文档库 最新最全的文档下载
当前位置:文档库 › 提高金矿浮选回收率的选矿试验研究与生产实践

提高金矿浮选回收率的选矿试验研究与生产实践

提高金矿浮选回收率的选矿试验研究与生产实践
提高金矿浮选回收率的选矿试验研究与生产实践

选矿指标定义及计算公式精选文档

选矿指标定义及计算公 式精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

主要采选生产统计指标定义及计算公式 二O一四年六月 生产技术组

目录 采矿生产技术经济指标 ......................................... 一、采矿作业量及产品产量指标.................................. (一)掘进量 ................................................. (二)剥岩量 ................................................. (三)掌子出矿量 ............................................. (四)采剥(掘)总量 ......................................... (五)采出矿量(简称矿量) ................................... 二、采矿技术经济指标 ......................................... (一)采矿质量指标。 ......................................... 1、采出矿石品位 .............................................. 2、废石混入率 ................................................ 3、矿石贫化率 ................................................ (二)采矿物料单耗指标 ....................................... 1、炸药单耗 .................................................. 2、导爆管雷管单耗 ............................................ 3、钻杆单耗 .................................................. 4、钻头单耗 .................................................. (三)采矿能源单耗指标 ....................................... 1、柴油单耗 .................................................. 2、电力单耗 .................................................. (四)采矿设备效用指标 ....................................... 1、钻机台班效率 .............................................. 2、挖掘机台班效率 ............................................ 3、铲运机台班效率 ............................................ 4、电机车台班效率 ............................................ 5、采矿设备作业率 ............................................ (五)采矿实物劳动生产率指标.................................. 1、采矿从业人员实物劳动生产率................................. (六)采矿其他技术经济指标 ................................... 1、采矿损失率 ................................................ 2、采矿回采率 ................................................ 3、剥采比 .................................................... 4、掘采比 .................................................... 5、采切比 .................................................... 6、延米爆破量 ................................................ 7、三级矿量 .................................................. 1)开拓矿量(露天) ........................................... 2)备采矿量(露天) ........................................... 3)开拓矿量(地下) ........................................... 4)采准矿量(地下) ...........................................

铁矿石选矿试验方案示例

铁矿选矿试验案示例 一、某地表赤铁矿试样选矿试验案 拟定试验案的步骤是: (1)分析该矿性质研究资料,根据矿性质和同类矿产的生产实践经验及其研究成果,初步拟定可供选择的案。 (2)根据有关的针政策,结合当地的具体条件以及委托一的要求,全面考虑,确定主攻案。 (一)矿性质研究资料的分析 1.光谱分析和化学多元素分析该试样的光谱分析结果见表1,化学多元素分析结果见表2。 由光谱分析和化学多元素分析结果看出:矿中主要回收元素是铁,伴生元素含量均未达到综合回收标准,主要有害杂质硫、磷含量都不高,仅二氧化硅含量很高,故仅需考虑除去有害杂质硅。 化学多元素分析表中TFe、SFe、FeO、SiO2、AL2O3、CaO、MgO等项是铁矿必需分析的重要项目,下面分别介绍各项的含义及其目的: (1)TFe全铁(指金属矿物和非金属矿物中总的含铁量)。该矿全铁含量仅27.40%。属贫铁矿。 (2)SFe可溶铁(指化学分析时能用酸溶的含铁量)。[next]

用TFe减去SFe等于酸不溶铁,常将其看做是硅酸铁的含铁量,并用以代表“不可选铁”量。该矿“不可选铁”含量很低,因而在拟定案时,无需考虑这部分铁的回收问题;选矿指标不好的原因主要不是由于“不可选铁”造成。 事实上,将酸不溶铁看做硅酸铁的含铁量,这种概念还不够确切,原因是铁矿中经常是几种铁矿物共生,各种铁矿物溶于酸中的情况比较复杂,硅酸铁矿物有的溶于酸,有的也不溶于酸,因而具体应用时必须根据具体情况考虑。 (3)FeO氧化亚铁。一般用TFe/FeO(称亚铁比或氧化度)和FeO、TFe的比值(铁矿的磁性率)表示磁铁矿的氧化程度。它们是地质部门划分铁矿床类型的一个重要指标,也是选矿试验拟定案时判断铁矿可选性的一项重要依据。 根据TFe/FeO和FeO/TFe比值大小可将铁矿划分为如下几种类型: (FeO/TFe)*100(%)>37%TFe/FeO<2.7 原生磁铁矿(青矿)易磁选(FeO/TFe)*100(%)=29-37%TFe/FeO=2.7~3.5 混合矿磁选与其它法联合 (FeO/TFe)*100(%) <29%TFe/FeO>3.5 氧化矿(红矿)磁选困准本实例亚铁比TFe/FeO=8.43,属氧化矿类型,因而较难选。 实践证明,采用上述比值划分矿类型的法,仅适用于铁的工业矿物是磁铁矿或具有不同程度氧化作用的磁铁矿床,矿物成分比较简单。对于矿物成分复杂,含有多种铁矿物的磁铁矿床,矿类型的划分应结合矿床的具体特点并根据试验资料确定。 (4)CaO、MgO、SiO2、AL2O3等是铁矿中主要脉成分。一般用比值(CaO+M gO)/ (SiO2+AL2O3)表示铁矿和铁精矿的酸碱性,它直接决定着今后冶炼炉料的配比。 据(GaO+MgO)/(SiO2+AL2O3)比值大小可将铁矿划分为如下几类: 比值<0.5 为酸性矿冶炼时需配碱性熔剂(灰); 比值=0.5~0.8 为半自熔性矿冶炼时需配部分碱性熔剂或与碱性矿搭配使用; 比值=0.8~1.2 为自熔性矿冶炼时可不配熔剂; 比值>1.2 为碱性矿冶炼时需配酸性熔剂(硅)或与酸性矿搭配使用。 本矿样由于SiO2含量很高,故比值<0.5 ,为酸性矿,冶炼时需配大量的碱性熔剂。因此,我们选矿的任务就是要尽可能地降低硅的含量,减少熔剂的消耗。[next] 综合上述分析资料可知,本试样属于硅高而硫磷等有害杂质含量低的贫铁矿,其亚铁比为8.43.,属氧化矿类型。由于SiO2含量高,为酸性矿,冶炼时需配大量的熔剂。

