文档库 最新最全的文档下载
当前位置:文档库 › 第四章 汽油机辅助控制系统

第四章 汽油机辅助控制系统

第四章  汽油机辅助控制系统
第四章  汽油机辅助控制系统

第四章汽油机辅助控制系统

教案(章节备课)

教案内容电阻,应为10~30Ω。

4)拆下怠速电磁阀,将蓄电池正极接至B1和B2端子,负极按顺序依次接通S1—S2—S3—S4端子时,随步进电动机的旋转,控制阀应向外伸出,如图;若负极按反方向接通S4—S3—S2—S1端子,则控制阀应向内缩回。

步进电动机型怠速控制阀工作情况检查

a)接蓄电池正极b)接蓄电池负极

3.控制阀控制的内容

(1)起动初始位置的设定

关闭点火开关使发动机熄火后,ECU的M—REL端子向主继电器线圈供电延续约2~3s。在这段时间内,蓄电池继续给ECU和步进电动机供电,ECU使怠速控制阀回到起动初始位置。

(2)起动控制

在起动期间,ECU根据冷却液温度的高低控制步进电动机,调节控制阀的开度,使之到起动后暖机控制的最佳位置,此位置随冷却液温度的升高而减小。

(3)暖机控制

在暖机过程中,ECU根据冷却液温度信号按内存的控制特性控制怠速控制阀的开度,随温度上升,怠速控制阀开度渐渐减小。当冷却液温度达到70℃时,暖机控制过程结束。

(4)怠速稳定控制

当转速信号与确定的目标转速进行比较有一定差值时(一般为20r/min),ECU将通过步进电动机控制怠速控制阀,调节怠速空气供给量,使发动机的实际转速与目标转速相同。

(5)怠速预测控制

在发动机负荷发生变化时,为了避免怠速转速波动或熄火,ECU会根据各负荷设备开关信号,通过步进电动机提前调节怠速控制阀的开度。

(6)电器负荷增多时的怠速控制

如电器负荷增大到一定程度时,蓄电池电压会降低,为了保证电控系统正常的供电电压,ECU根据蓄电池电压调节怠速控制阀的开度,提高发动机怠速转速,以提高发动机的输出功率。

(7)学习控制

由于磨损原因导致怠速控制阀性能发生变化,怠速控制阀的位置相同时,实际的怠速转速与设定的目标转速略有不同,ECU利用反馈控制使怠速转速回归到目标转速的同时,还可将步进电动机转过的步数存储在ROM中,以便在此后的怠速控制过程中使用。

四、旋转电磁阀型怠速控制阀

第2节进气控制系统

教案内容

一、动力阀控制系统

功用:根据发动机不同的负荷,改变进气流量去改善发动机的动力性能。

工作原理:受真空控制的动力阀在进气管上,控制进气管空气通道的大小。发动机小负荷运转时,受ECU控制的真空电磁阀关闭,真空室的真空度不能进入动力阀上部的真空室,动力阀关闭,进气通道变小,发动机输出小功率。当发动机负荷增大时,ECU根据转速、温度、空气流量信号将真空电磁阀电路接通,真空电磁阀打开,真空室的真空度进入动力阀,将动力阀打开,进气通道变大,发动机输出大的扭矩和功率。

维修时主要检查真空罐、真空气室、和真空管路有无漏气,真空电磁阀电路有无短路或断路。

二、谐波增压控制系统(ACIS)

谐波增压控制系统是利用进气流惯性产生的压力波提高进气效率。

1.压力波的产生

当气体高速流向进气门时,如进气门突然关闭,进气门附近气流流动突然停止,但由于惯性,进气管仍在进气,于是将进气门附近气体被压缩,压力上升。当气体的惯性过后,被压缩的气体开始膨胀,向进气气流相反方向流动,压力下降。膨胀气体的波传到进气管口时又被反射回来,形成压力波。

2.压力波的利用方法

一般而言,进气管长度长时,压力波长,可使发动机中低转速区功率增大;进气管长度短时,压力波波长短,可使发动机高速区功率增大。

3.波长可变的谐波进气增压控制系统

丰田皇冠车型2JZ—GE发动机采用在进气管增设一个大容量的空气室和电控真空阀,以实现压力波传播路线长度的改变,从而兼顾低速和高速的进气增压效果。

系统工作原理如图,ECU根据转速信号控制电磁真空通道阀的开闭。低速时,电磁真空孔道阀电路不通,真空通道关闭,真空罐的真空度不能进入真空气室,受真空气室控制的进气增压控制阀处于关闭状态。此时进气管长度长,压力波长大,以适应低速区域形成气体动力增压效果。高速时,ECU接通电磁真空道阀的电路,真空通道打开,真空罐的真空度进入真空气室,吸动膜片,从而将进气增压控制阀打开,由于大容量空气室的参与,缩短了压力波的传播距离,使发动机在高速区域也得到较好的气体动力增压效果。

ACIS系统工作原理

1—喷油器2—过气道3—空气滤清器4—过气室5—涡流控制气门

教案内容

6—进气控制阀7—节气门8—真空驱动器

维修时检查空气真空电磁阀的电阻为38.5~44.5Ω。

三、可变配气相位控制系统(VTEC)

1.对配气相位的要求

要求配气相位随着发动机转速的变化,适当的改变进、排气门的提前或推迟开启角和迟后关闭角。

2.VTEC机构的组成

同一缸有主进气门和次进气门,主摇臂驱动主进气门,次摇臂驱动次进气门,中间摇臂在主次之间,不与任何气门直接接触。

VTEC配气机构与普通配气机构相比较,主要区别是:凸轮轴上的凸轮较多,且升程不等,结构复杂。

3.VTEC机构的工作原理

功能:根据发动机转速、负荷等变化来控制VTEC机构工作,改变驱动同一气缸两进气门工作的凸轮,以调整进气门的配气相位及升程,并实现单进气门工作和双进气门工作的切换。

工作原理:发动机低速运转时,电磁阀不通电使油道关闭,此时,三个摇臂彼此分离,主凸轮通过摇臂驱动主进气门,中间凸轮驱动中间摇臂空摆;次凸轮的升程非常小,通过次摇臂驱动次进气门微量关闭。配气机构处于单进、双排气门工作状态,单进气门由主凸轮轴驱动。

当发动机高速运转,电脑向VTEC电磁阀供电,使电磁阀开启,来自润滑油道的机油压力作用在正时活塞一侧,此时两个活塞分别将主摇臂和次摇臂与中间摇臂接成一体,成为一个组合摇臂。此时,中间凸轮升程最大,组合摇臂受中间凸轮驱动,两个进气门同步工作。

当发动机转速下降到设定值,电脑切断电磁阀电流,正时活塞一侧油压下降,各摇臂油缸孔内的活塞在回位弹簧作用下,三个摇臂彼此分离而独立工作。

4.VTEC系统电路

VTEC控制系统

教案内容

一、增压控制系统功能

根据发动机进气压力的大小,控制增压装置的工作,以达到控制进气压力、提高发动机动力性和经济性的目的。

二、废气涡轮增压

当ECU检测到进气压力在0.098MPa以下时,受ECU控制的释压电磁阀的搭铁回路断开,释压电磁阀关闭。此时涡轮增压器出口引入的压力空气,经释压阀进入驱动空气室,克服气室弹簧的压力推动切换阀将废气进入涡轮室的通道打开,同时将排气旁通道口关闭,此时废气流经涡轮室使增压器工作。当ECU检测到的进气压力高于0.098MPa时,ECU将释压电磁阀的搭铁回路接通,释压电磁阀打开,通往驱动器室的压力空气被切断,在气室弹簧弹力的作用下,驱动切换阀,关闭进入涡轮室的通道,同时将排气旁通道口打开,废气不经涡轮室直接排出,增压器停止工作,进气压力下降,只到进气压力降至规定的压力时,ECU又将释压阀关闭,切换阀又将进入涡轮室的通道口打开,废气涡轮增压器又开始工作。

