文档库 最新最全的文档下载
当前位置:文档库 › 第六章 近独立粒子的最概然分布(习题课)汇总

第六章 近独立粒子的最概然分布(习题课)汇总

第六章 近独立粒子的最概然分布(习题课)汇总
第六章 近独立粒子的最概然分布(习题课)汇总

第六章 近独立粒子的最概然分布(习题课)

本章题型

一、基本概念:

1、粒子相空间、自由度;广义坐标、广义动量;粒子微观状态、系

统微观状态;经典相格与粒子微观状态;系统宏观态与系统微观态。 2、等概率原理(统计物理学的基本假设):平衡态孤立系统的各个微观态出现的概率相等。最概然分布作为平衡态下的分布近似。 3、近独立粒子孤立系统的粒子分布和与一个分布相对应的系统的微观状态数及各分布出现的几率、最概然分布。

ΛΛ,,,,21l τττ???

Λ

Λ,,,,21l εεε

}{l a

Λ

Λ,,,,21l ωωω Λ

Λ,,,,21l a a a

与分布}{l a 对应的微观状态数为()l a Ω分布{}l a 要满足的条件是:

N a l

l =∑

E =∑l

l l a ε

系统总的微观状态数()()lm man a l a a l

ΩΩ=Ω∑~总 系统某时刻的微观状态只是其中的一个。在宏观短,微观长时间内(一瞬间)系统经历了所有的微观状态()()lm man a l a a l

ΩΩ∑~----各态历经假

说。且各微观态出现的概率相等

()()lm

man a l a a l

Ω≈

Ω=

∑1

()l

e a a l lm l βε

αωδ--=?=Ω0ln ---玻耳慈曼分布。

此分布(宏观态)的概率为

()()()()()

()1=ΩΩ≈ΩΩ=

Ω=∑lm

man lm man a l lm man lm man lm a a a a a a p l

ρ 即:最概然分布几乎就是孤立系统的平衡态分布。

4、热力学第一定律的统计解释:

Q d W d dU +=

l l

l l l

l l l da d a dU a U ∑∑∑+=?=εεε

比较可知:l l

l d a W d ε∑=

l l

l da Q d ∑=ε

即:从统计热力学观点看,

做功:通过改变粒子能级引起内能变化; 传热:通过改变粒子分布引起内能变化。 二、相关公式 1、分布与微观状态数

①、 ()l a l l

l

l l B M a a ω∏=

Ω∏!N!

.. ②、 ()∏--+=

Ωl l

l l l E B a a a )!1(!)!

1(..ωω ③、 ()∏-=Ωl

l l

l l D F a a a )!

(!!

..ω

ω

④、 ()l a r l l l

l l cl h a N a ) ( ! !

ω?∏∏=

Ω 2、最概然分布

玻耳兹曼分布l

e a l l βεαω--=

玻色-爱因斯坦分布1

-=

+l e a l

l βεαω

费米-狄拉克分布1

+=

+l e a l

l βεαω

本章题型

※、第一类是求粒子运动状态在μ空间的相轨迹:

关键是由已知条件写出广义坐标q 和广义动量p 满足的函数关系

()0,=p q f 。

※、第二类是求粒子能态密度()εD ;

已知粒子的哈密顿量H 与广义坐标q 和广义动量p 满足的函数关系

()p q H H ,=,求粒子能态密度()εD 。不同方法有不同步骤,方法有:

方法一:量子力学方法。

第一步,解薛定谔方程()()p q ,p q,H ψ=ψε)

,求能量本证值i ε 第二步,求出粒子能量小于ε的量子态数()εω

第三步,求出粒子能量在ε到εεd +范围的量子态数()εεd D 。 方法二:半经典近似法。

该方法的依据是:对自由度为r 的一个粒子,对每一个可能的状态对于μ空间中大小为r h 的一个相体积元,因此,粒子能量小于ε的量子态数为

()()??<=εεωp q H r h

dqdp

由此求得粒子能量在到范围的量子态数()()εε

εωεεd d d d D =。

计算步骤:

第一步、写出粒子自由度r 和粒子哈密顿()p q H H ,=。 第二步、由()()??<=εεωp q H r h

dqdp

求出粒子能量小于的状态数。 第三步、求出粒子态密度()()ε

εωεd d D =

[例1]、对于二维自由粒子,在长度L 2内,求粒子在ε到εεd +的能量范

围内量子态数()εεd D 。 方法一:解,量子力学方法:

边长为L 的正方形平面内,粒子哈密顿算符的能量本征方程为

()

ε???=+=22?21H Y X P P m

))

设:()()()y Y x X y x =,? 则

22222222222112ηηεεm dy Y d Y dx X d X XY XY y x m -=+?=???

? ????+??- 2

2

22222222;1;1η

εm k k k dy Y d Y k dx X d X y x y x =+-=-=其中 解得:()()()()()y p x p i

y k x k i y x y x e e y Y x X y x ++===ηA

1

A 1,? 利用周期性边界条件:??

?

?

?=??

? ?

?-??

? ??=??

? ?

?-2L ,2L ,;,2

L ,2

L x x y y ????得:

Λη

η2,1,0;,2;2±±===

y x y y x x n n n L

p n L p ππ 由上式可知,量子数y x n n ,完全决定了粒子的量子状态。以y x n n ,为直角坐标轴,构成二维量子数空间,每一组数()y x n n ,对应一个点,它代表一个量子态,这种点成为代表点,此空间中边长为1的一个正方形(面积为1)内有1个代表点,即相应于1个量子态。

由()()

2

22

2222221y x y x n n mL

p p m +=+=ηπε可知,在数空间中能量ε的等能线为半径()

21

22221

22

2R ???

? ??=+=ηπεmL n

n y

x 的圆,它所包围的面积为2222R ηπεπmL =,而单位面积对应1个量子态,所以粒子能量小于ε的量子态数为()2

22ηπε

εωmL =,所以粒

子在ε到εεd +的能量范围内的量子态数()()επεεεωεεmd h

L d d d d D 22

2== 其中:()m h

L D 22

2πε=为态密度,显然此情况在数空间态密度是均匀的。

方法二: 解,半经典方法:由()

2

221y

x p p m

+=

ε可知,在二维动量空间中,等能线满足εm p p y x 22

2=+,

等能线为半径等于εm 2的圆,由此求得粒子能量小于ε的量子态数:

()επεωε

m h

L h dp dxdydp A

m p p y

x y x 22

22222

==??