浅谈合教地区金矿化特征与找矿方向_常立秋

第20期总第174期内蒙古科技与经济No.20,t he174th issue 2008年10月Inner M ong olia Science T echnology&Economy O ct.2008 浅谈合教地区金矿化特征与找矿方向X 常立秋,吕荣蒙 (内蒙古自治区有色地质勘查局五一二队,内蒙古包头014040) 摘要:根据野外地质调查资料,简要分析了合教地区已知金矿化与地层、构造、火成活动的关系,总结了金矿成矿规律,认为在该区元古代地层中有丰富的金资源存在。 关键词:内蒙古中北部;合教;岩金矿;成矿规律 中图分类号:P618.510.8(226)文献标识码:A文章编号:1007)6921(2008)20)0011)02 自上世纪50年代以来,国内外新发现具工业价值的铁、金、铜多金属矿床的成矿期,多集中在前寒武纪和中、新生代,尤其是元古代。内蒙古中北部元古界地层广泛发育,其中分布有较丰富的铁、金、铜多金属矿,因此具有较好的找矿前景。随着区域地质资料的积累和现代成矿理论的不断发展,扩大了找矿思路。近年来地质找矿工作越来越重视成矿预测,即加强成矿规律方面的研究,开展理论找矿。 合教)))三合明一带位于合教)))三合明近东西向挤压构造带之北侧;区内混合岩化,花岗岩化作用较为剧烈;东部有金的重砂异常分布;铜矿化零星发育;沿此带沉积变质型铁矿多处出露;根据金的亲硫、亲铁性和金、铁矿床往往共生的理论(铁金建造),因此认为本区存在有找金的地质条件。 通过野外调查,发现有金矿化存在,合教地区具有一定找矿前景。这里就此问题探讨,可能对今后的找矿工作具有一定推动作用。 1含金层特征 合教地区出露的老地层,主要为下元古界三合明群底部岩组,对比呼市幅、固阳幅同时代地层剖面,本区岩性组合处在下元古界三合明群底部中、上层位。 111金矿床的地质条件 由于本区地层经受了多期次的构造变动,混合状花岗岩大面积分布、地层内又缺乏明显的标志层、覆盖严重、露头不佳等原因,致使本区地层层序的厘定存在较大困难。老地层沿区域构造线残存于混合状花岗岩中,地表仅能见到一些规模不大的磁铁石英岩露头,其周围岩性主要为:绿泥云母石英片岩、角闪斜长片麻岩、斜长角闪片岩、云母片岩,含磁铁石英岩,次为结晶灰岩、绿帘斜长花岗片麻岩等,为一套中)))浅变质程度的岩系,以绿片岩相的岩石组合为主,岩石普遍经受了较强烈的混合岩化作用。我队在评价合教铁矿时,曾将本区的混合岩化强度分成混合质岩石、混合岩、混合状花岗岩,而混合状花岗岩包围、归并斜长角闪岩类,并与后者搅混重熔,使其呈残留状。合教西区斜长角闪片岩的片理发育风烛残年铁矿的顶板,毫无疑问,应是沉积变质岩系地层。但经岩矿鉴定,却具有压碎状斜长花岗岩的特点,相反,部分混合状花岗岩样品,经鉴定,具有角闪斜长片麻岩的特点。这类岩石具有程度不等的片麻状,片状构造,花岗变晶结构,钠质交代明显。由此可见,老变质岩系经区域性的混合岩化作用后,岩石性质逐渐向花岗岩类过渡。 金在区域变质中的迁移分异,使金在一部份老地层中丰度值大幅度提高,并在金的含量分布上出现不均一的现象。根据合教地区老地层中含金性的调查统计:斜长角闪片岩、角闪斜长片岩、角闪斜长片麻岩的含金性较好,一般含金100~180ppb,个别达1000ppb以上,次为云母片岩和磁铁石英岩,含金100ppb。据野外观察,含金石英脉的分布与斜长角闪片岩类岩石关系密切。 本区出露的三合明群底部岩组地层,主要为富钠质的火山岩系,经区域变质形成。原岩以细碧)))角斑岩系列为主,次为玄武岩,并有少量酸性火山岩。含金性较好的样品,其原岩主要为中性火岩岩类,含金性稍差的样品其原岩多为基性岩类。112本区含金层或矿源层的特点 11211金矿化与磁铁石英岩关系紧密,围绕铁矿层发育。 11212含金性较好的地层,多为变质的中性火山岩类,次为基性岩类。而国内一些著名的同类金矿,含金层或矿源层多为基性岩类。 11213合教)))三合明一带含金层位调查表明:合教、黑脑包、瓦窑沟等地三合明群底部岩组中含金性较好的层位,在区域上颁布较为稳定,演化到晚期的脉金,多具层控特征,受有利岩性的控制。 11214本区含金层不是一个,而是多个,其中较好的应是上述的斜长角闪岩类。 113关于金矿床矿源层的探讨 太古代绿岩带是国内外金矿床的重要矿源层,是找矿中十分注重研究的课题。合教地区出露的老地层能否称之为绿岩带,现提出两条异论供讨论。113.1据一些研究程度高的绿岩带资料报道,其年代都为太古代,绝对年令值在25亿年以上,而本区老地层年龄,根据区域资料对比,小于25亿年,应属元古界地层范畴。用绿岩带的狭义概念衡量,年代上存在着差异。 113.2世界上一些典型的太古宙绿岩带考察资料表明,组成绿岩带的的岩石类型很复杂,绿岩带中分布最广的主体岩石是镁铁质火山岩,尤其是铁镁质安山岩,其岩石类型为拉斑玄武岩。我国的一些著名大型金矿,如夹皮沟、金厂峪、小秦岭等都产于绿岩带的镁铁质火山岩石组合之中或其附近。与上述 X收稿日期:2008-05-12

