )=1,‖z i ‖≤T ; exp -‖z i ‖-T max (‖z i ‖-T )N i =1 ,‖z i ‖>T ,(1)可得到目标的统计直方图分布模型: p pos (u )=C 6N i =1p pos (z i )δ(b (z i )-u ),(2) C =1 6N i =1p pos (z i ). (3)

自适应滤波器的设计(终极版)

目录 摘要…………………..………………………………………………………..….............I 第1章绪论....................................................................................................................错误!未定义书签。 1.1引言……………………………………………...…..…………...……………...错误!未定义书签。 1.2课题研究意义和目的 (1) 1.3国内外研究发展状况 (2) 1.4本文研究思路与主要工作 (4) 第2章自适应滤波器理论基础 (5) 2.1自适应滤波器简介 (5) 2.2自适应滤波器的原理 (5) 2.3自适应滤波算法 (7) 2.4TMS320VC5402的简介 (8) 第3章总体方案设计 (10) 3.1无限冲激响应(IIR)滤波器 (10) 3.2有限冲激响应(FIR)滤波器 (11) 3.3电路设计 (11) 4基于软件设计及仿真 (17) 4.3 DSP的理论基础 (17) 4.4自适应滤波算法的DSP实现 (18) 5总结 (21) 参考文献 (22) 致谢 (23) 附录自适应滤波源代码 (24)

第1章绪论 1.1引言 随着微电子技术和计算机技术的迅速发展,具备了实现自适应滤波器技术的各种软硬件条件,有关自适应滤波器的新算法、新理论和新的实施方法不断涌现,对自适应滤波的稳定性、收敛速度和跟踪特性的研究也不断深入,这一切使该技术越来越成熟,并且在系统辨识、通信均衡、回波抵消、谱线增强、噪声抑制、系统模拟语音信号处理、生物医学电子等方面都获得了广泛应用口。自适应滤波器实现的复杂性通常用它所需的乘法次数和阶数来衡量,而DSP强大的数据吞吐量和数据处理能力使得自适应滤波器的实现更容易。目前绝大多数的自适应滤波器应用是基于最新发展的DSP 来设计的. 滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。 1.2课题研究意义和目的 自适应滤波理论与技术是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能,对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系

粒子滤波详解

2.4粒子滤波 例子滤波是以贝叶斯滤波和重要性采样为基本框架的。因此,想要掌握例子滤波,对于上述两个基本内容必须有一个初步的了解。重要性采样呢,其实就是根据对粒子的信任程度添加不同的权重,添加权重的规则就是:对于我们信任度高的粒子,给它们添加的权重就相对大一些;否则,就加的权重小一些。根据权重的分布形式,实际上就是它与目标的相似程度。 粒子滤波的结构实际上就是加一层重要性采样思想在里面的蒙特卡罗方法(Monte Carlo method,即以某时间出现的频率来指代该事件的概率)。该方法的基本思想是用一组样本(或称粒子)来近似表示系统的后验概率分布,然后使用这一近似的表示来估计非线性系统的状态。采用此思想,在滤波过程中粒子滤波可以处理任意形式的概率,而不像Kalman滤波只能处理线性高斯分布的概率问题。粒子滤波的一大优势也在于此,因此近年来该算法在许多领域得到成功应用。 2.4.1贝叶斯滤波理论 贝叶斯滤波泛指一类以贝叶斯定理为基础的滤波技术,其根据所获得的观测,对状态后验概率分布、状态先验概率分布、状态估计值以及状态预测值等感兴趣量进行递归计算。 假设有一个系统,我们知道它的状态方程,和测量方程如下: =(,(状态方程)(2.4.1) =(,(测量方程)(2.4.2) 其中x为系统状态,y为测量到的数据,f,h是状态转移函数和测量函数,v,n 为过程噪声和测量噪声,噪声都是独立同分布的。 由贝叶斯理论可知,状态估计问题(目标跟踪、信号滤波)就是根据之前一系列的已有数据(测量数据)递推的计算出当前状态的可信度,这个可信度就是概率公式p(),它需要通过预测和更新两个步奏来递推的计算。 预测过程是利用系统模型(状态方程2.4.2)预测状态的先验概率密度,也就是通过已有的先验知识对未来的状态进行猜测,即p( )。更新过程则利用最新的测量值对先验概率密度进行修正,得到后验概率密度,也就是对之前的猜测进行修正。 处理这些问题之前,假设系统的状态转移服从一阶马尔科夫模型,即当前时刻的状态x(k)只与上一个时刻的状态x(k-1)有关, k时刻测量到的数据y(k)只与当前的状态x(k)有关。

相关文档