废气涡轮增压原理图

第4节排放控制系统

教案内容

一、汽油蒸气排放(EVAP)控制系统

1.EVAP控制系统功能

收集汽油箱和浮子室内蒸气的汽油蒸气,并将汽油蒸气导入气缸参加燃烧,从而防止汽油蒸气直接排出大气而防止造成污染。同时,根据发动机工况,控制导入气缸参加燃烧的汽油蒸气量。

2.EV AP控制系统的组成与工作原理

如图,油箱的燃油蒸气通过单向阀进入活性碳罐上部,空气从碳罐下部进入清洗活性碳,在碳罐右上方有一定量排放小孔及受真空控制的排放控制阀,排放控制阀内部的真空度由碳罐控制电磁阀控制。

EVAP控制系统

发动机工作时,ECU根据发动机转速、温度、空气流量等信号,控制碳罐电磁阀的开闭来控制排放控制阀上部的真空度,从而控制排放控制阀的开度。当排放控制阀打开时,燃油蒸气通过排放控制阀被吸入进气歧管。

在部分电控EV AP控制系统中,活性碳罐上不设真空控制阀,而将受EC U控制的电磁阀直接装在活性碳罐与进气管之间的吸气管中。如图韩国现代轿车装用的电控EV AP控制系统。

韩国现代轿车EV AP系统

3.EV AP控制系统的检测

(1)一般维护检查管路有无破损或漏气,碳罐壳体有无裂纹,每行驶20000㎞应更换活性碳罐底部的进气滤心。

教案内容

(2)真空控制阀的检查拆下真空控制阀,用手动真空泵由真空管接头给真空控制阀施加约5KPa真空度时,从活性碳罐侧孔吹入空气应畅通,不施加真空度时,吹入空气则不通。

(3)电磁阀的检查拆开电磁阀进气管一侧的软管,用手动用真空泵由软管接头给控制电磁阀施加一定的真空度,电磁阀不通电时应能保持真空度,若接蓄电池电压,真空度应释放。测量电磁阀两端子间电阻应为36~44Ω。

二、废气在循环控制系统(EGR)

1.EGR控制系统功能

将适当的废气重新引入气缸参加燃烧,从而降低气缸的最高温度,以减少NOx的排放量。

种类:开环控制EGR系统和闭环控制EGR系统。

2.开环控制EGR系统

如图,主要由EGR阀和EGR电磁阀等组成。

开环控制EGR系统

原理:EGR阀安装在废气再循环通道中,用以控制废气再循环量。EGR 电磁阀安装在通向EGR真空通道中,ECU根据发动机冷却液温度、节气门开度、转速和起动等信号来控制电磁阀的通电或断电。ECU不给EGR电磁阀通电时,控制EGR阀的真空通道接通,EGR阀开启,进行废气再循环;ECU 给EGR电磁阀通电时,控制EGR阀的真空度通道被切断,EGR阀关闭,停止废气在循环。

EGR率=[EGR量/(进气量+EGR量)]×100℅

3.闭环控制EGR系统

闭环控制EGR系统,检测实际的EGR率或EGR阀开度作为反馈控制信号,其控制精度更高。

与开环相比只是在EGR阀上增设一个EGR阀开度传感器,控制原理,EG R率传感器安装在进气总管中的稳压箱上,新鲜空气经节气门进入稳压箱,参与再循环的废气经EGR电磁阀进入稳压箱,传感器检测稳压箱内气体中的氧浓度,并转换成电信号送给ECU,ECU根据此反馈信号修正EGR电磁阀的开度,使EGR率保持在最佳值。

教案内容

4.EGR控制系统的检修

(1)一般检查拆下EGR阀上的真空软管,发动机转速应无变化,用手触试真空软管应无真空吸力;发动机温度达到正常工作温度后,怠速时检查结果应与冷机时相同,若转速提高到2500 r/min左右,拆下真空软管,发动机转速有明显提高。

(2)EGR电磁阀的检查冷态测量电磁阀电阻应为33~39Ω。电磁阀不通电时,从进气管侧吹入空气应畅通,从滤网处吹应不通;接上蓄电池电压时,应相反。

(3)EGR阀的检查如图,用手动真空泵给EGR阀膜片上方施加约15KPa的真空度,EGR阀应能开启,不施加真空度,EGR阀应能完全关闭。

EGR阀的检查

三、三元催化转换器(TWC)与空燃比反馈控制系统

1.TWC功能

利用转换器中的三元催化剂,将发动机排出废气中的有害气体转变为无害气体。

2.TWC的构造

三元催化剂一般为铂(或钯)与铑的混合物。

3.影响TWC转换效率的因素

影响最大的是混合气的浓度和排气温度。

只有在理论空燃比14.7附近,三元催化转化器的转化效率最佳,一般都装有氧传感器检测废气中的氧的浓度,氧传感器信号输送给ECU,用来对空燃比进行反馈控制。

此外,发动机的排气温度过高(815℃以上),TWC转换效率将明显下降。

4.氧传感器

(1)氧化锆氧传感器

在敏感元件氧化锆的内外表面覆盖一层铂,外侧与大气相同。

在400℃以上的高温时,若氧化锆内外表面处的气体中的氧的浓度有很大差别,在铂电极之间将会产生电压。当混合气稀时,排气中氧的含量高,传感器元件内外侧氧的浓度差小,氧化锆元件内外侧两极之间产生的电压很低(接近0V),反之,如排气中几乎没有氧,内外侧的之间电压高(约为1V)。在理论空燃比附近,氧传感器输出电压信号值有一个突变,如下图。

(2)氧化钛氧传感器

主要由二氧化钛元件、导线、金属外壳和接线端子等组成。

第二章 汽油机电控概述

§第二章汽油机电控概述 学习目标 通过本章的学习应掌握汽油机微机控制系统基本构成及三个基本组成的作用、主要控制功能、汽油喷射的分类等基本内容;了解采用微机控制汽油喷射的主要优点。 §2.1汽油机电控系统及控制内容 自1967年德国(Bosch)公司开发的D-Jetronic电控汽油喷射系统面世以来,经过几十年的发展,汽油机电子控制技术经历了从模拟电路到数字电路,从普通电子控制到微型计算机控制,从单一功能到综合控制的过程。§2.1.1 汽油机电控系统的构成 现在汽油机电控系统尽管种类繁多,但作为一个控制系统,它们具有与其它控制系统相同的三个基本组成部分:传感器、电控单元(Elcetronic Control Unit ,ECU)和执行组件构 成如图2.1所示 传感器的作用是将反映发动 机运行状况的机械动作、热状态等 物理量信息,转换成相应的模拟或 数字电信号,并输送到电控单元。 每一个传感器都是一个完整的测 量装置,它们传输的信息,是电控系统做出各种控制决策的依据,如果没有这些传感器,电控单元就无法实现对发动机的有效可靠控制。一台发动机的电控系统应有多少个传感器,取决于控制功能的简繁和需要达到的控制精度。一般而言,控制功能越多,控制精度要求越高,所需的传感器越多。 电控单元(ECU)是电控系统的核心。主要任务是:向各种传感器提供

它们所需的基准电压(如:2V、5V、9V、12V等);接收传感器或其它装置输入信号,并将它们转换为微机能够处理的数字脉冲;储存输入的信息,运用内部已有的程序对输入信息进行运算分析,输出执行命令;根据发动机性能的变化,自动修正预置的标准值;将输入信息与设定的标准值进行比较,如发现数据异常,确定故障位置,并把故障信息储存在内存中。 执行组件是在电控单元控制下完成特定功能的电气装置。在电控系统中,ECU对执行组件的控制,一般通过控制执行组件电磁线圈搭铁回路来实现。 §2.1.2 汽油机电控系统的主要控制功能 汽油机微机控制系统的控制功能,视发动机生产年份、制造商、发动机类型等有很大的差异。一般而言,生产年份较早的发动机,控制功能相对较少,而近年生产的发动机,电控系统控制功能已有很大的扩展。主要控制如下: 一、汽油喷射控制:是汽油机电控系统最主要的控制功能,汽油喷射控制的内容主要有喷油正时控制、喷油持续时间控制、停油控制和电动汽油泵控制等。 喷油正时控制:即喷油开始时刻控制,包括根据曲线转角位置进行控制的同步喷射控制循和根据发动机运行工况进行控制的异步喷射控制两种方式。 喷油持续时间控制:也即喷油量控制。包括发动机起动时的喷油持续时间控制,发动机起动后的喷油持续时间控制两种控制程序。 停油控制:包括减速停油控制、超速停油控制及停油后的恢复供油控制。 电动汽油泵控制:包括发动机起动前电动汽油泵的预运转控制、发动机正常运转时电动汽油泵运转控制。 二、点火控制:是汽油机电控系统的第二个主要控制功能。电控系