≤+Λ

所以粒子在ε到εεd +的能量范围内的量子态数()()επεεεωεεmd h

L d d d d D 22

2== ※、第三类确定孤立系统的粒子分布和与一个分布相对应的系统的微观状态数及各分布出现的几率或求最概然分布。

[例2]:(1)假设某种类型分子的许可能级为0、ω、ω2、ω3、……,而且都是非简并的,如果体系含有6个分子,问与总能量ω3相联系的是什么样的分布?并根据公式∏∏=

Ωl

a l l

l l

a ω!N!M.B 计算每种分布的微观态数D Ω,

并由此确定各种分布的几率(设各种微观态出现的几率相等)。 (2)、在题(1)中,如0和ω两能级是非简并的,而ω2和ω3两个能级分别是6度和10度简并。试重复上面的计算。 解:(1)粒子的在各能级的分布可以描述如下:

能 级 Λ,,,4321εεεε, 能量值 Λωωω,32,,0 简并度 ,11,1,1Λ, 分布数 Λ,421,,a a a

分布{}l a 要满足的条件是:

6==∑N a l

l , ωε3E ==∑l

l l a

满足上述限制条件的分布可以有: {}{}ΛΛ0,1,0,0,5a :D l 1=

{}{}ΛΛ0,0,1,1,4a :D l 2=

{}{}ΛΛ0,0,0,3,3a :D l 3=

则各分布所对应的微观态数为:

615!6!1D =?=

Ω 3014!6!2D =?=Ω 2013!3!

6!3D =?=Ω 所以此种情况下体系的总的微观状态数为56321=Ω+Ω+Ω=Ω总 各分布的几率为:

107.0566

11D D ==

ΩΩ=

P 536.0563022D D ==ΩΩ=总P 357.056

2033D D ==ΩΩ=总P (2)粒子的在各能级的分布可以描述如下:

能 级 Λ,,,4321εεεε, 能量值 Λωωω,32,,0 简并度 ,106,1,1Λ, 分布数 Λ,421,,a a a

分布{}l a 要满足的条件是:

6==∑N a l

l , ωε3E ==∑l

l l a

满足上述限制条件的分布可以有: {}{}ΛΛ0,1,0,0,5a :D l 1=

{}{}ΛΛ0,0,1,1,4a :D l 2=

{}{}ΛΛ0,0,0,3,3a :D l 3=

则各分布所对应的微观态数为:

60015!6!1D =?=

Ω 08164!6!2D =?=Ω 2013!3!

6!3D =?=Ω 所以此种情况下体系的总的微观状态数为260321=Ω+Ω+Ω=Ω总 各分布的几率为:

230.02606011D D ==ΩΩ=

P 692.026018022D D ==ΩΩ=总P 077.0260

2033D D ==ΩΩ=总P [例3]:设系统含有两种粒子,其粒子数分别为N 和N ’.粒子间的相互作用很弱,可看作是近独立的。假设粒子可分辨,处在一个个体量子态的粒子数不受限制。试证明,在平衡态下两种粒子的最概然分布分别为:

l e a l l βεαω--=和'--'

='

l

e a l l βεαω

其中l ε和'l ε是两种粒子的能级,l ω和'l ω是能级简并度。 证: 粒子A 能级,粒子数分布:l ε——{a l }——简并度l ω 粒子B 能级,粒子数分布:'l ε——{a ’l }——简并度'l ω 体系两种粒子分布要满足的条件为: N a l

l =∑,N a l

l '='∑ E =''+∑∑l

l l l

l l a a εε

分布{}l a ,对应的微观状态数为

∏∏=

Ωl

a l l

l l

a ω!N!1

分布{}l a ',对应的微观状态数为

∏∏'

'''=

Ωl

a l

l

l l a ω!!N 2 则系统的微观态数为21Ω?Ω=Ω

上式表明:当第一类粒子的分布为{a l },而同时第二类粒子的分布为{a ’l }时系统的微观态数。

在平衡下两种粒子的最可几分布是对应于在限制条件N a l

l =∑,N a l

l '='∑

E =''+∑∑l

l

l l

l

l a a εε下使21

ln ln Ω?Ω

=Ω为极大的分布。利用斯特林公式可得:

l l

l l l

l l l

l l l

l a a a N a a a N ωω'

'+''-''++-=Ω?Ω=Ω∑∑∑∑ln ln ln N ln ln ln N ln ln 21由

0ln 21=Ω?Ωδ,得 0ln ln ln 21='???

?

??''-???? ??-=Ω?Ω∑∑l l l l l l l

l

a a a a δωδω

δ 而由限制条件可得:

0=∑l

l

a

δ,0='∑l

l a δ

0=''+∑∑l

l

l

l

l

l

a a δεδε

引入拉氏不定乘子βαα,,',得

0ln ln ln 21='???

? ??'+'+''-???? ??++-=???

??''+-''--Ω?Ω∑∑∑∑∑∑l l l l l l l l l l l l l l l l l l l l a a a a a a a a δεβαωδβεαωδεδεβδαδαδ根据拉格朗日未定乘子法原理,每个l a δ及l a 'δ的系数都等于零,所以得:

[][]??

?'-'-'='--=????

??

??

='+'+'

'

=++l l l

l l l l l l l l

l

a a a a εβαωβεαωεβαωβεαωexp exp 0ln 0ln 讨论:

(1)、上面的推导表明,两种粒子各自遵从玻耳兹曼分布,两分布的α,α'不同,

但有共同的β,原因在于开始就假设两种粒子的粒子数和能量具有确定值,这意味着在相互作用中两粒子可以交换能量,但不会相互转化。从上述结果还可看出,由两个弱相互作用的子系统构成的系统达到平衡时,两子系统有相同的β

柱下独立基础课程设计例题范本

柱下独立基础课程 设计例题

1 柱下独立基础课程设计 1.1设计资料 1.1.1地形 拟建建筑地形平整 1.1.2工程地质条件 自上而下土层依次如下: ①号土层:杂填土,层厚0.5m 含部分建筑垃圾。 ②号土层:粉质粘土,层厚 1.2m ,软塑,潮湿,承载力特征值 ak f 130KPa =。 ③号土层:黏土,层厚 1.5m ,可塑,稍湿,承载力特征值 180ak f KPa =。 ④号土层:细砂,层厚2.7m ,中密,承载力特征值k 240Kpa a f =。 ⑤号土层:强风化砂质泥岩,厚度未揭露,承载力特征值 300ak f KPa =。 1.1.3岩土设计参数 表1.1 地基岩土物理学参数

