文档库 最新最全的文档下载
当前位置:文档库 › 用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析
用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析

一、选择题

1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若

M =m ,则f ′(x )( )

A .等于0

B .大于0

C .小于0

D .以上都有可能

[答案] A

[解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A.

2.设f (x )=14x 4+13x 3+1

2x 2在[-1,1]上的最小值为( )

A .0

B .-2

C .-1

D.13

12

[答案] A

[解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0.

∴f (-1)=5

12,f (0)=0,f (1)=13

12

∴f (x )在[-1,1]上最小值为0.故应选A.

3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.22

27

B .2

C .-1

D .-4

[答案] C

[解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =1

3

或x =-1

当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =22

27;当x =1时,y =2.

所以函数的最小值为-1,故应选C.

4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为34

B .最大值为1,最小值为4

C .最大值为13,最小值为1

D .最大值为-1,最小值为-7 [答案] A

[解析] ∵y =x 2-x +1,∴y ′=2x -1,

令y ′=0,∴x =12,f (-3)=13,f ? ????12=3

4,f (0)=1.

5.函数y =x +1-x 在(0,1)上的最大值为( )

A.

2

B .1

C .0

D .不存在

[答案] A

[解析] y ′=1

2

x -

1

2

1-x =12·1-x -x x ·1-x

由y ′=0得x =12,在? ????0,12上y ′>0,在? ????

12,1上

y ′<0.∴x =1

2时y 极大=

2, 又x ∈(0,1),∴y max =

2.

6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值 D .既无最大值,也无最小值 [答案] D

[解析] f ′(x )=4x 3-4=4(x -1)(x 2+x +1).

令f ′(x )=0,得x =1.又x ∈(-1,1) ∴该方程无解,

故函数f (x )在(-1,1)上既无极值也无最值.故选D.

7.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是( )

A .5,-15

B .5,4

C .-4,-15

D .5,-16

[答案] A

[解析] y ′=6x 2-6x -12=6(x -2)(x +1), 令y ′=0,得x =2或x =-1(舍). ∵f (0)=5,f (2)=-15,f (3)=-4, ∴y max =5,y min =-15,故选A.

8.已知函数y =-x 2-2x +3在[a,2]上的最大值为15

4,则a 等

于( )

A .-3

2

B.12 C .-1

2

D.12或-32

[答案] C

[解析] y ′=-2x -2,令y ′=0得x =-1. 当a ≤-1时,最大值为f (-1)=4,不合题意. 当-1

2-2

a +3=15

4

解得a =-12或a =-3

2

(舍去).

9.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是

( )

A .k ≤-3或-1≤k ≤1或k ≥3

B .-3

C .-2

D .不存在这样的实数 [答案] B

[解析] 因为y ′=3x 2-12,由y ′>0得函数的增区间是(-∞,-2)和(2,+∞),由y ′<0,得函数的减区间是(-2,2),由于函数在(k -1,k +1)上不是单调函数,所以有k -1<-2

10.函数f (x )=x 3+ax -2在区间[1,+∞)上是增函数,则实数

a 的取值范围是( )

A .[3,+∞)

B .[-3,+∞)

C .(-3,+∞)

D .(-∞,-3)

[答案] B

[解析] ∵f (x )=x 3+ax -2在[1,+∞)上是增函数,∴f ′(x )=3x 2+a ≥0在[1,+∞)上恒成立

即a ≥-3x 2在[1,+∞)上恒成立 又∵在[1,+∞)上(-3x 2)max =-3 ∴a ≥-3,故应选B. 二、填空题

11.函数y =x 32+(1-x )3

2,0≤x ≤1的最小值为______.

[答案]

22

由y ′>0得x >12,由y ′<0得x <1

2

.

此函数在??????0,12上为减函数,在????

??

12,1上为增函数,∴最小值

在x =12时取得,y min =22

.

