文档库 最新最全的文档下载
当前位置:文档库 › 数学归纳法

数学归纳法

数学归纳法
数学归纳法

课题:数学归纳法(1)

朱修龙

教学目标

1.知识与技能

①理解数学归纳法的概念; ②掌握数学归纳法的证题步骤。 2.过程与方法

经历与感受数学归纳法原理发现和提出的过程,体会其中蕴含的化无限问题为有限问题的思路与方法

3.情感态度与价值观

通过数学归纳法的学习,开拓数学视野,体会数学归纳法使有限和无限间实现了平衡的科学意义。

教学重难点

重点: 了解数学归纳法原理,能用数学归纳法证明一些简单的数学命题.

难点: 运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系

教学过程

【课前预习】阅读教材92-95,并思考如下问题.

(1)通过归纳推理猜想的结论是不是都正确?请举例说明.

(2)教材上说数学归纳法是一种特殊的证明方法,其“特殊”体现在哪? (3)在多米诺骨牌游戏中,能使所有的骨牌全部倒下的条件是什么? (4)你认为证明数列的通过公式是1

n a n

=

与多米诺骨牌游戏有哪些相似性?请类比多米诺骨牌游戏证明这个问题.

(5)总结数学归纳法的证明步骤,并思考用数学归纳法证明的关键点和难点分别是什么? (6)有人说:“数学归纳法使无限与有限间实现了平衡”, 请谈谈你对这句话的理解. 一、释疑解惑,导入新知

1、(1)欧拉(Euler )证明了当n=5时,5

221+ =4 294 967 297=6 700 417×641,从而否定了费马的推测.这说明了什么?

2、阅读下面两个推理,并思考用什么方法对猜想进行证明?

①有一盒没有用完的粉笔,我拿出一支,发现时白色的,然后我又拿出两支,发现还是白色的,于是我猜想这个盒子里剩下的粉笔都是白色的.

②对于数列{}n a ,已知111,(1,2,3,...)1

n

n n a a a n a +===+,通过对1,2,3,4n =前4项归纳,我们猜想其通项公式是1n a n

=

. 师生小结:否定猜想,只要举出反例即可以,若要证明猜想成立,当n 较小时,可以用一一验证的方法,当n 较大或证明n 取任意正整数都成立,这种想法价值不大. 我们需要探求一种方法: 二、合作探究,展示成果

探究1. 教材上说数学归纳法是一种特殊的证明方法,其“特殊”体现在哪? 探究2. 在多米诺骨牌游戏这个游戏中,能使所有的骨牌全部倒下的条件是什么? 师生小结:只要满足以下两条件,所有多米诺骨牌就都能倒下:

(1)第一块骨牌倒下;

(2)任意相邻的两块骨牌,前一块倒下一定导致后一块倒下。 可以看出,条件(2)事实上给出了一个递推关系:

当第k 块倒下时,相邻的第k+1块也倒下。 这样,要使所有的骨牌全部倒下,只要保证(1)(2)成立。 探究3. 类比多米诺骨牌原理解决数学猜想

已知数列{}n a ,111,1n n n a a a a +==

+,你认为证明数列的通过公式是1

n a n

=,这个猜想与上述多米诺骨牌游戏有相似性吗?你能类比多米诺骨牌游戏解决这个问题吗?

【知识提炼】数学归纳法的原理

一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n0时命题成立;

(2)(归纳递推)假设n=k(0,k n k N *≥∈)时命题成立,证明当n=k+1时命题也成立。

只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n 都成立。

上述证明方法叫做数学归纳法 注意:(1)这两步步骤缺一不可。

(2)用数学归纳法证明命题时,难点和关键都在第二步,而在这一步主要在于合理运用归纳假设,结合已知条件和其他数学知识,证明“当n=k+1时命题成立”。 三、知识应用、拓展延伸 1、错例剖析

下面用数学归纳法证明的过程是否正确?指出错误,并纠正。

①证明1

123(1)12

n n n ++++=

++:

,某同学证明如下: 证明:(1)假设当n k =时等式成立,1

123(1)12

k k k ++++=++即

那么,当1n k =+时,左边=123(1)k k ++++++ 11

(1)1(1)(1)(2)122

k k k k k =

++++=+++ 即当1n k =+时等式也成立. (2)故原等式对任意*

n N ∈成立. 所以上面等式对一切正整数都成立. ②证明:2

3

11222221n n -++++

+=-,某同学证明如下:

证明:⑴当1n =时,左边=1,右边=1,所以等式成立.

⑵假设当n k =时等式成立,即:2311222221k k -+++++=-

那么,当1n k =+时,

23

1

12222

2k k

-++++

++()111122112

k k ++?-=

=--

即当1n k =+时等式也成立.

综合(1)(2)知,原等式对任意*

n N ∈都成立. 2.典例讲评

例1.用数学归纳法证明:当*

n N ∈时,2222

(1)(21)

1236

n n n n +++++???+=.