财务指标计算公式(超全)

财务指标计算公司公式 财务报表分析指标体系 一、盈利能力分析 1.销售净利率=(净利润÷销售收入)×100% 该比率越大,企业的盈利能力越强 2.资产净利率=(净利润÷总资产)×100% 该比率越大,企业的盈利能力越强 3.权益净利率=(净利润÷股东权益)×100% 该比率越大,企业的盈利能力越强 4.总资产报酬率=(利润总额+利息支出)/平均资产总额×100% 该比率越大,企业的盈利能力越强 5.营业利润率=(营业利润÷营业收入)×100% 该比率越大,企业的盈利能力越强 6.成本费用利润率=(利润总额÷成本费用总额)×100% 该比率越大,企业的经营效益越高 二、盈利质量分析 1.全部资产现金回收率=(经营活动现金净流量÷平均资产总额)×100% 与行业平均水平相比进行分析 2.盈利现金比率=(经营现金净流量÷净利润)×100% 该比率越大,企业盈利质量越强,其值一般应大于1 3.销售收现比率=(销售商品或提供劳务收到的现金÷主营业务收入净额)×100% 数值越大表明销售收现能力越强,销售质量越高

三、偿债能力分析 1.净运营资本=流动资产-流动负债=长期资本-长期资产对比企业连续多期的值,进行比较分析 2.流动比率=流动资产÷流动负债与行业平均水平相比进行分析 3.速动比率=速动资产÷流动负债与行业平均水平相比进行分析 4.现金比率=(货币资金+交易性金融资产)÷流动负债与行业平均水平相比进行分析 5.现金流量比率=经营活动现金流量÷流动负债与行业平均水平相比进行分析 6.资产负债率=(总负债÷总资产)×100% 该比值越低,企业偿债越有保证,贷款越安全 7.产权比率与权益乘数产权比率=总负债÷股东权益,权益乘数=总资产÷股东权益产权比率越低,企业偿债越有保证,贷款越安全 8.利息保障倍数=息税前利润÷利息费用=(净利润+利息费用+所得税费用)÷利息费用利息保障倍数越大,利息支付越有保障 9.现金流量利息保障倍数=经营活动现金流量÷利息费用现金流量利息保障倍数越大,利息支付越有保障 10.经营现金流量债务比=(经营活动现金流量÷债务总额)×100% 比率越高,偿还债务总额的能力越强 四、营运能力分析

某铁矿石分选工艺试验研究.doc

某铁矿石分选工艺试验研究某贫铁矿石采自新疆某矿区矿床的两个主要矿体,分为地表矿体和深部矿体。通过分选工艺研究,深部矿石可以采用磁滑轮预先抛废,磁滑轮精矿采用弱磁选流程;地表矿石则因含弱磁性矿物比例较高,不宜采用磁滑轮预先抛废,而需采用弱磁选-高梯度强磁选流程。试验建议该矿石的分选流程宜采用灵活流程,流程结构为磁滑轮抛废-弱磁选-高梯度强磁选,因地制宜,从而获得最佳的经济效益。 1试样制备 试验研究的矿石采自新疆某矿区矿床的两个主要矿体。根据所采矿样重量按代表性要求混匀配矿,得到试验用的原矿样Ⅱ及Ⅳ。其中原矿样Ⅱ全铁品位24.98%,从矿床深部采取;原矿样Ⅳ全铁品位19.88%,从矿床地表采取。配制好的两矿样按照图1-1所示的加工制备流程制备选矿试验研究所需试样。 图1-1 矿样的加工制备流程图 2原矿性质考查 将缩分出的有代表性的试样进行化学分析,结果见表2-1。 表2-1 化学多元素分析结果 为查明矿石中主要矿物的组成,进行了X-射线衍射分析,其结果见图2-1和图2-2。从X-射线衍射分析图可知,矿石中金属矿物主要有磁铁矿、赤铁矿及针铁矿,脉石矿物主要是石英,其次为钙长石。 有矿石性质考查,可知矿石中的有用组分为铁,含量19.88%~24.98%,为贫铁矿石,需经过选矿加工,获得铁精矿才有利于价值。因此,本次试验研究了加工该矿石的合理工艺流程及能达到的技术经济指标。