12.函数f (x )=5-36x +3x 2+4x 3在区间[-2,+∞)上的最大值________,最小值为________.

[答案] 不存在;-2834

[解析] f ′(x )=-36+6x +12x 2,

令f ′(x )=0得x 1=-2,x 2=32;当x >3

2时,函数为增函数,当

-2≤x ≤3

2时,函数为减函数,所以无最大值,又因为f (-2)=57,

f ? ??

??

32=-2834,所以最小值为-2834.

13.若函数f (x )=

x

x 2+

a

(a >0)在[1,+∞)上的最大值为

33

,则

a 的值为________.

[答案]

3-1

[解析] f ′(x )=

x 2+a -2x 2

(x 2+a )2

a -x 2

(x 2+a )2

令f ′(x )=0,解得x =a 或x =-a (舍去)

当x >

a 时,f ′(x )<0;当00;

当x =a 时,f (x )=

a

2a

33,a =

32

<1,不合题意.

∴f (x )max =f (1)=1

1+a =3

3

,解得a =3-1.

14.f (x )=x 3-12x +8在[-3,3]上的最大值为M ,最小值为m ,则M -m =________.

[答案] 32

[解析] f ′(x )=3x 2-12 由f ′(x )>0得x >2或x <-2, 由f ′(x )<0得-2

∴f (x )在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增.

又f (-3)=17,f (-2)=24,f (2)=-8,

f (3)=-1,

∴最大值M =24,最小值m =-8, ∴M -m =32. 三、解答题

15.求下列函数的最值:

(1)f (x )=sin2x -x ? ??

??

?-π2≤x ≤π2;

(2)f (x )=x +1-x 2.

[解析] (1)f ′(x )=2cos2x -1. 令f ′(x )=0,得cos2x =1

2

.

又x ∈?????

??

?-π2,π2,∴2x ∈[-π,π],

∴2x =±π3,∴x =±π6

.

∴函数f (x )在???????

?

-π2,π2上的两个极值分别为

f ? ?????π6=32-π6,f ? ??

??

?-π6=-32+π6.

又f (x )在区间端点的取值为

f ? ?????π2=-π2,f ? ?????-π2=π

2

.

比较以上函数值可得f (x )max =π2,f (x )min =-π

2.

(2)∵函数f (x )有意义,

∴必须满足1-x 2≥0,即-1≤x ≤1, ∴函数f (x )的定义域为[-1,1].

f ′(x )=1+1

2

(1-x 2)-12·(1-x 2)′=1-

x

1-x

2

.

令f ′(x )=0,得x =

22

.

∴f (x )在[-1,1]上的极值为

f ?

??

??22

=22

1-?

??

??22

2= 2.

又f (x )在区间端点的函数值为f (1)=1,f (-1)=-1,比较以上函数值可得f (x )max =2,f (x )min =-1.

16.设函数f (x )=ln(2x +3)+x 2.求

f (x )在区间????

??

-34,14上的最

大值和最小值.

[解析]

f (x )的定义域为? ??

??

-32,+∞.

f ′(x )=2x +2

2x +3=4x 2+6x +2

2x +3

=2(2x +1)(x +1)

2x +3

.

当-3

20;

当-1

2时,f ′(x )<0;