② 粉质粘土 20 0.65 0.84 34 13 7.5 6 130 ③ 黏土 19.4 0.58 0.78 25 23 8.2 11 180 ④ 细砂 21 0.62 -- -- 30 11.6 16 240 ⑤ 强风化砂质泥岩 22 -- -- -- -- 18 22 300 1.1.4水文地质条件 1) 拟建厂区地下水对混凝土结构无腐蚀性。 2) 地下水位深度:位于地表下1.5m 。 1.1.5上部结构材料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为500mm ?500mm 。室外地坪标高同自然地面,室内外高差450mm 。柱网布置图如图1.1所示: 1.1.6材料 混凝土强度等级为2530C C -,钢筋采用235HPB 、HPB335级。

1.1.7本人设计资料 本人分组情况为第二组第七个,根据分组要求及参考书柱底荷载效应标准组合值及柱底荷载效应基本组合值选用⑦题号B 轴柱底荷载. ①柱底荷载效应标准组合值:k K K F 1970KN M 242KN.m,V 95KN ===, 。 ②柱底荷载效应基本组合值:k K K F 2562KN M 315KN.m,V 124KN ===,. 持力层选用④号土层,承载力特征值k F 240KPa =,框架柱截面尺寸为500mm ?500mm ,室外地坪标高同自然地面,室内外高差450mm 。 1.2独立基础设计 1. 2.1选择基础材料 基础采用C25混凝土,HPB235级钢筋,预估基础高度0.8m 。 1.2.2选择基础埋置深度 根据柱下独立基础课程设计任务书要求和工程地质资料选取。你、 拟建厂区地下水对混凝土结构无腐蚀性,地下水位于地表下1.5m 。 取基础底面高时最好取至持力层下0.5m ,本设计取④号土层为持力层,因此考虑取室外地坪到基础底面为0.5+1.2+1.5+0.5=3.7m 。由此得基础剖面示意图,如图1.2所示。

柱下独立基础课程设计

目录 一、设计资料 二、独立基础设计 1、选择基础材料 2、选择基础埋置深度 3、计算地基承载力特征值 4、初步选择基底尺寸 5、验算持力层的地基承载力 6、计算基底净反力 7、验算基础高度 8、基础高度(采用阶梯形基础) 9、变阶处抗冲切验算 10、配筋计算 11、基础配筋大详图 12、确定A、B两轴柱子基础底面尺寸 13、设计图纸(附图纸) 三、设计技术说明及主要参考文献

柱下独立基础课程设计 一、设计资料 3号题○B轴柱底荷载: ○1柱底荷载效应标准组合值:F K=1720(1677)KN,M K=150(402)KN·m,V K=66(106)KN。 ○2柱底荷载效应基本组合值:F=2250KN,M=195KN·m,V=86KN。 持力层选用○4号土层,承载力特征值f ak=240kPa,框架柱截面尺寸为500mm×500mm,室外地坪标高同自然地面,室内外高差450mm。 二、独立基础设计 1.选择基础材料 基础采用C25混凝土,HPB235级钢筋,预估基础高度0.8m。 2.选择基础埋置深度 根据柱下独立基础课程设计任务书要求和工程地质资料选取。 ①号土层:杂填土,层厚约0.5m,含部分建筑垃圾。 ②号土层:粉质粘土,层厚1.2m,软塑,潮湿,承载力特征值f ak=130kPa。 ③号土层:粘土,层厚1.5m,稍湿,承载力特征值f ak=180kPa。 ④号土层:细砂,层厚3.0m,中密,承载力特征值f ak=240kPa。 ⑤号土层:强风化砂质泥岩,很厚,中密,承载力特征值f ak=300kPa。 拟建场区地下水对混凝土结构无腐蚀性,地下水位深度:位于地表下1.5m。取基础地面高时最好至持力层下0.5m,本设计取○4号土层为持力层,所以考虑取室外地坪到基础地面为0.5+1.2+1.5+0.5=3.7m。由此得到基础剖面示意图如下图所示。

1.1《独立性检验》习题

1-1《 统计案例》习题 1.1 独立性检验 双基达标 限时15分钟 1.下面是一个2×2的列联表 则表中a ,b 解析 由a +21=73,得a =52, 由a +5=b ,得b =57. 答案 52,57 2.为了检验两个事件A 与B 是否相关,经计算得χ2=3.850,我们有________ 的把握认为事件A 与B 相关. 答案 95% 3.为了考查高中生的性别与是否喜欢数学课程之间的关系,某市在该辖区内 的高中学生中随机地抽取300名学生进行调查,得到表中数据: 解析 由χ2 =300 47×123-35×95 2142×158×82×218≈4.512. 答案 4.512 4.下列关于独立性检验的4个叙述,说法正确的是________. ①χ2 的值越大,说明两事件相关程度越大; ②χ2 的值越小,说明两事件相关程度越小; ③χ2 ≤3.841时,有95%的把握说事件A 与B 无关; ④χ2 >6.635时,有99%的把握说事件A 与B 有关. 解析 在独立性检验中,随机变量χ2 的取值大小只能说明“两分类变量有关”,这一结论 的可靠程度,即可信度,而不表示两事件相关的程度,故①②不正确.χ2 >6.635说明有99%的把握认为二者有关系,χ2≤3.841时,若x 2 >2.706则有90%的把握认为事件A 与B 有关系.因

此可知③中说法是不正确的. 答案 ④ 5.想要检验是否喜欢参加体育活动是不是与性别有关,应该假 设________________. 解析 独立性检验假设有反证法的意味,应假设两类变量(而非变量的属性)无关,这时 的χ2应该很小,如果χ2很大,则可以否定假设;如果χ2 很小,则不能够肯定或者否定假设. 答案 H 0:喜欢参加体育活动与性别无关 6.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行 了3年的跟踪研究,调查他们是否发作过心脏病,调查结果如下表所示: 解 提出假设H 0:两种手术对病人又发作心脏病没有影响.由列联表,得 χ2=392× 39×167-157×29 2196×196×68×324 ≈1.780<2.706. 因为当H 0成立时,χ2 ≥1.780的概率大于10%,这个概率比较大,所以根据目前的调查数 据,不能否定假设H 0,故我们没有理由说这两种手术与“又发作过心脏病”有关,故可以认为病人是否发作心脏病跟他做过何种手术无关. 综合提高 限时30分钟 7. 2008年10月8日为我国第十一个高血压日,主题是“在家测量您的 血压”.某社区医疗服务部门为了考察该社区患高血压病是否与食盐摄入 量有关,对该社区的1 633人进行了跟踪调查,得出以下数据: 计算χ2有关系.