证:(1)当1n =时,211=,

1(11)(211)

16

?+??+=,结论成立.

(2)假设n k =时,结论成立,即2222

(1)(21)1236

k k k k +++++???+=,

那么

22

2

2

2

2

2

(1)(21)(1)(266)123(1)(1)66

k k k k k k k k k k +++++++++???+++=++=

2(1)(276)(1)(2)(23)(1)[(1)1][2(1)1]666k k k k k k k k k +++++++++++===.

所以当1n k =+时,命题也成立.

根据(1)和(2),可知结论当*

n N ∈时都成立.

点评:应用数学归纳法证明时,第一步验证是基础,第二步推证是证明的关键,二者缺一不可,且在推证1n k =+时,必须使用n k =时的结论,否则就不是数学归纳法. 例2.已知数列

111

1

,,,,

1447710

(32)(31)

n n ???-+,计算1234,,,S S S S ,根据计算结果,猜想n S 的

表达式,并用数学归纳法进行证明.

证:111144S =

=?;21124477S =+=?;3213771010S =+=?;431410101313

S =+=?. 可以看出,上面表示四个结果的分数中,分子与项数n 一致,分母可用项数n 表示为31n +.于是可以

猜想31

n n

S n =+.

下面用数学归纳法证明这个猜想. (1)当1n =时,左边=114S =

,右边=11313114

n n ==+?+,猜想成立. (2)假设n k =(*

k N ∈)时,猜想成立,即

111

11447710

(32)(31)31

k

k k k ++++

=???-++,

那么

111111447710(32)(31)[3(1)2)][3(1)1]

k k k k +++++???-++-++ 131[3(1)2)][3(1)1]k k k k =+++-++ 2341(31)(1)(31)(34)(31)(34)

k k k k k k k k ++++==++++

1

3(1)1

k k +=

++.

所以当1n k =+时,猜想也成立. 根据(1)和(2),可知猜想对任何*

n N ∈时都成立.

点评:探索性问题未给出问题的结论,需要由特殊情况入手,猜想、证明一般结论.它的解题思路是:从给出的条件出发,通过观察、试验、归纳、猜想、探索出结论,然后再对归纳猜想的结论进行证明.

3.巩固提升

(1)用数学归纳法证明:“1 + a + a 2

+…+a n+1

= 2

11n a a

+-- (a≠1)”,在验证n = 1时,左端计算所得

的项为( ) A .1

B .1 + a

C .1 + a + a 2

D .1 + a + a 2 + a 3

答案:C

(2)某个命题当n=k (k∈N )时成立,可证得当n=k+1时也成立。现在已知当n=5时该命题不成立,那么可推得( )

A. n=6时该命题不成立

B. n=6时该命题成立

C. n=4时该命题不成立

D. n=4时该命题成立 答案:C

(3)用数学归纳法证明等式:

1

12(1)3(2)1(1)(2)6

n n n n n n n ?+?-+?-+???+?=

++ 的过程中,由n =k 到n =k +1左边增加的代数式为 答案:+++???++123(1)k 四、感悟小结、布置作业

1.数学归纳法是一种证明与自然数有关的数学命题的重要方法。其格式主要有两个步骤、一个结论;

2.有人说:“数学归纳法使无限与有限间实现了平衡”, 请谈谈你对这句话的理解.

3.作业布置: (1)必做练习

P96 A 组2题 B 组1题

(2)选做作业:若数列{a n }满足a 1=1,a n +1=a n

1+a 2n

.

①求a 2,a 3,a 4,猜测{a n }的通项公式并证明;

②设S n =a 1+a 2+a 3+…a n .比较S n 与2n -1的大小关系,并给予证明.

浅谈数学归纳法

浅谈数学归纳法 国良 井冈山大学数理学院邮编:343009 指导老师:艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理:

第一条引理 该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理 如果该命题对任意底(对任意n )成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n 值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J 。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,数学归纳法开始得到世人的承认并得到数学界日益广泛的应用。十九世纪,意大利数学家皮亚若建立自然数的公理体系时,提出归纳公理,为数学归纳法奠定了理论基础。即:对于正整数N +的子集M ,如果满足:①1∈M;②若a ∈M ,则a+1∈M ;则M=N +. 2 数学归纳法的表现形式 2.1 第一数学归纳法 原理1:设()P n 是一个与正整数有关的命题,如果 (1)当00()n n n N +=∈时,()P n 成立; (2)假设0(,)n k k n k N +=≥∈时命题成立,由此推得n=k+1时,()P n 也成立; 那么,对一切正整数n 0n ≥,()P n 成立。 证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠?,于是由最小数原理,S 中有最小数a ,