当x >-1

2

时,f ′(x )>0,

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

利用导数研究函数的单调性、极值、最值

利用导数研究函数的单调性、极值、最值 1.函数f(x)=(x-3)e x的单调递增区间是() A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 答案D 解析函数f(x)=(x-3)e x的导数为f'(x)=[(x-3)e x]'=e x+(x-3)e x=(x-2)e x. 由函数导数与函数单调性的关系,得当f'(x)>0时,函数f(x)单调递增,此时由不等式f'(x)=(x-2)e x>0,解得x>2. 2.(2018广东东莞考前冲刺)若x=1是函数f(x)=ax+ln x的极值点,则() A.f(x)有极大值-1 B.f(x)有极小值-1 C.f(x)有极大值0 D.f(x)有极小值0 答案A 解析∵x=1是函数f(x)=ax+ln x的极值点,∴f'(1)=0, ∴a+=0,∴a=-1. ∴f'(x)=-1+=0?x=1. 当x>1时,f'(x)<0,当00,因此f(x)有极大值-1. 3.定义域为R的可导函数y=f(x)的导函数f'(x),满足f(x)2e x的解集为() A.(-∞,0) B.(-∞,2) C.(0,+∞) D.(2,+∞) 答案C 解析设g(x)=,则g'(x)=. ∵f(x)0,即函数g(x)在定义域内单调递增.

∵f(0)=2,∴g(0)=f(0)=2, ∴不等式f(x)>2e x等价于g(x)>g(0). ∵函数g(x)在定义域内单调递增. ∴x>0,∴不等式的解集为(0,+∞),故选C. 4.函数y=f(x)的导函数y=f'(x)的图象如图所示,则函数y=f(x)的图象可能是() 答案D 解析设导函数y=f'(x)的三个零点分别为x1,x2,x3, 且x1<00,f(x)是增函数,所以函数y=f(x)的图象可能为D,故选D. 一、 1.(2018·全国卷I高考理科·T16)已知函数f=2sin x+sin2x,则f的最小值是. 【解题指南】本题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小

函数与导数大题训练试题+答案

函数与导数大题训练 1已知函数.2 3)32ln()(2x x x f -+= (I )求f (x )在[0,1]上的极值; (II )若对任意0]3)(ln[|ln |],3 1,61[>+'+-∈x x f x a x 不等式成立,求实数a 的 取值范围; (III )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的 取值范围. 2. 设.2)(ln )()(2)(--==-- =e p qe e g x x f x f x q px x g ,且,其中(e 为自然对数的底数) (Ⅰ)求p 与q 的关系; (Ⅱ)若)(x g 在其定义域内为单调函数,求p 的取值范围; (Ⅲ)证明:①)1(,1)(->-≤x x x f ②).2,()1(412ln 33ln 22ln 2222≥∈+--<+++n N n n n n n n Λ 3.设函数a x x a x f +++-=1)(2,]1,0(∈x ,+ ∈R a . (1)若)(x f 在]1,0(上是增函数,求a 的取值范围; (2)求)(x f 在]1,0(上的最大值.

答案 1解:(I )2 3)13)(1(33323)(+-+-=-+= 'x x x x x x f , 令13 10)(-==='x x x f 或得(舍去) )(,0)(,3 10x f x f x >'<≤∴时当单调递增; 当)(,0)(,13 1x f x f x <'≤<时单调递减. ……………………………………3分 ]1,0[)(613ln )31(在为函数x f f -=∴上的极大值 ……………………………4分 (II )由0]3)(ln[|ln |>+'+-x x f x a 得 x x a x x a 323ln ln 323ln ln ++<+->或, …………① ……………………5分 设3 32ln 323ln ln )(2 x x x x x h +=+-=, x x x x x g 323ln 323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立, 0)32(2) 32(33)32(3332)(2>+=+?-+?+='x x x x x x x x g Θ, 03262)62(31323)(22>++=+?+= 'x x x x x x x h ,………………………………6分 ]3 1,61[)()(都在与x h x g ∴上单增,要使不等式①成立, 当且仅当.5 1ln 31ln ),61()31(<><>a a g a h a 或即或 ………………………8分 (III )由.0223)32ln(2)(2=-+-+?+-=b x x x b x x f 令x x x x x b x x x x 329723323)(,223)32ln()(2 2+-=+-+='-+-+=??则, 当]3 7,0[)(,0)(,]37,0[在于是时x x x ??>'∈上递增;

高中数学利用导数研究函数的性质( 极值与最值)

3.2利用导数研究函数的性质 第2课时导数与函数的极值、最值 一、基础知识 1.函数的单调性(复习) 在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减. 2.函数的极值 (1)一般地,求函数y=f(x)的极值的方法 解方程f′(x)=0,当f′(x0)=0时: ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值. (2)求可导函数极值的步骤 ①求f′(x); ②求方程f′(x)=0的根; ③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 知识拓展 (1)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件. (2)函数的极大值不一定比极小值大.