柴油发电机组控制系统工作原理

柴油发电机组控系统工作原理 LIXISE 作者: 作者:LIXISE 柴油发电机组控制系统工作原理和算法是相当的复杂,每个电路的设计都有其特定的算法来予以实现。柴油发电机组的控制器系统犹如发电机组的心脏,智能控制系统的使用大大提高了柴油发电机组的运行,保障了柴油发电机组的稳定工作,那么控制系统是通过何种原理和算法来实现呢?柴油发电机组的控制部分,数字式励磁控制器较传统的模拟电路励磁控制器具有精度高,反应快,控制算法适应性强,对于不同特性的电机只要通过调整程序参数就能适应,甚至可以实现更高端的自适应智能控制算法等优点。 一、数字励磁控制器软件实现与算法研究 主要是对数字式励磁控制器的软件和所采用的控制算法进行论述。首先对数字励磁控制器的主程序进行设计,然后对电量参数采集算法和智能励磁控制算法进行研究,并在CPU上进行实现。为了实现精确的数字励磁控制,需要得到实时、精确的电量数据,而要获得实时、精确的电量数据,则需要采用交

流采样方法,并推导出交流采样下各个电量的计算公式,最终编写计算出电量数据的算法程序。交流采样是按一定的规律对被测信号的瞬时值进行采样,再按照一定的数学算法求出被测电量参数的测量方法。下面给出交流电压,交流电流,有功功率,无功功率,功率因素的各种算法中的离散公式。 二、数字式励磁控制器总体设计方案 工作电源:由于微处理器的工作电源要求,我们需要一个5V的稳定直流电源,信号调理电路的运算电路的供电需要一组±12V的直流电源,另外,开关量输出需要驱动继电器,所以需要一个+24V的直流电源,为此我们需要设计一个电源转化模块得到系统正常工作所需的三组DC电源。 三、交流采样锁相环电路 要进行交流采样,通常需要进行同步采样,目前交流采样方式主要有硬件同步采样、软件同步采样和异步采样三种。硬件同步由硬件同步电路向CPU提出中断实现同步。硬件同步电路有多种形式,常见的如锁相环同步电路等。硬件同步采样法是由专门的硬件电路产生同步于被测信号的采样脉冲。它能克服软件同步采样法存在截断误差等缺点,测量精度高。利用锁相频率跟踪原理实

汽油机辅助控制系统习题

一、填空题 1.根据控制节气门方式的不同,巡航控制系统可分为_______________和_________________两种。 2.电子油门控制系统主要由____________ 、_______________、 _____________伺服电动机和______________组成。 3.汽车网络系统英文简写是____________。 4.如果把四尾气分析仪的传感器装在催化器下游,分析仪上________和_________的读数不受三元催化转换器的影响。 5.排气温度传感器用来检测__________________;用以判断_________________________。 6.占空比控制电磁阀型怠速控制阀的结构主要由___________、 _________ 、_______ _________等组成。 7.真空电磁阀用英文字母表示为 _________;谐波增压控制系统用英文字母表示为_______________。 8.为使发动机工作时进气更充分,应随转速的提高应适当_________进气门的提前开启角。 9.VTEC配气机构与普通配气机构相比,在结构上的主要区别是: _______________________________________________________。 10.在闭环控制过程中,当实际的空燃比小于理论空燃比时,氧传感器向ECU输入的电压信号一般为_____________。 11.丰田凌志LS400轿车氧传感器加热线圈在20℃时阻值应为_________________。 12.巡航控制系统用英文字母表示为___________,又称_________________。 13.巡航控制系统主要由__________、 ___________、 ________、 _________、 ________等组成。 14.驾驶员通过操纵开关给ECU输入巡航控制命令,主要用于______________________。 15.巡航控制系统常见故障主要是:______________、 ___________、 _____________ 、_________________等。 16.在开环控制EGR系统中,发动机工作时,ECU给EGR电磁阀通电停止废气再循环的工况有:______________、 _____________、 _______________。 17.随发动机转速和负荷减小,EGR阀开度将__________。 18.三元催化转换器的功能是_____________________________________________。 19.影响TWC转换效率的最大因素有__________________、 __________________。 20.动力增压是利用________________________________________________工作。 21.当ECU检测到的进气压力高于_________时,废气涡轮增压停止工作。 22.汽车排放污染主要来源于_______________________。 23.柴油机的主要排放污染物是_______ 、 ________ 和 ___________。 24.发动机排出的NO X量主要与____________________________有关。 25.开环控制EGR系统主要由______________和_______________等组成。 26.发电机控制系统的功能是____________________________。 27.冷却风扇控制系统发生故障时,主要应对__________、 _____________、 ____________及继电器电路进行检查。 28.点火开关接通的瞬间,故障指示灯正常现象应该是__________的。 29.当凸轮轴位置传感器发生故障时,将造成发动机_____________________。 30.ECU必须有合适的____________才能控制发动机管理系统。 31.ECU电源电路就是由______________________________。 32.给发动机控制模块反馈信号的传感器主要有___________ 、_____________。 33.在三元催化转换器前后各装一个氧传感器的目的是_____________________________。 34.三元催化剂是____________________的混合物。 35.正常情况下转换器出气口应该至少比进气口温度高_______________。 36.废气再循环的主要目的是__________________________。 37.减少氮氧化合物的最好方法就是降低_______________。 38.废气在循环会使混合气的着火性能和发动机输出功率________。 39.在诊断EGR系统之前,发动机的温度必须处于________________。 40.目前所用的二次空气供给方法有________________ 、______________两种。

!控制系统计算机辅助设计课后题部分答案

第三章 1.1>>s=tf('s');G=(s^2+5*s+6)/(((s+1)^2+1)*(s+2)*(s+4))或者G=(s^2+5*s+6)/((s+1)^2+1)/(s+2)/(s+4) 1.2 >> z=tf('z',0.1);H=5*(z-0.2)^2/(z*(z-0.4)*(z-1)*(z-0.9)+0.6) 2.>> den=[1 10 32 32];num=[6 4 2 2];G=tf(num,den) >> zpk(G) 3.A=[-1,1,0; 0,-1,-3; -1,-5,-3];B=[0,0; 1,0; 0,1]; C=[0,-1,0];D=[1,-5];G=ss(A,B,C,D) >> G1=tf(G) 4.den=[1 1 0.16];num=[1 2 ];H=tf(num,den,'Ts',1,'ioDelay',2) 5.>> z=[-1+j,-1-j];p=[0 0 -5 -6 -j j]; >> G=zpk(z,p,8) 5.2 z=tf('z',0.05);q=z^-1;H=((q+3.2)*(q+2.6))/q^5/(q-8.2);zpk(H) 6.>> A=[1 2 3; 4 5 6; 7 8 0];B=[4; 3; 2]; C=[1 2 3];D=zeros(1,1);G=ss(A,B,C,D); >> G1=tf(G) >> zpk(G1) 7.1 s=tf('s');Go=(211.87*s+317.64)/(s+20)/(s+94.34)/(s+0.17); >> Gc=(169.6*s+400)/s/(s+4);H=1/(0.01*s+1); >> G=feedback(Go*Gc,H) >> G1=ss(G) >> zpk(G) 7.2 z=tf('z',1);q=z^-1;Go=(35786.7*q+108444)/(q+4)/(q+20)/(q+74);Gc=1/(q-1);H=1/(0.5*q-1);feedb ack(Go*Gc,H) >> G1=ss(G) >> G2=zpk(G) 7.3 syms Km J B Kr Lq Rq Kv s >> G=Km*J/(J*s^2+B*s+Kr);Gc=Lq/(Lq*s+Rq),H=Kv*s; Gc = Lq/(Rq + Lq*s) feedback(G*Gc,H) ans = 1/(Kv*s) - 1/(Kv*s*((J*Km*Kv*Lq*s)/((Rq + Lq*s)*(J*s^2 + B*s + Kr)) + 1)) 8. s=tf('s');G=10/(s+1)^3;Gpid=0.48*(1+1/(1.814*s)+0.4353*s/(1+0.04353*s)); >> G0=feedback(Gpid*G,1) ss(G0) G2=minreal(G1) zpk(G0) 9.>> A=[2.25 -5 -1.25 -0.5;2.25 -4.25 -1.25 -0.25;0.25 -0.5 -1.25 -1; 1.25 -1.75 -0.25 -0.75]; >> B=[4 6 ;2 4; 2 2;0 2];C=[0 0 0 1;0 2 0 2];D=zeros(2,2); >> G1=ss(A,B,C,D)