图2-1 Ⅱ号矿样X-射线衍射分析图谱 图2-2 Ⅳ号矿样X-射线衍射分析图谱 3选矿试验研究 根据矿石中各种铁矿物的性质特征,参考生产实践,较为合理的矿石分选工艺应为弱磁-强磁工艺,本试验对采用磁选工艺的可行性及主要工艺参数及流程进行了试验研究。 3.1磁滑轮抛废试验 本次试验的矿石属贫铁矿石,铁品位19.88%~24.98%,由于有用矿物粗细不均匀嵌布,矿床开采过程中围岩及夹石的混入,当矿石破碎到一定粒度时,即会产生一定量的废石,使

金矿成因

主要金矿类型的地质特征与矿床实例 (2006-1-10) 一、岩桨一热液金矿床 本类金矿床分布于古地块周围断陷盆地的边缘,或两个构造单元之间的深断裂带附近。滨太平洋构造岩浆活动带控制了本类型的矿床,如密山一清源深断裂,郯城一庐江深大断,裂浙闽沿海的丽水一海丰深断裂带等。混合岩化一交代重熔、同熔型花岗岩类与含金建造变质岩系有着内在联系,所形成的含金花岗岩或偏碱性的花岗岩类小侵入体,岩株对岩浆期后热液金矿床有直接的控制作用,本类型金矿床可分3个亚类: (一)重熔岩浆热液金矿床 成矿母岩为含金的重落型花岗石。在燕山期,它们沿着深切基底的断裂构造侵入到不同时代的盖层中。金矿化多沿台、槽分界断裂私隆起区的边缘断裂展布。在隆起区以金矿化为主,伴有多金属矿化,在凹陷区以多金属矿化为主,而在过渡带则为金一多金属矿化。在侵入体内为石英细脉浸染型金矿化,含金黄铁矿石英细脉带产于岩体的边缘或其顶部,而含金石英脉带赋存于接触带和围岩的构造裂隙中。 河北峪耳崖金矿床实例: 燕山期花岗杂岩体居于矿区中心。同位素年龄1.4亿年。呈北东一南西向分布,岩体的长轴方向与区域构造线一致,长2 km,宽0.7km,平面上中间膨大两端狭小,呈一菱形状(图1一4)侵入于长城系高于庄组白云岩中,接触带局部有矽卡岩化现象。侵入杂岩体主要由同源不同阶段侵入的似斑状斜长花岗岩和黑云母花岗岩组成。金矿化带主要分布于内接触带附近和岩体中,仅极少数分布于自云岩或岩枝边部的断裂构造中,白云岩中的矿体,一般距接触带50-100m。 成矿断裂主要有两组,一组走向北40o一80o东,倾向北西,倾角400-80o,贯穿全区,规模较大,破碎带发育,另一组走向为2900-280o倾向北东,倾角40o一60o,仅在若休内部发育,与第一组斜交,规模小。 已查明地表矿带有14条,深部盲矿带10余条,每一矿带由1一6条矿体组成。大多数矿带平行于岩体长轴方向,呈平行脉状,雁行排列,地表规模较大,长几百米,厚度不足1 m,最厚5 -10M。 含金地质体共有3种:①含金黄铁矿石英脉;②含金黄铁矿石英细脉带;③含金破碎蚀变带。围岩蚀变强烈,以黄铁矿化、绢云母化、硅化、钠长石化为主。 金矿物以自然金为主,其次有银金矿和啼金矿,金属矿物有黄铁矿、磁黄铁矿、黄铜矿、闪锌矿、方铅矿、辉翎矿等。金品位为5.37-9. 01g/t,一般在7 g/t以上。矿石铅属古老正常铅,模式年龄为15亿年.

农残回收率计算

回收率的计算方法 有机磷类 国标: 假设取5PPM某农药0.5毫升加入到10克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其10克蔬菜样品中农药浓度为X=(5×0.5)/10=0.25PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) 因此,通过假设可知,V1(提取液体积)和V2(分取体积)应该一样均为100毫升二氯甲烷,因为有机磷农药前处理未进行分取,是100%浓缩的。注ρ=5PPM。 所以,ρ×100×2×1×A1 ρ×A1 W(含量)= = 10×100×1×A 5A W(含量)ρA1 回收率= ×100% = X X×5A 农业部行标: 假设取5PPM某农药0.5毫升加入到25克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其25克蔬菜样品中农药浓度为X=(5×0.5)/25=0.1PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) ρ×50×5×1×A1 ρ×A1 W(含量)= = 25×10×1×A A W(含量)ρA1 回收率= ×100% = X X×A

菊酯类 国标: 假设取5PPM某农药0.5毫升加入到20克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其20克蔬菜样品中农药浓度为X=(5×0.5)/20=0.125PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) 因此,通过假设可知,V1(提取液体积)为30毫升正己烷加30毫升丙酮,总计为60毫升。V2(分取体积)为3毫升过柱体积。注ρ=5PPM。 所以,ρ×60×1×1×A1 ρ×A1 W(含量)= = 20×3×1×A A W(含量)ρA1 回收率= ×100% = X X×A 农业部行标: 同有机磷计算方法。 注:以上W(含量)即为准确测量的蔬菜样品农药残留浓度,单位为PPM或mg/kg ,若换算成μg/kg 则需要乘以1000。