(3)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的必要不充分要条件. 二、基本题型 1.根据函数图象判断极值 【例1-1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( ) A .函数f (x )有极大值f (2)和极小值f (1) B .函数f (x )有极大值f (-2)和极小值f (1) C .函数f (x )有极大值f (2)和极小值f (-2) D .函数f (x )有极大值f (-2)和极小值f (2) 答案 D 解析 由题图可知,当x <-2时,f ′(x )>0;当-22时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【变式1-1】函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ) A .无极大值点、有四个极小值点 B .有三个极大值点、一个极小值点 C .有两个极大值点、两个极小值点 D .有四个极大值点、无极小值点 【答案】 C 【解析】 导函数的图象与x 轴的四个交点都是极值点,第一个与第三个是极大值点,第二个与第四个是极小值点. 2.求函数的极值和极值点 【例2-1】设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12 为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 【答案】 D 【解析】 f ′(x )=-2x 2+1x =x -2x 2(x >0),当02时,f ′(x )>0, ∴x =2为f (x )的极小值点.

利用导数研究函数的单调性

利用导数研究函数的单调性 一、选择题 1.函数f (x )=x ln x ,则( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在? ? ???0,1e 上递增 D.在? ? ???0,1e 上递减 解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,令f ′(x )>0得x >1 e , 令f ′(x )<0得00. 答案 C 3.已知函数f (x )=1 2x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 f ′(x )=3 2x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x ) 在R 上单调递增”的充分不必要条件. 答案 A 4.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )

解析由y=f′(x)的图象知,y=f(x)在[-1,1]上为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢. 答案 B 5.设函数f(x)=1 2 x2-9ln x在区间[a-1,a+1]上单调递减,则实数a的取值 范围是( ) A.(1,2] B.(4,+∞] C.[-∞,2) D.(0,3] 解析∵f(x)=1 2 x2-9ln x,∴f′(x)=x- 9 x (x>0), 当x-9 x ≤0时,有00且a+1≤3,解得10得 x>1. 答案(1,+∞) 7.已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则实数a的取值范围是________.

利用导数求函数值域

利用导数求函数最值 高二苏庭 导数是对函数的图像与性质的总结与拓展,导数是研究函数单调性极佳、最佳的重要工具,在掌握求函数的极值和最值的基础上学习用导数解决生产生活中的有关最大最小最有效等类似的应用问题广泛运用在讨论函数图像的变化趋势及证明不等式等方面。 导数是初等数学与高等数学的重要衔接点,是高考的热点,高考对导数的考查定位于作为解决初等数学问题的工具出现,高考对这部分内容的考查将仍会以导数的应用题为主,如利用导数处理函数的极值、最值和单调性问题和曲线的问题等,考题不难,侧重知识之意。 导数应用主要有以下三个方面: ①运用导数的有关知识研究函数的单调性和最值问题, ②利用导数的几何意义,研究曲线的切线斜率。函数y=f(x)在x=x0处的导数,表示曲线在点P(x0 , y0)处的切线斜率。 由导数来求最值问题的方法可知,解这类实际问题需先建立函数关系,再求极值点,确定最值点及最值.在设变量时可采用直接法也可采用间接法.

求函数极值时,导数值为0的点是该点为极值点的必要条件,但不是充分条件。 运用导数确定函数单调区间的一般步骤为: (1)求出函数y=f(x)的导函数; (2)在函数定义域内解不等式得函数y=f(x)的单调增区间;解不等式得函数y=f(x)的单调减区间。 例题剖析 例1、求函数的值域. 分析: 求函数的值域以前学过一些方法,也可利用求导的方法,根据函数的单调性求解. 解答: 函数的定义域由求得,即x≥-2.