柴油发动机电路控制系统的故障维修

柴油机电控系统的故障诊断 柴油发动机故障自诊断的内容 (1)发现故障 柴油机在正常运转情况下,输入电控单元的各种传感器的电平信号是处在一定范围内的。一旦出现该范围外的信号,电控单元即诊断为故障信号;但对开环控制系统中的执行器,由于只接受电控单元信号,不反馈“执行”情况,故需设置专门电路来检测执行器的工作情况。 (2)故障分类 制造厂在设计自诊断系统时,预先根据不同的故障部位信号的输入、输出电平信号,将故障代码编制在程序中。电控单元一旦发生故障,立即按故障信号对号入座,并编上预定的故障代码。 (3)故障储存 为了给维修入员提供方便,通常将上述的故障代码存入存储器中,即使在电源钥匙开关(点火开关)断开的情况下,电控单元的存储器电源仍处在通电状态下,不会失去已存储的故障代码。 (4)故障报警 当电控单元检测到故障后,通过设置在仪表板内的报警灯向用户报警,或通过液晶显示仪直接以文字的形式向用户报警,同时还显示故障部位。 (5)应急反应 汽车在运行中如果发生故障,为了不妨碍正常行驶,电控单元通常采用应急反应措施,即利用预编程序中的代用值(标准值的电平信号)进行计算以保证正常的行驶功能,并待停车后再由用户或维修人员进行检修。 柴油发动机故障自诊断的工作原理 (1)传感器的故障诊断 柴油机运行时,如果传感器电压信号多次或持续一定时间超出了规定范围,则自诊断系统将其诊断为故障。以冷却液温度传感器的故障诊断为例,正常工作时,其输出电压应在0. 1-4. 8 V,如果输出电压低于0. 1 V(相当于冷却液温度高于139 ℃)或高于4. 8 V(相当于冷却液温度低于-50℃时,则系统诊断为故障信号。在“记录”故障代码、显示故障(车内仪表盘上“检查发动机灯”亮)的同时,还会采取应急反应措施,用事先存储的代用值80℃作为冷却液温度的控制值,以防因传感器信号异常造成控制混乱而导致汽车不能行驶。自诊断随车检测系统只能诊断出该传感器有故障,故其电路发生短路或断路时,而无法确认传感器性能的好坏。 (2)执行器的故障诊断 柴油机运转时电控单元按柴油机工况的要求不断地向执行器发出各种指令,但开环控制系统中的执行器不可能反馈“执行”情况信息,需增加专用电路监视其工作情况,并对执行器故障采取相应措施。 柴油发动机自诊断故障码的读取 通常诊断的输出接口由检查发动机(Check Engine)警告灯、超速挡指示灯、ABS警告灯、电控单元检测插座(Check Connection、故障诊断插座(TDCI)等组成。警告灯或指示灯作为指示有无故障的标志,一般位于汽车仪表板上,电控单元检测插座一般位于发动机舱内。当将检测插座与检测端子TE对地短接,发动机警告灯会闪烁,闪烁次数即故障代码;故障诊断插座通常位于仪表板下方,它是电控系统诊断信号的专用连接器,主要用于与专用车外故障诊断仪(也称电脑解码器)相连接,进行车外诊断,以扩充随车诊断系统的诊断信息和诊断功能。 柴油发动机故障代码既可采用随车自诊断系统,也可采用车外诊断系统读取。 (1)采用随车自诊断系统读取 若发动机警告灯持续点亮,则意味着存在故障。为读取故障代码,先将电源钥匙开关置于“OFF",用一根导线连接故障诊断插座(或检测插座)内TE,和E,。在读取故障代码之前,要使柴油机处于规定的状态:蓄电池电压)11 V;松开油门;变速器置空挡;关闭所有附属电器设备;柴油机为热机状态。在以上状态下,将电源钥匙开关置于“ON",但不启动柴油机。 柴油发动机读取故障码的方法有以下3种: ①用仪表板上“检查发动机”警告灯的闪烁规律读取。若电控系统工作正常,电控单元内未存有故障代码,则警告灯以每秒5次的频率连续闪烁。若电控单元内存有故障代码,则警告灯以每秒2次的闪烁频率连续闪烁,并将两位数组成的故障代码的十位数和个位数,先后用警告灯的闪烁次数表示出来。若电控单元内存有若干个故障代码时,电控单元按

柴油机电控技术发展三个阶段的技术简介.doc

柴油机电控技术发展三个阶段的技术简介 柴油机电控技术的发展 柴油机电控技术是在解决能源危机和排放污染两大难题的背景下,在飞速发展的电子控制技术平台上发展起来的。汽油机电控技术的发展为柴油机电控技术的发展提供了宝贵经验。 柴油机电控技术发展的三个阶段:位置控制、时间控制、时间—压力控制(压力控制)

第一代柴油机电控燃油喷射系统(常规压力电控喷油系统) 优点:结构不需改动,生产继承性好,便于对现有柴油机进行升级换代。 缺点:系统响应慢、控制频率低、控制自由度小、控制精度不够高,喷油压力无法独立控制。 第二代柴油机电控燃油喷射系统(高压电控喷油系统) 改变了传统燃油供给系统的组成和结构,主要以电控共轨(各缸喷油器共用一个高压油管)式喷油系统为特征,直接对喷油器的喷油量、喷油正时、喷油速率和喷油规律、喷油压力等进行“时间-压力控制”或“压力控制”。 特点:通过设置传感器、电控单元、高速电磁阀和相关电/液控制执行元件等,组成数字式高频调节系统,有电磁阀的通、断电时刻和通、断电时间控制喷油泵的供油量和供油正时。但供油压力还无法独立控制。 ●柴油机电控燃油喷射系统的优点 1.改善低温起动性。 电子控制系统能够以最佳的程序替代驾驶员进行这种麻烦的起动操作,使柴油机低温起动更容易。 2.降低氮氧化物和烟度的排放。 采用柴油机电控技术,可精确地将喷油量控制在不超过冒烟界限的适当范围内,同时根据发动机工况调节喷油时刻,从而有效地抑制排烟。 3.提高发动机运转稳定性。 4.提高发动机的动力性和经济性。 采用柴油机电控系统,无论负荷怎样增减,都能保证发动机怠速工况下以最低的转速稳定运转,有利于提高其经济性。 5.控制涡轮增压。 柴油机电控系统中,ECU根据传感器信号精确计算喷油量和喷油正时。从而提高发动机的动力性和经济性。采用电子控制技术可以对增压装置进行精确的控制。 6.适应性广。