玲珑金矿田脉岩与金矿化的时空关系及其找矿指示意义

第17卷第1期2009年2月 黄金刮,掌杖鑫 GOI.DSCIENCEANDTECHNOI.0GY VoI.17NO.1 Feb.2009 玲珑金矿田脉岩与金矿化的时空关系及其找矿指示意义 庄立建,王荣超 招金矿业股份有限公司,山东招远265400 摘要:玲珑金矿田内脉岩种类繁多、规模不一、形成有先有后,在时空上贯穿于金矿化的整个过程。在成因上脉岩的形成可以看作是岩浆演化、构造环境、岩石圈地幔厚度变化、地质动力学联合作用的产物。认为本区的脉岩主要是以提供热能和成矿流体为主.提供局部使金富集的能力。 关键词:金矿化;脉岩;时空关系;找矿指示;玲珑金矿田 中图分类号:P618.51文献标识码:A文章编号:1005-2518(2009)0143034-04 玲珑金矿田作为全国重要的产金地,发育了许多大小不等的中酸性、基性脉岩,许多学者在此都有自己不同的见解¨。。。笔者认为玲珑金矿田内大量岩脉形成在不同的时期,不同时期的岩脉在形成过程中都会造成一定的蚀变或矿化现象。成矿期所形成的脉岩参与了金的成矿作用,主要是提供运移并能萃取金元素的岩浆流体以及所需的能量,并且在侵入过程中提供了少量的金元素;成矿前所形成的脉岩起到了一种阻隔层的作用,使金在其上下盘附近进行富集;成矿后的脉岩则主要是错断矿体,在某种程度上会使金发生局部的富集,尤其是对脉岩上盘的金矿化富集程度的贡献要比下盘规模大。根据脉岩产出的时、空、成因及其与矿化的关系,阐明了不同时期脉岩对于找矿的指示意义。 1脉岩产出的地质概况 胶东地区位于华北克拉通东部、处于郯庐断裂西部、苏鲁榴辉岩带和秦威断裂之间。玲珑金矿田则位于胶东的西北部Hj。区内出露地层简单,主要为太古宇脱东群变质岩和第四系,花岗岩主要为玲珑片麻状花岗岩、郭家岭花岗闪长岩和滦家河二云母花岗岩。构造上,玲珑金矿田处于招平断裂(NNE)、破头青断裂(NE50—60。)和欧家夼断裂(NEE)3组压扭性断裂构造复合、交接、转折的构造剪切带上,NNE、NE、NEE向3组构造体系构成了玲珑金矿田控矿构造的基本格架(图1)。 图1山东招远玲珑金矿田地质略图 1.第四系;2.玲珑花岗岩;3.岩脉;4.玲珑断裂;5.断裂;6.破头青断裂;7.矿脉及其编号;8.产状 收稿日期:2008聊旬8;修订日期:2008-10-28. 作者简介:庄立建(1962一),男,工程师,从事矿山地质管理工作.E—mail:rongchaowang@126.corn. 万方数据

加标回收率计算方法

加标回收率 有空白加标回收和样品加标回收两种 空白加标回收:在没有被测物质的空白样品基质中加入定量的标准物质,按样品的处理步骤分析,得到的结果与理论值的比值即为空白加标回收率。 样品加标回收:相同的样品取两份,其中一份加入定量的待测成分标准物质;两份同时按相同的分析步骤分析,加标的一份所得的结果减去未加标一份所得的结果,其差值同加入标准物质的理论值之比即为样品加标回收率。 加标回收率的测定,是实验室内经常用以自控的一种质量控制技术.对 于它的计算方法,给定了一个理论公式: 加标回收率=(加标试样测定值—试样测定值)加标量X 100%. 理论公式使用的约束条件 加标量不能过大,一般为待测物含量的0.5?2.0倍,且加标后的总含量不应超过方法的测定上限;加标物的浓度宜较高,加标物的体积应很小,一般以不超过原始试样体积的1%为好。加标后引起的浓度增量在方法测定上 限浓度C的0.4~0.6(C)之间为宜。对分光光度计来说,吸光度A在0.7以下,读数较为准确。 回收率计算结果不受加标体积影响的几种情况 F列情况下,均可以采用公式(2)计算加标回收率 (1) 样品分析过程中有蒸发或消解等可使溶液体积缩小的操作技术时,尽

管因加标而增大了试样体积,但样品经处理后重新定容并不会对分析结果产生影响?比如采用酚二磺酸分光光度法分析水中的硝酸盐氮(GB7480287),样品及加标样品经水浴蒸干后,需要重新定容到50 mL再行测定。 ⑵样品分析过程中可以预先留出加标体积的项目,比如采用离子选择电 极法分析水中的氟化物(GB7484287),当样品取样量为35 mL、加标样取 5.0mL以内时,仍可定容在50 mL ,对分析结果没有影响。 (3)当加标体积远小于试样体积时,可不考虑加标体积的影响?比如采用4- 氨基安替比林萃取光度法分析水中的挥发酚(GB7490287),加标体积若为 1.0 mL ,而取样体积为250 mL时,加标体积引起的误差可以忽略不计。 理论公式约束条件的含义 加标物的浓度宜较高,加标物的体积应很小”的含义便更加清晰:在计算加标试样浓度C2时,应尽可能减小标准溶液的取样体积V 0.只有这样,分别采用公式(3)和(4)的计算结果才会相等.由此可见,采用浓度值法计算加标回收率时,任意加大加标试样的体积,将会导致回收率测定结果偏低。 对加标量的规定: 1. 加标量应尽量与样品中待测物质含量相等或相近,并注意对样品容积的 影响 2. 当样品中待测物质含量接近方法检出限时,加标量应控制在校准曲线的 低浓度范围;当样品中待测物含量小于方法检出限时,以检出限的量作 为待测物质的含量加标