柱下独立基础课程设计例题

1 柱下独立基础课程设计 1.1设计资料 1.1.1地形 拟建建筑地形平整 1.1.2工程地质条件 自上而下土层依次如下: ①号土层:杂填土,层厚0.5m 含部分建筑垃圾。 ②号土层:粉质粘土,层厚1.2m ,软塑,潮湿,承载力特征值ak f 130KPa =。 ③号土层:黏土,层厚1.5m ,可塑,稍湿,承载力特征值180ak f KPa =。 ④号土层:细砂,层厚2.7m ,中密,承载力特征值k 240Kpa a f =。 ⑤号土层:强风化砂质泥岩,厚度未揭露,承载力特征值300ak f KPa =。 1.1.3岩土设计参数 表1.1 地基岩土物理学参数

1.1.4水文地质条件 1) 拟建厂区地下水对混凝土结构无腐蚀性。 2) 地下水位深度:位于地表下1.5m 。 1.1.5上部结构材料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为500mm ?500mm 。室外地坪标高同自然地面,室内外高差450mm 。柱网布置图如图1.1所示: 1.1.6材料 混凝土强度等级为2530C C -,钢筋采用235HPB 、HPB335级。 1.1.7本人设计资料 本人分组情况为第二组第七个,根据分组要求及参考书柱底荷载效应标准组合值及柱底荷载效应基本组合值选用⑦题号B 轴柱底荷载. ①柱底荷载效应标准组合值:k K K F 1970KN M 242KN.m,V 95KN ===, 。 ②柱底荷载效应基本组合值:k K K F 2562KN M 315KN.m,V 124KN ===,. 持力层选用④号土层,承载力特征值k F 240KPa =,框架柱截面尺寸为500mm ?500mm ,室外地坪标高同自然地面,室内外高差450mm 。

柱下独立基础计算内容

三、柱下独基计算书 剖面: J2-2 1.已知条件及计算内容: (1)已知条件: a.控制信息: 柱数:单柱 柱尺寸:450mmX450 mm 输入荷载类型:设计值 转换系数:1.00 柱竖向力:517 kN/m 柱弯矩:0.00 kN.m/m b.设计信息: 基础类型:锥型一阶混凝土等级:C30 受力筋级别:HPB300 保护层厚度:45 第一阶尺寸: 总宽度:2100 mm 高度:500 mm 轴线左边宽度:1050 mm 轴线右边宽度:1050 mm 垫层挑出宽度:100 mm 垫层厚度:100 mm c.地基信息: 基础埋置深度:1.500 m 地坪高差:0.600 m 修正后的地基承载力特征值:140 kPa (2)计算内容: 1.地基承载力验算。 2.基础冲切承载力验算。 3.基础抗剪承载力验算。 4.基础抗弯承载力计算。 2.反力计算: (1)荷载标准值时基底全反力-用于验算地基承载力

pk=(Fk+Gk)/A=125.4 kPa (2)荷载设计值时基底全反力 p=(F+G)/A=136.4 kPa (3)荷载设计值时基底净反力-用于验算基础剪切和冲切承载力 pj=F/A=117.9 kPa 3.地基承载力验算: 轴心受压: pk=125.4kPa <= fa=140kPa 满足! 地基承载力验算满足要求! 4.基础抗冲切承载力验算: Fl=69.3kN <= 0.7βhpftbmh0=186.3kN 满足! 5.基础抗剪承载力验算: Vsx=41.6kN <= 0.7βhftAc=108.91kN 满足! Vsy=43.0kN <= 0.7βhftAc=108.91kN 满足! 6.抗弯计算结果: X方向弯矩计算结果: Mx = 63.8kN.m(柱根部) 计算面积:742 mm2/m 实配面积:754 mm2/m 选筋方案:φ12@150 配筋率:0.22%

独立性检验的基本思想及其初步应用习题及答案

数学·选修1-2(人教A版) 独立性检验的基本思想及其初步应用 ?达标训练 1.在研究两个分类变量之间是否有关时,可以粗略地判断两个分类变量是否有关的是( ) A.散点图B.等高条形图 C.2×2列联表 D.以上均不对 答案:B 2.在等高条形图形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大( ) 与 d c+d 与 a c+d 与 c c+d 与 c b+c 答案:C 3.对分类变量X与Y的随机变量K2的观测值k,说法正确的是( ) A.k越大,“ X与Y有关系”可信程度越小 B.k越小,“ X与Y有关系”可信程度越小 C.k越接近于0,“X与Y无关”程度越小 D.k越大,“X与Y无关”程度越大 答案:B 4.下面是一个2×2列联表:

则表中a、b的值分别为( ) A.94、96 B.52、50 C.52、54 D.54、52 答案:C 5.性别与身高列联表如下: 那么,检验随机变量K2的值约等于 ( ) A. B. C.22 D. 答案:C 6.给出列联表如下: 根据表格提供的数据,估计“成绩与班级有关系”犯错误的概率约是( ) A.B.0.5 C.D. 答案:B

?素能提高 1.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲,下列说法中正确的是( ) A .男人、女人中患有色盲的频率分别为、 B .男人、女人患色盲的概率分别为19240、3 260 C .男人中患色盲的比例比女人中患色盲的比例大,患色盲是与性别有关的 D .调查人数太少,不能说明色盲与性别有关 解析:男人患色盲的比例为38480,比女人中患色盲的比例6 520 大, 其差值为?? ???? 38480-6520≈ 6,差值较大. 答案:C 2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表: 由K 2=算得, K 2=≈. 附表: 参照附表,得到的正确结论是( ) A .有99%以上的把握认为“爱好该项运动与性别有关” B .有99%以上的把握认为“爱好该项运动与性别无关” C .在犯错误的概率不超过%的前提下,认为“爱好该项运动与性别有关” D .在犯错误的概率不超过%的前提下,认为“爱好该项运动与性