EASYPANEL系列柴油机控制器

柴油机控制器EASYPANEL EP-10、20、30、40 安装使用说明书 广州三业科技有限公司

柴油机智能控制器EASYPANEL 系列 安装使用说明 EP-10、20、30、40 柴油机智能控制器是用于具有自启动、自动控制、自动保护功能的普及型柴油发动机或柴油发电机组控制的新一代产品。 1 适用范围 1.1 EP- 10、EP-30适用于各个厂家、不同型号、不同功率的柴油发动机组装的发电机组配置使用。 1.2 EP- 20、EP-40适用于以柴油发动机成套的动力装置配套使用。 1.3具有防潮、防水花飞溅功能,可在温度-20℃~+50℃(可订购-40℃~+50℃),在相对湿度95%时不凝露的环境下连续工作,可应客户要求进行防盐雾处理。 1.4 EP- 10、EP-30用户无需设定任何程序和参数,只需进行简易接线便可使用。 1.5 EP- 20、EP-40由于采用电磁速度传感器作速度检测,所以用户必须输入飞轮的有关参数(详见安装、调试说明)。 1.6 EP-系列的功能如下表: 1.7EP- 10控制器主要用于发电机组的控制:系统含转速、发电频率、运行时间、蓄电池电压等

柴油机智能控制器EASYPANEL 系列四种数据的检测和数字显示,带蓄电池电压过高/过低报警及超速/低速报警停机,低油压、高冷却温度报警停机由开关量输入进行触发(系统适用于发动机已带油压表及水温表)。 1.7 EP- 30控制器与EP-10同样设计用于发电机组的装配:但油压、温度传感器采用模拟量输入,系统含转速、发电频率、润滑油压力、冷却温度、运行时间、蓄电池电压等六种信号的检测和数字显示,带蓄电池电压过高/过低报警及超速/低速、低油压、高冷却温度报警停机(系统适用于裸机,发动机没带油压表及水温表)。 1.8 EP- 20、EP-40的控制对象主要是动力机械(也可用于发电机),EP- 20与EP-40的区别是:EP- 20的油压、水温采用开关量输入,而EP- 40采用模拟量油压、温度传感器,系统带数字油压、温度显示。EP-40控制器已含转速、油压、水温、运行时间、蓄电池电压等六种信号的检测和显示。 1.9配置EP-10、EP-20控制器的机组应具有柴油机配套的低油压报警开关、超温度报警开关,并另行配套油门控制机构(电子调速或电磁铁)则可组成智能控制机组。 1.10 EP-**系列控制器装配的机组只须配套油门控制机构(电子调速或电磁铁)则可组成智能控制机组 1.11 EP-**系列产品均提供一路扩展外部输入的开关量报警信号供用户使用。 2 功能特点 2.1 带手动及全自动控制功能。当自启动信号输入或人工按下启动按键,控制器便自动完成自启动、机组运行、故障停机保护等程序控制和过程控制。 2.2 自动监控功能。自动监控发动机在启动、怠速、升速、全速等过程的速度变化,自动完成启动电机的投入与撤出、转速过高与过低的超限停机、速度正常后输出运行(合闸)信号等。 2.3 柴油机运行状态显示功能。根据系统现时运行状况,由指示灯或显示屏指示设备当前所处的状态,包括:待机、开机、供油、自启动、怠速延时、正常运行、冷却停机、紧急停机等。显示屏显示的符号所代表的状态和参数请参照本说明书4.7表格。 2.4 运行参数检测、显示功能。在系统运行过程中,显示屏显示实时转速并通过翻页显示发电频率、(EP-30、EP-40增加油压、水温显示)、运行时间及蓄电池电压等现时数值。(EP-10、EP-20)的机油压力、冷却水温的参数则由用户原机配套仪表进行测量和显示。 2 .5 故障自诊断、故障显示及自动停机保护功能。机组在自启动及运行过程中出现异常情况时,控制器可根据预设参数判断其故障,并通过面板的显示屏和相应的指示灯同时显示故障原因,外接蜂鸣器用户可接收自动报警信号;机组也将同时停机,对机组实施保护。自动报警并停机保护的项目包括:无转速信号(启动转速过低、发电机不发电、启动电机与启动飞轮打滑)、超速、低速、低油压、高冷却温度、启动失败、停机失败、外接扩展报警输入等。 3 安装、调试说明 3.1 注意事项

汽油机辅助控制系统

第四章汽油机辅助控制系统

教案(章节备课)

教案内容电阻,应为10~30Ω。 4)拆下怠速电磁阀,将蓄电池正极接至B1和B2端子,负极按顺序依次接通S1—S2—S3—S4端子时,随步进电动机的旋转,控制阀应向外伸出,如图;若负极按反方向接通S4—S3—S2—S1端子,则控制阀应向内缩回。 步进电动机型怠速控制阀工作情况检查 a)接蓄电池正极 b)接蓄电池负极 3.控制阀控制的内容 (1)起动初始位置的设定 关闭点火开关使发动机熄火后,ECU的M—REL端子向主继电器线圈供电延续约2~3s。在这段时间内,蓄电池继续给ECU和步进电动机供电,E CU使怠速控制阀回到起动初始位置。 (2)起动控制 在起动期间,ECU根据冷却液温度的高低控制步进电动机,调节控制阀的开度,使之到起动后暖机控制的最佳位置,此位置随冷却液温度的升高而减小。 (3)暖机控制 在暖机过程中,ECU根据冷却液温度信号按内存的控制特性控制怠速控制阀的开度,随温度上升,怠速控制阀开度渐渐减小。当冷却液温度达到70℃时,暖机控制过程结束。 (4)怠速稳定控制 当转速信号与确定的目标转速进行比较有一定差值时(一般为20r/mi n),ECU将通过步进电动机控制怠速控制阀,调节怠速空气供给量,使发动机的实际转速与目标转速相同。 (5)怠速预测控制 在发动机负荷发生变化时,为了避免怠速转速波动或熄火,ECU会根据各负荷设备开关信号,通过步进电动机提前调节怠速控制阀的开度。 (6)电器负荷增多时的怠速控制 如电器负荷增大到一定程度时,蓄电池电压会降低,为了保证电控系统正常的供电电压,ECU根据蓄电池电压调节怠速控制阀的开度,提高发动机怠速转速,以提高发动机的输出功率。 (7)学习控制 由于磨损原因导致怠速控制阀性能发生变化,怠速控制阀的位置相同时,实际的怠速转速与设定的目标转速略有不同,ECU利用反馈控制使怠速转速回归到目标转速的同时,还可将步进电动机转过的步数存储在ROM中,以便在此后的怠速控制过程中使用。 四、旋转电磁阀型怠速控制阀

柴油发动机电控系统

柴油发动机的电控系统 柴油机电控系统以柴油机转速和负荷作为反映柴油机实际工况的基本信号,参照由试验得出的柴油机各工况相对应的喷油量和喷油定时MAP来确定基本的喷油量和喷油定时,然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量和喷油正时,然后通过执行器进行控制输出。 柴油机电控系统概述 【任务目标】 (1)柴油机电控技术的发展。 (2)柴油机电控技术的特点。 (3)柴油机电控系统的基本组成。 (4)应用在柴油机上的电控系统。 【学习目标】 (1)了解柴油机电控技术的发展。 (2)了解柴油机电控技术的特点。 (3)了解柴油机电控系统的基本组成。 (4)掌握应用在柴油机上的电控系统。 柴油机电控技术的发展 1.柴油机电控技术的发展 1)柴油机技术的发展历程 柴油用英文表示为Diesel,这是为了纪念柴油发动机的发明者――鲁道夫·狄塞尔(RudolfDiesel)如图8-1所示。 狄塞尔生于1858年,德国人,毕业于慕尼黑工业大学。1879年,狄塞尔大学毕业,当上了一名冷藏专业工程师。在工作中狄塞尔深感当时的蒸气机效率极低,萌发了设计新型发动机的念头。在积蓄了一些资金后,狄塞尔辞去了制冷工程师的职务,自己开办了一家发动机实验室。 针对蒸汽机效率低的弱点,狄塞尔专注于开发高效率的内燃机。19世纪末,石油产品在欧洲极为罕见,于是狄塞尔决定选用植物油来解决机器的燃料问题(他用于实验的是花生油)。因为植物油点火性能不佳,无法套用奥托内燃机的结构。狄塞尔决定另起炉灶,提高内燃机的压缩比,利用压缩产生的高温高压点燃油料。后来,这种压燃式发动机循环便被称为狄塞尔循环。