选矿常用名词术及计算公式

选矿常用名词术及计算公式

————————————————————————————————作者:————————————————————————————————日期:

一般概念 1、选矿:是把有用矿物与脉石矿物最大限度的分开,除去脉石,使有用矿物得到富集,或使 共生的有用矿物彼此分离,从而获得高品位的一种或多种精矿的过程。 2、岩石:由一种或多种矿物组成的矿物集合体称岩石。或者说,构成地球外壳岩石圈的物质。 3、矿石:指在现代技术条件下,能够加工告别或能直接提炼金属以及其他化合物的岩石。 4、矿物:在地壳中自然生成的具有固定化学组成与物理化学性质的自然元素或化合物。 5、有用矿物:能够为人类所利用的矿物、矿石、岩石。 6、脉石:矿石中没有工业价值或暂时不能为人类所利用的部分称脉石。 7、围石:矿体周围的矿石称围岩。矿体上部围岩称上盘或顶盘,矿体下部围岩称下盘或底盘, 夹在矿体中间的围岩称夹石。 8、废石:矿体围岩和夹岩称废石。实际上矿石和废石的概念是相对的。处于矿石边界品位以 下无工业价值的低品位矿石和围岩、夹石统称废石。 9、矿石品位:是指矿石中某种金属,非金属或其它有用组分含量的多少,一般用百分数表示, 有的用每吨矿石中含的克数来表示。 10、原矿品位:是指进入选厂的矿石中的某种金属,非金属或其它有用组分与原矿量的百分 比。 11、精矿品位:指精矿中所含某种金属(或非金属或其它有用组分)与精矿量的百分比。 12、尾矿品位:尾矿中所含某种金属(或非金属或其它有用组分)与尾矿量的百分比。 13、重力先矿:简称重选,是根据矿石中各种矿物比重(密度)的差异进行分选的选矿方法。 比重不同的矿物颗粒在运动的介质(水、空气、重介质)中受液体动力和其它机械力作用。形成分层,使轻、重矿物得到分离。 重选法连同下述的浮选法、磁选法、电选法是主要的选矿方法。 14、浮游选矿:简称浮选,浮选通常为泡沫浮选,它是根据矿物表面物理化学性质(主要是 润湿性、电性、吸附以及溶解、氧化等化学反应)的差异,经浮选药剂处理后,矿浆中 各种矿物的表面性质差异变得更加明显,从而使矿物颗粒可以有选择地附着在气泡表面 上,并把这些附着在气泡表面的矿物提升到矿浆表面上来的全过程。 泡沫浮选是一个复杂的过程。是一种选择性分离工艺。 15、磁力选矿:简称磁选,是根据矿物自然磁性的不同,在磁选机磁场作用下,使各矿物受 到不同的作用力,从而使矿物得到分离的方法。 16、电选法:是根据矿物导电率的差别进行分选的方法。 17、粗选:矿浆经调合后进入浮选的第一个工序,选出部分高于原矿品位,但一般达不到精 矿质量要求的粗精矿作业。 18、精选:将粗选所得到的粗精矿再选,并得到合格精矿的作业。 19、扫选:把粗选之后还不能做为最终尾矿丢弃的矿浆进行再选的作业。 为提高回收率,需降低尾矿品位,扫选也常进行多次。 20、精矿:矿石经选别作业后,除去了大部分脉石和杂质,使有用矿物得到充分富集的最终 产品。 21、中矿:在选别过程中得到的中间产品(通常为扫选作业的精矿和精选作业的尾矿)。 中矿品位一般介于最终精矿和尾矿品位之间。中矿一般需要返回某适当作业点进行再选或单独处理。 22、尾矿:矿石经选别作业后,主要有用成份富集于精矿中,所剩余的不再进行回收的部分。 尾矿中一般都含有一定数量有回收利用价值的矿物,只是由于受一定时期技术水平的 限制或继续回收的费用太高而暂时丢弃。因此尾矿要妥善保管起来。