当x>-2时,y′>0,即函数,在(-2,+∞)上是增函数,又f(-2)=-1,∴所求函数的值域为[-1,+∞). 点评: (1)从本题的解答过程可以看到,当单调区间与函数的值域相同时,才可使用此法,否则会产生错误. (2)求值域时,当x=-2,函数不可导,但函数 在[-2,+∞)上是连续的,函数图象是连续变化的,因此在x=-2时,取得最小值. 例2、把长度为16cm的线段分成两段,各围成一个正方形,它们的面积之和的最小值为多少? 分析:建立面积和与一正方形的周长的函数关系,再求最小值. 解答:设一段长为xcm,则另一段长(16-x)cm. ∴面积和 ∴S′=-2,令S′=0有x=8. 列表:

利用导数研究函数的极值、最值

利用导数研究函数的极值、最值 【例1-1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( ) A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) 角度2已知函数求极值 【例1-2】已知函数f(x)=ln x-ax(a∈R). (1)当a=1 2 时,求f(x)的极值; (2)讨论函数f(x)在定义域内极值点的个数. 【训练1】 (1)(角度1)已知函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为( ) A.1 B.2 C.3 D.4 (2)(角度2) 设函数f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f′(x)为f(x)的导函数. ①若a=b=c,f(4)=8,求a的值; ②若a≠b,b=c,且f(x)和f′(x)的零点均在集合{-3,1,3}中,求f(x)的极小值. 考点二已知函数的极值求参数

【例2】设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 【训练2】 已知函数f (x )=ax 3 +bx 2 +cx -17(a ,b ,c ∈R)的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( ) A.-8122 B.1 3 C.2 D.5 考点三 利用导数求函数的最值 【例3】 已知函数f (x )=2x 3 -ax 2+2. (1)讨论f (x )的单调性; (2)(经典母题)当0

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

(完整版)函数与导数经典例题(含答案)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,2 t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: x ,2t ? ?-∞ ?? ? ,2t t ?? - ??? (),t -+∞ ()f x ' + - + ()f x 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,2 t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: x (),t -∞ ,2t t ??- ?? ? ,2t ?? +∞ ??? ()f x ' + - + ()f x

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析 一、选择题 1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0 D .以上都有可能 [答案] A [解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A. 2.设f (x )=14x 4+13x 3+1 2x 2在[-1,1]上的最小值为( ) A .0 B .-2 C .-1 D.1312 [答案] A [解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0. ∴f (-1)=512,f (0)=0,f (1)=13 12 ∴f (x )在[-1,1]上最小值为0.故应选A. 3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.22 27 B .2 C .-1 D .-4 [答案] C [解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =1 3或x =-1

当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =22 27;当x =1时,y =2. 所以函数的最小值为-1,故应选C. 4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为3 4 B .最大值为1,最小值为4 C .最大值为13,最小值为1 D .最大值为-1,最小值为-7 [答案] A [解析] ∵y =x 2-x +1,∴y ′=2x -1, 令y ′=0,∴x =1 2,f (-3)=13,f ? ?? ??12=34,f (0)=1. 5.函数y =x +1-x 在(0,1)上的最大值为( ) A. 2 B .1 C .0 D .不存在 [答案] A [解析] y ′=1 2x -121-x =12·1-x -x x ·1-x 由y ′=0得x =1 2,在? ????0,12上y ′>0,在? ????12,1上 y ′<0.∴x =1 2时y 极大=2, 又x ∈(0,1),∴y max = 2. 6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