05第五章辅助控制系统

A 组织教学学生考勤填写日志 B 课前提问 C 导入新课 第五章辅助控制系统 第一节点火控制和爆震控制: 广州本田雅阁轿车的点火系统为电子控制式。电子控制点火系统主要由蓄电池、分电器、高压线、火花塞和ECM/PCM等组成。点火系统的点火线圈和点火控制模块ICM(内置防噪音电容器)均装合在分电器内。另外气缸位置(CYP)传感器也安装在分电器内。 (一)电子控制点火系统电路图 广州本田雅阁轿车点火系统的电路如图11-72所示。 (二)点火正时的检查与调整 (1)检查并视情调整发动机怠速。 (2)从前乘客席侧仪表板下的插头支架上拔出2芯维修检查插头(绿/黑及红/白导线),然后接上专用工具SCS短路插头(T/N O7PAZ-0010100)。 (3) 起动发动机,并让发动机在300Or/min下进行无负荷运转(换档操纵手柄置于N或P位置),直到发动机达正常工作温度(即散热器风扇运转)为止,然后将发动机转速降至怠速。 (4)将正时灯连接到第1缸分缸高压线上,然后将灯光对准同步带下罩上的检查标记。在前大灯、鼓风机、后窗除雾器和空调器等用电器均不工作的情况下,检查点火正时。 (5) 如果图11-73所示曲轴皮带轮上的上止点前(BTDC)标记与同步带下罩上的检查标记对正,则表示点火正时值正确,其值为上止点前12°±2°。 (6) 如果上述正时标记末对正,则应松开分电器固定螺栓(图11-74),并顺时针(或逆时针)转动分电器壳体以推迟(或提前)点火正时。 (7) 拧紧分电器固定螺栓,再次检查点火正时。 (8)拆下SCS短路插头。 (三)火花塞的检查与安装 (1)检查火花塞电极脏污、磨损与烧蚀情况以及陶瓷绝缘柱上是否有裂纹(图11-75)。如其中心电极已磨圆(图11-76),则应更换火花塞。火花塞型号为:NGK:ZFR5F-11、ZFR6F-11(KA、KV、KY);DENSO:KJ16CR-L11、KJ20CR-L11(KS、KV、KY)。电极烧损与磨损的可能原因为:点火正时提前、火花塞松旷、火花塞热值过高或火花塞冷却不充分等。火花塞脏污的可能原因为:点火正时迟缓、燃烧室存有油污、火花塞电极间隙不符合要求、发动机怠速过高或过低、空气滤清器堵塞、点火线圈或导线老化等。 (2)检查火花塞电极间隙。用塞尺检查火花塞电极间隙,其值应为1.0-1.lmm。如不符合要求,可扳动侧电极进行调整。 (3) 安装火花塞。将少量密封胶涂抹在火花塞的螺纹部分,并用手将其拧入火花塞孔,然后将其以l8N.m的拧紧力矩拧紧。 (四)分缸高压线的检查 (1)拉下橡皮套,小心地拆下分缸高压线。注意:切勿弯曲分缸高压线,否则可能会将导线内部折断。 (2)外观检查分缸高压线有无锈蚀、弯曲(两端头)和破裂现象,并视情予以更换。 D 总结

第十四章 船用电喷柴油机控制系统

第十四章船用柴油机智能控制系统 随着智能控制在陆上工业各领域广泛应用和成熟,船上控制系统也发生变化,最先引入智能控制的是船舶航向自动操舵仪,随之航迹保持器。到了上个世纪80年代未,引入船舶主机,形成了智能型柴油机概念。由于人们对船舶可靠性、经济性和废气排放控制的日益关注,90年代各大船舶主机制造商相继在实验室开展了智能柴油机研究,1993年MAN B&W公司研制出试验机,在实验室中运转。1998年首台智能型柴油机安装在挪威的Bow Cecil轮上。2000年11月使用智能系统船舶主机进行试航,并通过了DNV等船级社认可,2002年初MAN B&W公司正式推出了电子控制的ME系列柴油机。而瑞士Wartsila公司在1998年首先推出了共轨式全电子控制的智能型柴油机Sulzer RT-flex燃油喷射系统,该系统实现了无凸轮轴柴油机的燃油喷射,排气阀启、闭,起动空气和缸套润滑的全电控制,甚称柴油机的第三次革命。本章先重点介绍智能型柴油机控制系统的基本结构和工作原理,然后介绍Sulzer RT-flex型智能柴油机控制系统和MAN B&W ME系列智能型柴油机控制系统。 第一节船用柴油机智能控制基本原理 一、概述 智能控制引入船舶主机控制系统是从智能调速器开始的,它把船舶主机现时的排烟中的含氧量、温度、增压器的压力、转速等信号都引入控制系统,根据现时主机的给定转速与实际转速的偏差大小,再综合现时的排烟温度、增压器的压力、含氧量等来决定燃油量,使其充分燃烧,达到经济性要求。但是,影响船舶柴油机燃油的燃烧充分与否的因素很多,不仅与增压器压力的大小,输入新鲜空气量的大小有关,还与喷射开启时间、喷射时间持续长短、燃油喷射的压力有关,而且不同柴油机转速下,它们也是不相等的。所以,当时智能型调速器就达不到减排高效目的,只能通过传统柴油机自身结构上的突破,才能提高船舶主机可靠性、经济性和降低排放。Wartsila公司首先提出共轨技术,在传统的Sulzer RTA 型柴油机上取消了废气排气阀驱动装置(exhaust valve driver)、燃油泵(fuel pump)、凸轮轴(Camshaft)、可逆(倒车)伺服马达(reversing servomotor)、燃油连接(fuel linkage)、起动空气分配器(start air distribution)和凸轮轴驱动(camshaft drive)等机构。Common Rail (共轨)装置,用来建立燃油压力,采用液压控制气阀启、闭操作,容积喷射控制单元(V olumetric InjectionControl Unit)控制燃油的流量和喷射时间;燃油供给单元(fuel supply unit)取代原有的燃油泵来提供高压燃油,由液压伺服油泵提供动力液压油,RT-flex型智能柴油机结构示意图,如图14-1-1所示。

04 汽油机燃油系统

第四章汽油机燃料供给系 一、填空题 1.汽油机燃料供给系一般由、、、 等装置组成。 2.汽油供给装置包括、、、和等零部件。 3.过量空气系数α>1,则此混合气称为混合气;当α<0.4时,混合气,火焰不能传播,发动机熄火,此α值称为。 4.车用汽油机工况变化范围很大,根据汽车运行的特点,可将其分为、、、、等五种基本工况。 5.发动机在不同工况下,化油器应供给不同浓度和数量的混合气。起动工况应供给的混合气;怠速工况应供给的混合气;中等负荷时应供给的混合气;全负荷和大负荷时应供给的混合气;加速工况时应供给混合气。 6.化油器的五大装置是装置、装置、装置、装置和装置。 7.平衡式浮子室是利用平衡管使浮子室与上方空气管腔相通,这样就排除了因阻力变化对化油器出油量的影响。 8.按照滤清的方式,汽油机用的空气滤清器可分为、和三种。 9.汽油机进气管的作用是较均匀地将分配到各气缸中,并继续使和 得到汽化。 二、解释术语 1.可燃混合气 2. 怠速 3.过量空气系数 三、判断题(正确打√、错误打×) 1.过量空气系数α为1时,不论从理论上或实际上来说,混合气燃烧最完全,发动机的经济性最好。() 2.混合气浓度越浓,发动机产生的功率越大。() 3.怠速工况需要供给多而浓(α=0.6~0.8)的混合气。() 4.车用汽油机在正常运转时,在小负荷和中等负荷工况下,要求化油器能随着负荷的增加供给由浓逐渐变稀的混合气。() 5.消声器有迫击声(放炮),可能是由于混合气过稀的原因。() 6.浮子室油平面的高低将会影响到化油器各装置的工作,当其他条件相同时,油平面越高,混合气就变稀,反之变浓。() 7.机械加浓装置起作用的时刻,只与节气门开度有关。() 8.真空加浓装置起作用的时刻,决定于节气门下方的真空度。() 9.平衡式浮子室有通气孔与大气相通。() 10.采用双重喉管既可保证发动机的充气量,又可提高燃油的雾化状况。() 11.发动机由怠速向小负荷圆滑过渡是靠化油器主供油装置和怠速装置的协同工作来实现的。()