回收率

准备两份:一份待测样品A,一份加入一定量标准B,然后用加标测的结果减去理论值,回收率等于B-A/B*100% 4.6. 5. 回收率 4.6. 5.1. 在检测的样品中添加一定量的标准物质,测试添加进去的标准物质的回收率,可以衡量前处理或测试过程中的基体干扰、样品的交叉污染、样品损失、仪器性能等,故回收率试验一直是化学实验室质量控制中重要的手段之一。 4.6. 5.2. 进行回收率测试时,应选择具有代表性的样品,样品应均匀性良好,目标测试物质具有一定的含量。 4.6. 5.3. 回收率测试时,称取上述选择的经预处理的样品两份,其中一份中加入目标测试物质,加入量是样品中目标测试物质量的50%-150%。两份样品同时经过前处理后,同时上机测试,计算回收率。 4.6. 5.4. 回收率=(V2c2-V1c1)×100%/V0c0 其中:c2:加标样品测试值,ug/mL V2:加标样品体积,mL c1:未加标样品测试值,ug/mL V1:未加标样品体积,mL c0:加入标准溶液的浓度,ug/mL V0:加入标准溶液体积,mL 本计算公式是基于加标样品和未加标样品的质量一致的前提,如两者不一致,则应折算为一致的质量。 4.6. 5.5. 回收率的范围一般控制为80%-120%,根据项目的不同,由实验室技术指导进行适当调整。回收率的测定结果记录在《回收率测定记录表》中。 4.6. 5. 6. 回收率测试的另外一种形式是,如果怀疑样品溶液基体对测试结果有影响,则可以直接在样品溶液中加入一定体积的标准溶液,测试此加标液的浓度,计算加标回收率,此时可以衡量溶液基体对测试有无影响。 以上摘自我们公司的程序文件中关于结果质量保证中关于加标回收率测定, 回收率试验它也叫加标回收,即在测定样品的同时,于同一样品的子样品中加入一定量的标准物质进行测定,将其测定结果扣除样品的测定值,除以加入量,计算回收率。它可以反映测试结果的准确度。 目的就是控制实验的准确度。加标回收衡量准确度,做平行样是用来衡量精密度的.这两个手段是实验室质量保证上经常用到的措施. 测量方法确认技术分成以下几类。 (1)准确度试验(标准物质分析试验、回收率试验、不同方法的比对试验)。 (2)精密度试验(室内重复性、中间精密度、协同试验、极差试验)。 (3)检出限的确定。 (4)测量范围试验。 (5)影响结果因素的系统评价。

选矿常用计算公式

选矿常用计算公式公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

选矿常用计算公式 1、品位:一般用化学分析确定 α一原矿品位,β—精矿品位,θ—尾矿品位 2、产率: (1)用重量计算 γ精= Q K/ Q n*(100%) γ尾= Q n- Q k/ Q n*(100%) 式中:Q n、Q k分别为原矿和精矿重量(吨) (2)用品位计算 γ精=α-θ/β-θ*(100%) γ尾=1- γ精 (3)用回收率计算 γ精=α·ε/β*100% 式中:ε为回收率 3、选矿比: (1)用重量计算 K重= Q k/ Q n(倍) (2)用品位计算 K重=β-θ/α-θ(倍) 4、富矿比: I n=β/α(倍) 5、破碎比: I=D max/d min 式中:D max破碎前物料最大块直径(mm)

d min破碎后物料最大块直径(mm) 6、单个矿块粒度计算: d=(a+b+c)/3 式中:a、b、c分别为块矿的长、宽、高尺寸 7、筛分效率:(1)E1=β(α-θ)/α(β-θ)*100% (2)E2=C/(θ*α)*100% 式中:α、β、θ分别为给矿、筛下、筛上产物中小于筛孔尺寸粒级的百分含量,C为筛下产品重量 8、破碎机作业率: ?作=t实/t计*100% 式中:t实为破碎机实际开车小时数 t计为日历台数X台数X24小时(计开车小时数) 9、球磨机作业率:计算方法同破碎机作业率 10、球磨机台数能力: Q台= Q总/ t实(t/H) 式中:Q台为球磨机1小时处理原矿吨数 Q总为球磨机当班(或日、月、季、年等)处理原矿总吨数11、球磨机利用系数: ?系= Q台/V(t/H·m3) 式中:?系为球磨机单位体积单位时间内处理的原矿量 V为球磨机有效容积(m3)