柱下独立基础设计

课程设计说明书 课程名称:基础工程课程设计 设计题目:柱下独立基础设计 专业:建工班级:建工0903学生姓名 :邓炜坤学号:0912080319指导教师:周友香 湖南工业大学科技学院教务部制 2011年 12月1日

引言 “ 土力学与地基基础”课程是土木工程专业及相关专业的主干课程,也是重要的专业课程。“土力学与地基基础课程设计”是“土力学与地基基础”课程的实践教学环节,着手提高学生的综合应用能力,主要 为了巩固与运用基础概念与基础知识、掌握方法以及培养各种能力等诸 多方面。 作为建筑类院校专业课的一种实践教学环节,课程设计师教学计划中德一个有机组成部分;是培养学生综合运用所学各门课程的基本理论、基本知识和基本技能,以分析解决实际工程问题能力的重要步骤;是学生巩固并灵活运用所学专业知识的一种比较好的手段;也是锻炼学生理论联系实际能力和提高学生工程设计能力的必经之路。 课程设计的目的是: 1.巩固与运用理论教学的基本概念和基础知识 2.培养学生使用各种规范及查阅手册和资料能力 3.培养学生概念设计的能力 4.熟悉设计步骤与相关的设计内容 5.学会设计计算方法 6培养学生图子表达能力 7.培养学生语言表达能力 8.培养学生分析和解决工程实际问题的能力

目录 一、设计资料 二、独立基础设计 1、选择基础材料 2、选择基础埋置深度 3、计算地基承载力特征值 4、初步选择基底尺寸 5、验算持力层的地基承载力 6、软弱下卧层的验算 7、计算基底净反力 8、验算基础高度 9、基础高度(采用阶梯形基础) 10、地基变形验算 11、变阶处抗冲切验算 12、配筋计算 13、基础配筋大详图 14、确定 A、B 两轴柱子基础底面尺寸 15、 A、B两轴持力层地基承载力验算 16、设计图纸

第六章 近独立粒子的最概然分布教案

热力学与统计物理课程教案

第六章 近独立粒子的最概然分布 6.1 粒子运动状态的经典描述 首先介绍如何描述粒子的运动状态。这里说的粒子是指组成宏观物质系统的基本单元,例如气体的分子,金属的离子或电子,辐射场的光子等等。粒子的运动状态是指它的力学运动状态。如果粒子遵从经典力学的运动规律,对粒子运动状态的描述称为经典描述;如果粒子遵从量子力学的运动规律,对粒子运动状态的描述称为量子描述。 1、粒子运动状态经典描述的两种方法 设粒子的自由度为r 。经典力学告诉我们,粒子在任一时刻的力学运动状态由粒子的r 个广义坐标r q q q ,,,21 和与之共轭的r 个广义动量r p p p ,,,21 在该时刻的数值确定。粒子能量ε是其广义坐标和广义动量的函数: ()r r p p p q q q εε,,,;,,,2121 = 如果存在外场,ε还是描述外场参量的函数。 为了形象地描述粒子的力学运动状态,用r q q q ,,,21 ;r p p p ,,,21 共r 2个变量为直角坐标,构成一个r 2维空间,称为μ空间。粒子在某一时刻的力学运动状态(r q q q ,,,21 ;r p p p ,,,21 )可以用μ空间中的一点表示,称为粒子力学运动状态的代表点。当粒子运动状态随时间改变时,代表点相应地在μ空间中移动,描画出一条轨道。 2、下面介绍统计物理中用到的几个例子 (1)、自由粒子: 自由粒子不受力的作用而自由运动,当在三维空间中运动时,它的自由度为3。粒子在任一时刻的位置可由坐标z y x ,,确定,与之共轭的动量为: ? ??===z m p y m p x m p z y x ,, 自由粒子的能量就是它的动能:() 22 221z y x p p p m ε++=, 对应的μ空间是6维的。

高考试题回归分析,独立性检验

回归分析与独立性检验 1.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看, ①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 2.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A .逐年比较,2008年减少二氧化碳排放量的效果最显着 B .2007年我国治理二氧化碳排放显现成效 C .2006年以来我国二氧化碳年排放量呈减少趋势 D .2006年以来我国二氧化碳年排放量与年份正相关 3.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 根据上表可得回归直线方程???y bx a =+ ,其中???0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为( )] A .万元 B .万元 C .万元 D .万元 4.在画两个变量的散点图时,下面哪个叙述是正确的 ( ) A .预报变量在x 轴上,解释变量在y 轴上 B .解释变量在x 轴上,预报变量在 y 轴上 C .可以选择两个变量中任意一个变量在x 轴上 D .可以选择两个变量中任意一个变量在y 轴上 5 2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年

不得病 61 213 274 合计 93 314 407 ( ) A .种子经过处理跟是否生病有关 B .种子经过处理跟是否生病无关 C .种子是否经过处理决定是否生病 D .以上都是错误的 6.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观测得到y 的值分别为11,9,8,5,若在实际问 题中,y 的预报最大取值是10,则x 的最大取值不能超过 ( ) A .16 B .17 C .15 D .12 7.在研究身高和体重的关系时,求得相关指数≈2 R ___________,可以叙述为“身高解释了64%的体重变化,而随 机误差贡献了剩余的36%”所以身高对体重的效应比随机误差的效应大得多。 8.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图 (I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到),预测2016年我国生活垃圾无害化处理量。 参考数据: 7 1 9.32i i y ==∑,7 1 40.17i i i t y ==∑, 7 2 1 ()0.55i i y y =-=∑,7≈. 参考公式:相关系数1 2 2 1 1 ()() ()(y y)n i i i n n i i i i t t y y r t t ===--= --∑∑∑, 回归方程 y a bt =+) )) 中斜率和截距的最小二乘估计公式分别为: 9.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 10.为了研究某班学生的脚长x (单位:厘米)和身高 y (单位:厘米)的关系,从该班随机抽取10名学生,根据 测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为???y bx a =+.已知10 1 225i i x ==∑,10 1 1600i i y ==∑,?4b =.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170 11.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:

柱下独立基础计算

第七章基础设计 7.1设计资料 地质情况:1. 粘土质填土:黄色,稍密,稍湿,厚0.7米,容重γ=18kN/m3。 2. 耕土:灰黑色,湿,厚0.2~0.4米,容重γ=17.4kN/m3。 3. 粉粘土(Ⅰ):黄色,中密,硬偏坚硬状态,厚 4.5~4.8米,容重γ=19kN/m3。 4. 粉粘土(Ⅱ):灰黄色,中密,硬偏坚硬状态,容量γ=19.4kN/m3。本层钻6米,未钻透。 地下水位:地下水位的稳定位在2.5~3.0米之间,系为上层滞水,无侵蚀性。 按照《地基基础设计规范》和《建筑抗震设计规范》的有关规定,上部结构传至基础顶面上的荷载只需按照荷载效应的基本组合来分析确定。 工程柱距较大且层数不高,可选择柱下独立基础。根据地质条件,取砂质粘土为持力层,基础高度设为0.9m,基础埋深1.4m。混凝土强度等级取C35,基础底板钢筋采用HRB335。室内外高差0.45m,柱断面为500×400mm,基础垫层采用C10混凝土,厚度100mm。 7.2荷载计算 基础承载力计算时,采用荷载标准组合。取恒载+活载+风载(作为近似计算且偏于安全,可变荷载组合值系数均取1.0)。上部结构传来的柱底荷载标准值见下表。 表7-1 柱底荷载标准值计算 柱类别内力恒载活载风载 M -16.7 -3.6 -15.7 B N 915.8 120 11.6 V 10.8 2.3 5.9 M 10.5 2.2 -18.4 C N 1164.9 180.7 41.5 V -6.9 -1.4 7.7 柱B组合结果:

V KN N KN M B B B 19 9.53.28.104.10476.111208.915m 367.156.37.16=++==++=?-=---= 柱C 组合结果: V KN N KN M B B B 16 7.74.19.61.13045.417.1809.1164m 1.314.18 2.25.10-=---==-+=?=++= 7.3 柱基础承载力计算及验算 7.3.1 柱B 基础计算 ① 初估基底尺寸 柱B 基础底面荷载 m 1.539.01936?=?--=KN M B 底 m γ为加权土容重,其中粘土质填土γ=18kN/m 3 ,耕土容重取γ=17.4kN/m 3 , 粉粘土(Ⅰ)容重γ=19kN/m 3。 '2 1047.4 3.06d 37020 1.4 G d N A m f γ≥ = =--? 选用矩形m 2m 2? ② 按持力层强度验算基底尺寸 KN A G G k 1124.1420d =??==γ44 .3895.04.18.12.1370)5.0()3(00=-??+=++-+=)(d b f f d b ak a γηγη 基底形心处竖向荷载: KN G F F 4.11591124.1047k k k =+=+=∑ 基底形心处弯矩: KN M 1.53k -= 偏心距: 33.06/m 045.04.1159/1.53e k k =<=== ∑ l F M 44 .389a k 85.289k k =<== ∑a f P A F P

随机变量及其分布列与独立性检验练习题附答案

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,() P B A 分别是( ) A.6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .53 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 23,乙在每局中获胜的概率为13 ,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10奖券,82元的,25元的,某人从中随机无放回地抽取3奖券,则此人得奖金额的数学期望为( ) A .6 B .395 C .415 D .9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A .148 B .124 C .112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为 23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A .4243 B .8243 C .40243 D .80243

柱下独立基础课程设计例题

1 柱下独立基础课程设计 设计资料 地形 拟建建筑地形平整 工程地质条件 自上而下土层依次如下: ①号土层:杂填土,层厚含部分建筑垃圾。 ②号土层:粉质粘土,层厚,软塑,潮湿,承载力特征值ak f 130KPa =。 ③号土层:黏土,层厚,可塑,稍湿,承载力特征值180ak f KPa =。 ④号土层:细砂,层厚,中密,承载力特征值k 240Kpa a f =。 ⑤号土层:强风化砂质泥岩,厚度未揭露,承载力特征值300ak f KPa =。 岩土设计参数 表 地基岩土物理学参数

质泥岩 水文地质条件 1) 拟建厂区地下水对混凝土结构无腐蚀性。 2) 地下水位深度:位于地表下。 上部结构材料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为500mm ?500mm 。室外地坪标高同自然地面,室内外高差450mm 。柱网布置图如图所示: 材料 混凝土强度等级为2530C C -,钢筋采用235HPB 、HPB335级。 本人设计资料 本人分组情况为第二组第七个,根据分组要求及参考书柱底荷载效应标准组合值及柱底荷载效应基本组合值选用⑦题号B 轴柱底荷载. ①柱底荷载效应标准组合值:k K K F 1970KN M 242KN.m,V 95KN ===, 。 ②柱底荷载效应基本组合值:k K K F 2562KN M 315KN.m,V 124KN ===,.

持力层选用④号土层,承载力特征值k F 240KPa =,框架柱截面尺寸为500mm ?500mm ,室外地坪标高同自然地面,室内外高差450mm 。 独立基础设计 选择基础材料 基础采用C25混凝土,HPB235级钢筋,预估基础高度。 选择基础埋置深度 根据柱下独立基础课程设计任务书要求和工程地质资料选取。你、 拟建厂区地下水对混凝土结构无腐蚀性,地下水位于地表下。 取基础底面高时最好取至持力层下,本设计取④号土层为持力层,所以考虑取室外地坪到基础底面为+++=。由此得基础剖面示意图,如图所示。 基础剖面示意图 求地基承载力特征值a f 根据细砂e=.,l I =,查表得b η=,d η=。 基底以上土的加权平均重度为: 3180.5201(2010)0.2(19.410) 1.5(2110)0.5 13.683.7 m KN m γ?+?+-?+-?+-?= =

1独立性检验(应用检测题)