汽油及辅助控制系统试题

第四章习题 一、填空题 1.在怠速控制系统中ECU需要根据_______________ 、____________确认怠速工况。 2.怠速控制的实质就是对怠速工况下的__________进行控制。 3.按执行元件的类型不同,旁通空气式怠速控制系统又分为___________、_________ _______________、开关型。 4.步进电动机的工作范围为____________个步进级。 5.旋转电磁阀控制旁通空气式怠速控制系统的控制内容主要包括___________、_________ ____________、怠速预测控制和学习控制。 6.占空比控制电磁阀型怠速控制阀的结构主要由___________、_________ 、_______ _________等组成。 7.真空电磁阀用英文字母表示为_________;谐波增压控制系统用英文字母表示为_______________。 8.为使发动机工作时进气更充分,应随转速的提高应适当_________进气门的提前开启角。 9.VTEC配气机构与普通配气机构相比,在结构上的主要区别是:_______________________________________________________。 10.动力增压是利用________________________________________________工作。 11.当ECU检测到的进气压力高于_________时,废气涡轮增压停止工作。 12.汽车排放污染主要来源于_______________________。 13.柴油机的主要排放污染物是_______ 、________ 和___________。 14.发动机排出的NO X量主要与____________________________有关。 15.开环控制EGR系统主要由______________和_______________等组成。 16.在开环控制EGR系统中,发动机工作时,ECU给EGR电磁阀通电停止废气再循环的工况有:______________、_____________、_______________。 17.随发动机转速和负荷减小,EGR阀开度将__________。 18.三元催化转换器的功能是_____________________________________________。 19.影响TWC转换效率的最大因素有__________________、__________________。 20.在闭环控制过程中,当实际的空燃比小于理论空燃比时,氧传感器向ECU输入的电压信号一般为_____________。 21.丰田凌志LS400轿车氧传感器加热线圈在20℃时阻值应为_________________。 22.巡航控制系统用英文字母表示为___________,又称_________________。 23.巡航控制系统主要由__________、___________、________、_________、________等组成。 24.驾驶员通过操纵开关给ECU输入巡航控制命令,主要用于______________________。 25.巡航控制系统常见故障主要是:______________、___________、_____________ 、_________________等。 26.发电机控制系统的功能是____________________________。 27.冷却风扇控制系统发生故障时,主要应对__________、_____________、____________及继电器电路进行检查。 28.点火开关接通的瞬间,故障指示灯正常现象应该是__________的。 29.当凸轮轴位置传感器发生故障时,将造成发动机_____________________。 30.ECU必须有合适的____________才能控制发动机管理系统。 31.ECU电源电路就是由______________________________。 32.给发动机控制模块反馈信号的传感器主要有___________ 、_____________。