河南熊耳山地区花山花岗岩与金矿化的关系_王长明

第20卷 第2期2006年6月 现 代 地 质 G E O SC I ENCE Vol .20 No .2 J un .2006 河南熊耳山地区花山花岗岩与金矿化的关系 王长明 1,2 ,邓 军 1,2 ,张寿庭 1,2 (1.中国地质大学地质过程与矿产资源国家重点实验室,北京 100083; 2.中国地质大学岩石圈构造、深部过程及探测技术教育部重点实验室,北京 100083) 收稿日期:2005 06 30;改回日期:200603 20;责任编辑:楼亚儿。 基金项目:教育部科学技术研究重点项目(03178);教育部跨世纪人才基金项目;国家自然科学基金项目(40172036);中国 地质调查局国土资源调查项目(20023030)。 作者简介:王长明,男,工程师,博士研究生,1974年出生,矿物学、岩石学、矿床学专业,主要从事金属矿床和地质调查研 究工作。 摘要:熊耳山地区是豫西重要的金矿化集中区。通过对该区花山花岗岩的化学组成、微量元素、稀土元素、稳定同位素特征及与金矿化关系的研究,得出如下主要研究成果:(1)在R 型聚类分析谱系图上表明岩体中A u 、A g 、Pb 、Cu 、Ba 元素与金矿床微量元素相关性趋于一致;(2)在稀土元素配分模式图上表现出花岗岩和蚀变岩具有相似的右倾配分曲线的特 征;(3)在流体包裹体的w (N a +)-w (K +)-w (C a 2+ +M g 2+)成分三角图上表明金成矿流体和岩浆热液具亲缘关系;(4) 岩体线性构造控制了花山地区构造蚀变岩型和爆破角砾岩型金矿床的时空分布;(5)金矿床的成矿时代为燕山期,花山花岗岩的成岩时间集中于81~159M a ;(6)S 、H 、O 、Pb 同位素组成表明成矿物质和成矿流体来自岩浆热液。关键词:花山花岗岩;金矿化;熊耳山;河南 中图分类号:P588.12+1;P618.51 文献标识码:A 文章编号:1000-8527(2006)02-0315-07 R elati onshi p bet ween Huas han G ranite and G ol d M i neralizati on i n X i ongershan A rea ,H enan WANG Chang -m ing 1,2 ,DENG Jun 1,2 ,ZHANG Shou -ti n g 1,2 (1.S t a t e Key Labor a t or y of Geol og i ca lP r oces s es and M i ner a l Res ourc es ,Ch i na Un i versit y ofGeos cie n c es ,Beiji ng 100083,Ch i na ; 2.Ke y Labor a t or y of Lit hos pher e Tect onics and Lit hopr obi ng Tec hno l ogy ofM i n is tr y ofEducati on ,Ch i na Un i vers ity of Geos cie nces ,Beij i ng 100083,China ) Abst ract :Xiongershan is an i m portan t concentration area of go l d m ine ralization i n w estern H enan .By study i n g geoche m ical co m positions ,trace e le m ents ,REE ,stable isotopes o fH uashan g r anite and its re l a ti o ns w ith gold deposits ,t h e fo llo w ing research achieve m ents have been ob tained :(1)R -c l u stering spec tru m diagra m show s t h at co rrela tions of trace e l e m ents such asAu ,Ag ,Pb ,Cu ,Ba o f gran it e and go l d deposits t e nd t o conti n u it y ;(2)REE d istri b u tion pa tte r n show s si m ilar righ t -dipp i n g fo r m s of granite and t h e altered r ocks ;(3)Na + -K + -C a 2++M g 2+co m position of fl u id incl u si o ns diag ra m sho w s i n ti m ate rela tionship bet w een go l d m e tallogenic fl u -i d s and m ag m atic hydr o t h er m a l fl u ids ;(4)Space -ti m e d istribu tion of str ucture -controlled a lte r a ti o n r ock type go ld depo sits and explosion -breccia type go l d deposits inH uashan area is controlled by linear str uctur es ofH uas -han g ranite ;(5)M e tallogen ic epoch o f the go l d deposits is Yanshanian peri o d ,and t h e r ock -for m ing age of H uashan g ranite occu r ed i n 81-159M a ;(6)S ,H ,O and Pb iso t o pes sho w t h at the o re -for m ing fl u i d and m e tallogenic m a t e ria l co m e fr o m m ag m a tic hydrothe r m al fl u ids . K ey w ords :H uashan g ranite ;go l d m ineralization ;X ionge rshan ;H enan 0 引 言 花山花岗岩位于华北陆块南缘熊耳山隆起区 北部,岩体外围东南侧分布有祁雨沟金矿和雷门沟金矿等组成的矿集区,西南分布有上宫、萑香洼、虎沟、干树凹等金矿组成的矿集区,其中萑

硫磺回收率计算公式

硫回收率的计算方法 1、硫磺回收装置硫回收率的计算方法(采用氮平衡法) 根据回收尾气组成分析数据可以计算得到硫磺回收装置硫回收率数据。 硫磺回收装置硫回收率计算公式如下: ηs =()%1002)09.78(1''''''22222?????????????+++++-S COS CS SO S H N S H S N C C C C C C C Q Q R 式中: ηs —— 硫磺回收装置硫回收率 %,取小数点后两位 R —— 总空气/总酸气(流量比,干基/干基) C H2S —— 酸气中H 2S 含量 %(V ),(干基) C 'N2、C 'H2S 、C 'SO2、C 'CS2、C 'S 、C 'COS —— 分别为回收尾气中相应组份的含 量 %,(干基) (1)用酸气流量和空气流量计算R : R= 式中: Q K ——总空气流量,m 3/h ,(湿基) Q S —— 酸气流量,m 3/h ,(湿基) Q N —— 保护氮气流量,m 3/h ,(干基) H K —— 空气中含水量,mol 分率 H S —— 酸气中含水量,mol 分率 H S = O W P P P + 式中: P W —— 酸气分离器温度下,酸气中水的分压 kPa P —— 酸气分离器的压力 kPa(g)

P O —— 大气压力 kPa H K =o d P P Φ? Φ=()d w d o w P t t P P -??--41067.6 式中: Φ—— 空气相对湿度,mol 分率 t d 、t w —— 空气的干球、湿球温度℃ P d 、P w —— 在空气干球、湿球温度下水的饱和蒸汽压力,kPa (2)用气体组成计算R : 式中: C —— 酸气组成 C ’—— 尾气组成(干基) 下标分子式表示该组分,均以%(V )表示 41.96=2×(20.95+0.03) 干空气组成为N 2:78.09%,Ar :0.93%,O 2:20.95%,CO 2:0.03% 2、总硫回收率的计算方法(采用硫平衡法) 根据硫磺回收装置硫收率数据和烟囱尾气组成分析数据可计算得到总硫回收率数据。 总硫回收率计算公式如下: S H SO S H s s s S H s s s t W W C H Q C H Q 222294.05.0)1(349.1)1(349.1s ++--=ηηη 式中: ηs 、Q S 、H S 、C H2S ——同硫磺回收装置硫回收率计算 W SO2——烟囱尾气中SO 2排放量,kg/h W H2S ——烟囱尾气中H 2S 排放量, kg/h

相关文档