本套试题考查的内容比较全面,独立性检验的概念与方法、2×2列联表、随机变量2 K 的值、三维柱形图、二维条形图、等高条形图等知识点在试题中都得到了充分体现,很多试题与现实生活相联系,新颖别致,有大量的原创与改编试题。 独立性检验的基本思想及其初步应用同步测试题 A 组 一、选择题 1.独立性检验中的统计假设就是假设两个事件A 、B ( ) A 互斥 B 不互斥 C 相互独立 D 不独立 2.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就 ( ) A. 越大 B. 越小 C.无法判断 D. 以上都不对 3.2010年3月26日,韩国军舰“天安”号发生不明原因爆炸事故离奇沉没,5月20日韩国军民联合调查团公布的调查结果说天安舰是遭受朝鲜小型潜水艇发射的鱼雷攻击而沉没的。对此,许多网民表达了自己的意见,有的网友进行了调查,在参加调查的4258名男性公民中有2360名认为是朝鲜所为,3890名女性公民中有2386人认为朝鲜是遭陷害,在运用这些数据说明天安舰事件中朝鲜是否冤枉时用什么方法最有说服力?( ) A 平均数 B 回归分析 C 独立性检验 D 方差 4.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅下表来确定断言“X 和Y 有关系”的可信度。如果k>5.024,那么就有把握认为“X 和Y 有关系”的百分比为 A.25% B.75% C.2.5% D.97.5% 5.假设有两个分类变量X 和Y ,它们的值域分别为},{21x x 和},{21y y ,其2×2列联表为: 对以下数据,对同一样本能说明X与Y有关的可能性最大的一组为( ) A .5=a ,4=b ,3=c ,2=d B .5=a ,3=b ,4=c ,2=d C .2=a ,3=b ,4=c ,5=d D .2=a ,3=b ,5=c ,4=d 6.考察玉米种子经过药物处理跟生病之间的关系得到如下表数据:

柱下独立基础课程设计例题

1柱下独立基础课程设计 设计资料 地形 拟建建筑地形平整 工程地质条件 自上而下土层依次如下: ①号土层:杂填土,层厚含部分建筑垃圾。 ②号土层:粉质粘土,层厚,软塑,潮湿,承载力特征值f ak 130KPa ③号土层:黏土,层厚,可塑,稍湿,承载力特征值f ak 180KPa。 ④号土层:细砂,层厚,中密,承载力特征值f ak 240Kpa。 ⑤号土层:强风化砂质泥岩,厚度未揭露,承载力特征值f ak 300KPa 岩土设计参数 表地基岩土物理学参数

水文地质条件 1)拟建厂区地下水对混凝土结构无腐蚀性。 2)地下水位深度:位于地表下。 上部结构材料 拟建建筑物为多层全现浇框架结构,框架柱截面尺寸为500mm 500mm。室外 地坪标高同自然地面,室内外高差450mm。柱网布置图如图所示: 材料 混凝土强度等级为C25 C30,钢筋采用HPB235、HPB335级。 本人设计资料 本人分组情况为第二组第七个,根据分组要求及参考书柱底荷载效应标准组合值及柱底荷载效应基本组合值选用⑦题号B轴柱底荷载. ①柱底荷载效应标准组合值:F k 1970KN,M K 242KN.m,V K 95KN 。 ②柱底荷载效应基本组合值:F k 2562KN,M K 315KN.m,V K 124KN .

持力层选用④号土层,承载力特征值F k 240KPa,框架柱截面尺寸为500mm 500mm,室外地坪标高同自然地面,室内外高差450mm。

独立基础设计 选择基础材料 基础采用C25混凝土,HPB235级钢筋,预估基础高度 选择基础埋置深度 根据柱下独立基础课程设计任务书要求和工程地质资料选取。你、拟 建厂区地下水对混凝土结构无腐蚀性,地下水位于地表下。 取基础底面高时最好取至持力层下,本设计取④号土层为持力层, 外 地坪到基础底面为+++=。由此得基础剖面示意图,如图所示。 所以考虑取室 ±0000 Fk-1970kN Mk=242kN Vk-95kN 基础剖面示意图 求地基承载力特征值f a 根据细砂e=.,h=,查表得b =, d = 基底以上土的加权平均重度为: 18 0.5 20 1 (20 10) 0.2 (19.4 10) 1.5 (21 10) 0.5 3.7 13.68KN m3持力层承载力特征值f a (先不考虑对基础宽度修正值)为 a f ak d m(d 0.5) 240 3.0 13.68 (3.7 0.5) 371.328 KPa 上式d按室外地面算起

第六章 近独立粒子的最概然分布(复习要点)

第六章 近独立粒子的最概然分布(复习要点) 一、粒子微观运动状态的描述: 1、粒子运动状态的经典描述: ①、相空间、自由度;广义坐标、广义动量; 粒子微观状态()r r p p p q q q ,,,,,,2121?。 ②、经典粒子的微观状态与μ空间体积元的对应关系: 对于经典系统,由于对坐标和动量的测量总存在一定的误差,假设0 h p q =??,这时经典系统的粒子运动状态 不能用一个点表示,而必须用一个体积元表示,该体积元的大小r r r h p p q q 0 11 =?δδδδ 即经典系统中粒子的一个微观状态在 μ 空间所占的体积。这里0 h 由测量精度决定 的一个常数。经典理论上00 →h 将μ空间划分为许多体积元l τ?,以l ε表示运动状态处在l τ?内的粒子所具有的能量,则体积元l τ?内粒子可 能的运动状态数为r l l h 0 τω ?= k l p p q q l r r l ,...2,1;)(11=????=? τ其中 2、粒子运动状态的量子描述: ①、波粒二象性、波函数、量子力学中力学量的算符表示;薛定谔方程 一组量子数波函数粒子微观运动状态?? 这组量子数的数目等于粒子的自由度数(不考虑自旋,

考虑自旋时应乘为自旋量子数,S S 12+) ②、微观体积下,微观粒子的运动状态由波函数确定或由r (r 为自由度数。空间自由度和一个自旋自由度)个量子确定。并且微观粒子能量值和动量值的分离性很显著。 ③、宏观体积下,量子态与相体积的关系---半经典近似 如果粒子局域于宏观体积下运动,能量值和动量值是准连续的。若粒子的自由度为r ,一个量子态占据的相体积为r h 。 在相体积元r r dp dp dq dq d ????= 1 1 τ内的可能微观量子态为 r r r r h dp dp dq dq h d ????= 11τ 考虑r=3的六维相空间,相体积元z y x dp dp dxdydzdp d =τ内的 微观量子态为3 3 h dp dp dxdydzdp h d z y x = τ 二、系统微观运动状态的描述 1、全同粒子与近独立粒子系; ①、系统由具有完全相同属性(相同的质量、电荷、自旋等)的同类粒子组成。②、系统中,每个粒子(分子、原子、离子、电子、光子等)具有相同的各种可能状态,系统的一个微观状态就是体系的粒子在这些可能的状态中的一种具体分布。 2、全同近独立粒子系统微观运动状态的描述: 体系全部粒子的微观状态确定之后,系统的微观态

柱下独立承台桩基础设计(例题版)

基础工程课程设计 ————某小区住宅楼桩基础设计 一:设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D = 2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c=15MPa,弯曲强度设计 值为 f m=16.5MPa,主筋采用:4Φ16,强度设计值:f y=310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设 计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。