11规则 最新 轮机自动化 第七章 船舶机舱辅助控制系统考试题库

第七章船舶机舱辅助控制系统 第二节燃油供油单元自动控制系统 1. 当控制器接通柴油模式DO时,斜坡函数加温期间温度控制指示LED灯“TT"( )。 A 定发亮B,闪烁C.熄灭 D.无法判断 2 控制器EPC-50B包括( )。①操作面板②电源③主控制板 A.①②B.①②③C.①③D.②③ 3 控制系统能否对“柴油—重油J/转换阀进行自动控制? A.能B,不能C.无法判断D,视情况决定 4 如果没有故障、错误或警告,数码管用不闪烁的符号指示程序状态,如电源开用“( )”,正在扔始化硬件用“( )"等。 A,一,,+.B.一,,0,C.+.,0,D.0.,一. 5 粘度传感器的如果发生多个故障,高级别的故障( )改写较低级别的故障。A,可以B.不可以C.有时可以D.无法判断是否可以 6 黏度信号保持在最大值的原因可能是( )。 A.电流接头损坏B.EVT-20故C.空气夹杂在燃油系统中 D.起动期间燃油温度太低 7控制器内置具有( )控制规律的软件,可以对重油的粘度或温度进行定值控制。A.比例积分微分B.比例微分C.比例积分D.以上都不对 8 在燃油粘度或温度自动控制系统中,若采用电加热器EHS,则由2个电加热供电单元分别对2个电加热器的燃油进行加热。原因是:( )。 A.提供足够的加热量,确保燃油盲6够得到加热 B.可以方便地控制加热速度的快慢,需要快速加热时,两个可同时满额工作、C.两个加热器可互为备用,保障了加热器的安全使用 D.以上都正确 9如果调节过程中出现偏差过大,燃油黏度控制系统都会给出报警信号吗?( )。A.黏度偏差过大会报警,温度偏差过大不会报警 B.温度偏差过大会报警,黏度偏差过大不会报警 C,黏度、温度偏差过大都不会报警 D,黏度、温度偏差过大都会报警 10在系统新安装后或工作条件改变时,要对系统运行的( ) 进行重新设定和修改,以适应新的需要。A.系数B.整数C,大小 D.参数 11 当控制器接通柴;模式DO时,当燃油温度在达到温度设置Pr35的3℃内后,温升斜坡停止,正常温度控制运行。“TT“LED灯( )。 A.稳定发亮B.闪烁C.熄灭D,无法判断 12 一旦从DO转换为HFO,则EPC—50的控制器可检测到粘度增加,表明重油已经进入系统,那么重油将被开始加热。当温度已经低于重油温度设置值( )℃,控制器自动转到粘度调节控制。 A. 2 B. 3 C, 4 D. 5 1 3 在系统投入工作之前,要先( )。 A.观察比较测量值与实际值有无异常情况 B.手动检测各电磁阀或电动切换阀是否正常、灵活 c-检查燃油和加热系统有没有漏泄或损坏的情况 D.观察EPC-50主扳和粘度检测电路板指示是否正常 14 重油改变时,哪些参数是必须改变的?()o ①密度参数Pr23 ②重油温度设置点参数Pr30;③HFO低温限制值Pr32 A.①②B.①②③C.①③D.② 15 发生了多个故障后,需要读取历史报警列表,EPC-50B中的CPU存储了最后的()次报警。A.16 B.32 C.48 D.64 16在燃油粘度或温度自动控制系统中,若采用电加热器EHS,则由( ) 电加热供电单元分别对2个电加热器进行加热。 A.1个B.2,1,。C.3个D,4个 17如果调节过程出现振荡,则需要增加参数Fa25或Fa27,Fa26或Fa28,这些参数的增加会使得系统反映( ), 消除静差能力( )。 A.变慢,减小B,变慢,加强C.加快,减小D.加陕,加强第三节燃油净油单元自动控制系统 l如果分油机因故障报警,那么在分油机的EPC—50控制单元土,相应的警报指 示灯就会发出( ) 并不停的闪烁,机舱内同时伴有警报声。 A,黄光B.绿光c,红光D,蓝光 2 如果中间发生故障或需要停止分油时,可通过按下“SEPARATION/STOP” 按钮;实现停止控制。分离设备停止序列对应的( )LE叫吾开始闪烁。启动排 渣,排渣完成后,停止序1lLED等变为稳定的绿色,而分离系统运行对应的绿 色LED将熄灭。显示Stop(停止)‘ A.绿色B.红色c.黄色D.蓝色 3 开启水管的供应阀SV15 出现泄漏情况或相应的控制回路故障,造成排渣口 打开,应( )。A.及时校正该泄漏情况B.检查该阀的控制线路 C.检查补偿水系统D.A 或B 4补偿水系统中没有水,应当( )‘ A.检查补偿水系统B.确保任何供应阀均处于开启状态 C.清洁滤网D.A + B 5. 正常“排渣”后,EPC—50根据有关置换水的参数是否人为修改过,来确定 程序是进入水流量枝准Ti59进行参数校正,还是准备再次分油,直接进入分离 筒“密封”操作Ti62。至Ti75后,系统完成一个工作循环。 A.Ti59, Ti64, Ti75 B.Ti59, Ti62, Tj73 C.Ti59, Ti62, Ti75 D.Ti59, Ti67/Ti75 6 测量电阻R是测量电桥的一个桥臂,它是安装在所要检测的管路中,离测量 电桥较远。为补偿环境温度变化所产生日獭逞误差,在实际测量电路中往往( )。 A.把“两线制”接法改为“四±虽制” B.把“两线制”接法改为“三线制” C.把“三线制”接法改为“两2兰制” D.把“三线制”接法改为“四线制” 7PT100温度传感器属于热电阻式温度传感器。这种传感器的金属材料电阻值随 温度升高而( ),在检测范围内它们之间保持( ) 。 A.增大,线性关系B.减小,线性关系 C.增大,非线性关系D,减小,非线性关系 8 为了使更多的油在排渣前从分油机内被赶出,以减少油的损失,当出油口压 力传感器检测到的压力达到( ) 时,打开出油阀,待分离简内的待分油 已全部被水置换,净油出口中检测到水分时。 A.0. 5ba B.1 . 0bar C.1. 5bar D.0. 8 bar 9 ( ) 把高速旋转的浦体流动能转变成位能(压力能),这种改进使能耗降至 最低。A.只有向心泵能B,只有向心管能 C.向心泵和向心管都能D.向心泵和向心管都不能 10 s型分油机进出油管结构由原来的( ),改为下部有一个具有向心功能的固 定不动的( )。A.双向心泵,向心泵B.向心泵,双向心泵 C.双向心泵,双向心泵D.向心泵,向心泵 第四节自清洗滤器的自动控制 l在空气反冲式自清洗滤器的控制系统中,当进出口的油压差在o,08MPa时( )。 A.电磁阀S1通电,控制活塞被抬起 B.电磁阀S1通电,控制活塞被压下 C.电磁阀S1断电,控制活塞被压下 D.控制电磁阎可能是通电的,也有可青目是断电的 2 自清洗式滤器是根据( ) 决定自动清洗工作的。 A.滤器进出口间的压差B,油的清洁程度C.滤器的使用时间D.油压大小 3在空气反冲式自清洗滤器的控制系统中,当滤器进出口的滑油压差超过( )时 自动进行冲冼工作。 A.0. 12 MPa B.0.05MPa C.0. 09 MPa D,0.9MPa 4 在空气反冲式自清洗滤器中,当滤器进出口的油压差低于( )时,停止冲洗。 A.0.9MPa B.0. 03 MPa C.0. 3MPa D.0. 09 MPa 5. 空气反冲式自清洗滤器在进行冲洗时,其冲洗方向是:( )。 A.滤筒轴向B.与工作时滑油的流动方向相反 C.与工作时滑油的流动方向相同D.滤简径向 6在空气反冲式自清洗滤器的清洗过程中,继续进行过滤作用的滤简个数和进行 清洗的滤筒个数分肄Uo( )。 A,0个,4个B.2个,2个C.1个,0个D.3个,1个 7在空气反冲式自清洗滤器中,当滑油进出压差很小时停止清洗,这时进行滑油 过滤的滤器个数是( )。 A.4个B.2个C,3个D.1个 8 空气反冲式自请洗滤器在压差大于0.09JIIPa后开始冲洗,此后( )。 A.轮番冲洗各滤筒至压差小于0.09MPa B.各滤筒轮番冲洗—遍后停止冲洗 C.轮番冲洗各滤筒至压差小于0.03MPa D,反复冲洗各滤简至按停止冲洗按钮 9当自清洗滤器正常工作时可清洗( )个滤简。 A. 1 B. 2 C. 3 D. 4 10空气反冲式自清洗滤器的控制系统在刚上电时,将会出现( )。 A.马达转至下一滤筒冲洗B.等到厶P超过设定值时立即进行冲洗 C.立即进行一次冲洗D.等延时时间到再冲洗 11. 合上电源主开关s,对一个滤简进行清洗。冲洗()左右时间,停止清洗。 A.5 min[ B,2 min C.3 mm D.l min 12在空气反冲式自清洗滤器的控制系统中,当谓油滤器进出口滑油压差超 过。.09HPa时,电磁阀sl¥哪空制活塞的状态是( )。 A.电磁阀S1通电,控制活塞被抬起B.电磁阀S1断电,控制活塞禳抬超 C.电磁阀S1断电,控制活塞被压下D.电磁阀S1通电,控制活塞被压下 13在空气反冲式自清洗滤器的控制系统中,当电机带动旋转本体$专动期间( )。 A,电磁阀S1通电,控制活塞处下位B.电磁阀S1通电,控制活塞处上位 C.电磁阀S1断电,控制活塞处上位D.电磁阀S1断电,控制活塞处下位 14空气反冲式自清洗滤器控制回路中,手动冲洗按钮PB按下即松开,可冲洗 滤筒的个数是( )。A.1个B.3个C.2个D.4个 15 在空气反冲式自清洗滤器的自动控制系统中,当进出口压差大于0.09MPa开 始自动冲洗后,其压差( )。A.可能下降B.可能上升C.不变D. A或B 16 在空气反冲式自清洗滤器的自动控制系统中,滤筒在清洗过程中电源突然断 电,重新通电后,系统会( )。 A.马达转动,清洗下一个滤筒B.保持断电前状态,但重新计时 C.保持断电前状态,连续计时D.马达不转,停止清洗 17 在空气反冲式自清洗滤器控制电路中,包括( )。 ①控制电机转动的继电器②控制清洗时间的延时继电器③电机转动的限位开关 ④手动清洗;⑤产生尖峰脉冲的微分电路;6用于起延时作用的R电路。 A.③④⑤6 B.①②③④C.②③④⑤D.①②④⑤ 18 空气反冲式自清洗滤器由()滤筒、一个旋转本体及驱动电机等鄗分组成, 滤筒中装有滤网等滤请元件。A.一个B.两个C.三个D.四个 19 自清洗滤器对每一个滤筒的清洗时间大约是( )‘ A.1分钟B.2分钟C.3分钟D.4分钟 第五节阀门遥控及液舱遥测系统 l对于泵站中有蓄能器酌,一般( )检查一次蓄能器的气压,当压力不足时必须 及时补气。 A..每一年B.每半年C.每两年D.每四年 2 清洗油最好能预先加热至( ), A..45~50℃B.45~70℃C.45~60℃D.45~80℃ 3 在阀位指示器上装有( ) 微动开关。A.一个B.两个C.三个D.四个 4清洗管路时,清洗油最好能预先加热至( ),从而降低清洗油的粘度,改善 流动状态,还可使杂质溶解在清洗油内。 A.65~80℃B.55~70℃C.35~50℃D.45~60℃ 5.选用管路清洗泵时应当注意,尽量( )原系统中的油泵作为清洗油泵,选用排 量比系统中油泵( )的油泵进行清洗 A.用,大B.不用,大C.不用,小D,用,小 6对于泵站中有蓄能器的,一般每( ) 检查一次蓄能器的气压,当压力不足时 必须及时补气。A.半年B.一年C.三个月D.两年 7能分别测出艏、艉和左右吃水并单独算出纵倾和横倾,还能直接观察到船体的 中拱或中垂现象的是( )。 A,二点吃水测量B.三点吃水测量C.四点吃水测量D.以上都不是 轮机自动化(人民交通考试题库第七章船舶机舱辅助控制系统)第1页共2页

相关文档
相关文档 最新文档