利用导数研究函数的极值、最值

利用导数研究函数的极值、最值 一、选择题 1.(2016·四川卷)已知a为函数f(x)=x3-12x的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 解析f′(x)=3x2-12,∴x<-2时,f′(x)>0,-22时, f′(x)>0,∴x=2是f(x)的极小值点. 答案 D 2.函数f(x)=1 2 x2-ln x的最小值为( ) A.1 2 B.1 C.0 D.不存在 解析f′(x)=x-1 x = x2-1 x ,且x>0.令f′(x)>0,得x>1;令f′(x)<0,得 0

解析 设圆柱的底面半径为R ,母线长为l ,则V =πR 2 l =27π,∴l =27R 2, 要使用料最省,只须使圆柱的侧面积与下底面面积之和S 最小. 由题意,S =πR 2+2πRl =πR 2+2π·27 R . ∴S ′=2πR -54π R 2 ,令S ′=0,得R =3,则当R =3时,S 最小.故选A. 答案 A 5.(2017·东北四校联考)已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A.(-1,2) B.(-∞,-3)∪(6,+∞) C.(-3,6) D.(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 二、填空题 6.(2017·肇庆模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________. 解析 f ′(x )=3x 2+2ax +3. 依题意知,-3是方程f ′(x )=0的根, 所以3×(-3)2+2a ×(-3)+3=0,解得a =5. 经检验,a =5时,f (x )在x =-3处取得极值. 答案 5 7.(2016·北京卷改编)设函数f (x )=???x 3 -3x ,x ≤0, -2x ,x >0,则f (x )的最大值为 ________. 解析 当x >0时,f (x )=-2x <0; 当x ≤0时,f ′(x )=3x 2-3=3(x -1)(x +1),当x <-1时,f ′(x )>0,f (x )是增函数,当-1

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

高考数学:利用导数研究函数的单调性、极值、最值

利用导数研究函数的单调性、极值、最值 一、选择题 1.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是 ( ) A.[-1,1] B.11,3 ? ? -??? ? C.11,33??- ???? D.11,3? ? --???? 【解析】选C.方法一:用特殊值法: 取a=-1,f (x )=x-1 3 sin2x-sinx , f'(x )=1-23 cos2x-cosx , 但f'(0)=1-23-1=-23 <0,不具备在(-∞,+∞)上单调递增,排除A ,B ,D. 方法二:f'(x )=1-23 cos2x+acosx ≥0对x ∈R 恒成立, 故1-23 (2cos 2x-1)+acosx ≥0, 即acosx-43cos 2 x+53 ≥0恒成立, 令t=cosx ,所以-43t 2+at+53 ≥0对t ∈[-1,1]恒成立, 构造函数f (t )=- 43 t 2 +at+53 , 开口向下的二次函数f (t )的最小值的可能值为端点值, 故只需()()1f 1a 0,31f 1a 0,3 ?-=-≥????=+≥?? 解得-13≤a ≤13 . 2.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切 线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2)

C.(0,+∞) D.(1,+∞) 【解题指南】设出两切点的坐标,两切线方程,从而求出点P 的坐标,表示出三角形的面积,进而求出取值范围. 【解析】选A.由题设知:不妨设P 1,P 2点的坐标分别为: P 1(x 1,y 1),P 2(x 2,y 2),其中0??得l 1的斜率k 1为-11 x ,l 2的斜率k 2为2 1x ;又l 1与l 2垂直,且00,f'(x )<0的解集得出函数的极值点. 【解析】选D. f'(x )=3x 2-12=3()()x 2x 2-+,令f'(x )=0,得x=-2或x=2,易知f (x )在()2,2-上单调递减,在()2,∞+上单调递增,故f (x )的极小值为f ()2,所以a=2. 二、解答题 4.(2016·全国卷Ⅰ高考理科·T21)已知函数f (x )=(x-2)e x +a (x-1)2 有两个零点. (1)求a 的取值范围. (2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 【解析】(1)f'(x )=(x-1)e x +2a (x-1)=(x-1)(e x +2a ).

相关文档
相关文档 最新文档