附表二: 桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值和设计值的计算; 2、确定桩数和桩的平面布置图;

3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋和必要的施工说明; 6、需要提交的报告:计算说明书和桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q —S 曲线见附表 (二):外部荷载及桩型确定 1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10.0m ,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、c f =15MPa 、 m f =16.5MPa 4φ16 y f =310MPa 4)、承台材料:混凝土强度C30、 c f =15MPa 、 m f =16.5MPa t f =1.5MPa (三):单桩承载力确定 1、 单桩竖向承载力的确定: 1)、根据桩身材料强度(?=1.0按0.25折减,配筋 φ16) 2( ) 1.0(150.25300310803.8)586.7p S c y R kN f f A A ?' '=+ =???+?= 2)、根据地基基础规范公式计算: 1°、桩尖土端承载力计算:

柱下独立基础课程设计--指导

基础工程课程设计任务书 题目:柱下独立基础课程设计 指导教师:黄晋 浙江理工大学科艺学院建筑系 2011年10月9日

柱下独立基础课程设计任务书 一、设计题目 柱下独立基础设计 二、设计资料 1.地形:拟建建筑场地平整 2.工程地质资料:自上而下依次为: ①杂填土:厚约0.5m,含部分建筑垃圾; ②粉质粘土:厚1.2m,软塑,潮湿,承载力特征值fak=130KN/m2; ③粘土:厚1.5m,可塑,稍湿,承载力特征值fak=180KN/m2; ④全风化砂质泥岩:厚2.7m,承载力特征值fak=240KN/m2; ⑤强风化砂质泥岩:厚3.0m,承载力特征值fak=300KN/m2; ⑥中风化砂质泥岩:厚4.0m,承载力特征值fak=620KN/m2; 表1 地基岩土物理力学参数表 3.水文资料为: 地下水对混凝土无侵蚀性。 地下水位深度:位于地表下1.5m。 4.上部结构资料: 上部结构为多层全现浇框架结构,框架柱截面尺寸为500×500 mm,室外地坪标高同自然地面,室内外高差450mm。柱网布置见图1。

图1 柱网平面图 5.上部结构作用在柱底的荷载效应标准组合值见表2; 上部结构作用在柱底的荷载效应基本组合值见表3; 表2 柱底荷载效应标准组合值 题号F k(KN) M k (KN?m) V k (KN) A轴B轴C轴A轴B轴C轴A轴B轴C轴 1 975 1548 1187 140 100 198 46 48 44 2 1032 1615 1252 164 125 221 55 60 52 3 1090 1730 1312 190 150 242 62 66 57 4 1150 181 5 1370 210 175 271 71 73 67 5 1218 1873 1433 235 193 297 80 83 74 6 1282 1883 1496 25 7 21 8 325 86 90 83 7 1339 1970 1560 284 242 355 96 95 89 8 1402 2057 1618 231 266 377 102 104 98 9 1534 2140 1677 335 288 402 109 113 106 10 1598 2205 1727 365 309 428 120 117 114 表3 柱底荷载效应基本组合值 题号 F (KN) M (KN?m) V (KN) A轴B轴C轴A轴B轴C轴A轴B轴C轴 1 1268 201 2 1544 18 3 130 258 60 62 58 2 1342 2100 1627 214 16 3 288 72 78 67 3 1418 2250 1706 248 195 315 81 86 74 4 1496 2360 1782 274 228 353 93 9 5 88 5 1584 2435 1863 30 6 251 386 104 108 96 6 166 7 244 8 1945 334 284 423 112 117 108 7 1741 2562 2028 369 315 462 125 124 116 8 1823 2674 2104 391 346 491 133 136 128 9 1995 2783 2181 425 375 523 142 147 138 10 2078 2866 2245 455 402 557 156 153 149

第六章 近独立粒子的最概然分布(习题课)

第六章 近独立粒子的最概然分布(习题课) 本章题型 一、基本概念: 1、粒子相空间、自由度;广义坐标、广义动量;粒子微观状态、系 统微观状态;经典相格与粒子微观状态;系统宏观态与系统微观态。 2、等概率原理(统计物理学的基本假设):平衡态孤立系统的各个微观态出现的概率相等。最概然分布作为平衡态下的分布近似。 3、近独立粒子孤立系统的粒子分布和与一个分布相对应的系统的微观状态数及各分布出现的几率、最概然分布。 ΛΛ,,,,21l τττ??? Λ Λ,,,,21l εεε }{l a Λ Λ,,,,21l ωωω Λ Λ,,,,21l a a a 与分布}{l a 对应的微观状态数为()l a Ω分布{}l a 要满足的条件是: N a l l =∑ E =∑l l l a ε 系统总的微观状态数()()lm man a l a a l ΩΩ=Ω∑~总 系统某时刻的微观状态只是其中的一个。在宏观短,微观长时间内(一瞬间)系统经历了所有的微观状态()()lm man a l a a l ΩΩ∑~----各态历经假 说。且各微观态出现的概率相等 ()()lm man a l a a l Ω≈ Ω= ∑1 1ρ

()l e a a l lm l βε αωδ--=?=Ω0ln ---玻耳慈曼分布。 此分布(宏观态)的概率为 ()()()()() ()1=ΩΩ≈ΩΩ= Ω=∑lm man lm man a l lm man lm man lm a a a a a a p l ρ 即:最概然分布几乎就是孤立系统的平衡态分布。 4、热力学第一定律的统计解释: Q d W d dU += l l l l l l l l da d a dU a U ∑∑∑+=?=εεε 比较可知:l l l d a W d ε∑= l l l da Q d ∑=ε 即:从统计热力学观点看, 做功:通过改变粒子能级引起内能变化; 传热:通过改变粒子分布引起内能变化。 二、相关公式 1、分布与微观状态数 ①、 ()l a l l l l l B M a a ω∏= Ω∏!N! .. ②、 ()∏--+= Ωl l l l l E B a a a )!1(!)! 1(..ωω ③、 ()∏-=Ωl l l l l D F a a a )! (!! ..ω ω ④、 ()l a r l l l l l cl h a N a ) ( ! ! ω?∏∏= Ω 2、最概然分布 玻耳兹曼分布l e a l l βεαω--= 玻色-爱因斯坦分布1 -= +l e a l l βεαω

相关文档
相关文档 最新文档