数学归纳法教学设计与反思

数学归纳法教学设计与反思 长春市十一高中杨君 一、教学内容解析 就本节课的题目而言,它有两个意思,一个是归纳法,另一个是数学归纳法。归纳法是由特殊事例得出一般结论的归纳推理方法,是现实生活中人们自觉或不自觉普遍运用的方法,特别是不完全归纳法所得到的命题虽然不一定成立因而并不能作为一种论证方法,同时也应该看到不完全归纳法是数学中普遍存在的一种方法,是研究数学的一把钥匙,是发现数学规律的一种重要手段,具有很好的创造性。在科学发现中也是如此。 数学归纳法呢?它是证明与正整数n(n取无限个值)有关命题的重要工具,是一种重要的数学思想方法.其理论依据是归纳公理(即设M是正整数的一个子集,且它具有下列性质:①1∈M;②若k∈M,则k+1∈M.那么M是全体正整数的集合)和最小数原理(即自然数集的任何非空子集必有一个最小数),其实质是把具有共同特征的、无限重复的递推过程( )真? ( +1)真? ( +2)真?…用具有高度代表性、概括性的( )真? ( +1)真来代替,而核心与关键是如何利用归纳假设和递推关系.数学归纳法是以归纳为基础、以演绎为手段证明结论的一种方法,是归纳法与演绎法的完善结合.这也许是数学归纳法不是归纳法但又叫“数学归纳法”的原因.归纳法是一种以特殊化和类比为工具的推理方法,是重要的探索发现的手段,是一种似真结构;而数学归纳法是一种严格的证明方法,一种演绎法,它的实质是“把无穷的三段论纳入唯一的公式中提出“自然数公理”后,数学归纳法以归纳公理为理论基础,得到了广泛的确认和应用.而自然数中的“最小数原理”,则从反面进一步说明了数学归纳法证题的可靠性. 数学归纳法虽不是归纳法,但它与归纳法有着一定程度的关联.在数学结论的发现过程中,往往先通过对大量个别事实的观察,通过归纳形成一般性的结论,最终利用数学归纳法的证明解决问题.因此可以说论断是以试验性的方式发现的,而论证就像是对归纳的一个数学补充,即“观察”+“归纳”+“证明”=“发现”。 二、教学目标设置 1、知识和技能目标 (1)了解数学推理的常用方法(归纳法) (2)理解数学归纳法原理和其本质的科学性 (3)初步掌握数学归纳法证题的两个步骤和一个结论。 (4)会用数学归纳法证明简单的恒等式。 2、过程与方法目标 通过对归纳法的引入,说明归纳法的两难处境,引出数学归纳法原理,使学生理解理论与实际的辨证关系。在学习中培养学生探索发现问题、提出问题的意识,解决问题和数学交流的能力,学会观察——归纳——猜想——证明的思想方法,能用总结、归纳、演绎类比探求新知识。

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

高中数学数学归纳法教案新人教A版选修

第一课时 4.1 数学归纳法 教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写. 教学重点:能用数学归纳法证明一些简单的数学命题. 教学难点:数学归纳法中递推思想的理解. 教学过程: 一、复习准备: 1. 分析:多米诺骨牌游戏. 成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒. 回顾:数学归纳法两大步:(i )归纳奠基:证明当n 取第一个值n 0时命题成立;(ii )归纳递推:假设n =k (k ≥n 0, k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2. 练习:已知()*()13521,f n n n N =++++-∈L ,猜想()f n 的表达式,并给出证明? 过程:试值(1)1f =,(2)4f =,…,→ 猜想2()f n n = → 用数学归纳法证明. 3. 练习:是否存在常数a 、b 、c 使得等式132435......(2)n n ?+?+?+++= 21()6 n an bn c ++对一切自然数n 都成立,试证明你的结论. 二、讲授新课: 1. 教学数学归纳法的应用: ① 出示例1:求证*111111111,234212122n N n n n n n - +-+???+-=++??+∈-++ 分析:第1步如何写?n =k 的假设如何写? 待证的目标式是什么?如何从假设出发? 关键:在假设n =k 的式子上,如何同补? 小结:证n =k +1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形. ② 出示例2:求证:n 为奇数时,x n +y n 能被x +y 整除. 分析要点:(凑配)x k +2+y k +2=x 2·x k +y 2·y k =x 2(x k +y k )+y 2·y k -x 2·y k =x 2(x k +y k )+y k (y 2-x 2)=x 2(x k +y k )+y k ·(y +x )(y -x ). ③ 出示例3:平面内有n 个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点, 求证这n 个圆将平面分成f (n )=n 2-n +2个部分. 分析要点:n =k +1时,在k +1个圆中任取一个圆C ,剩下的k 个圆将平面分成f (k )个部分,而圆C 与k 个圆有2k 个交点,这2k 个交点将圆C 分成2k 段弧,每段弧将它所在的平 面部分一分为二,故共增加了2k 个平面部分.因此,f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2- (k +1)+2. 2. 练习: ① 求证: 11(11)(1)(1)321 n ++???+-g g n ∈N *). ② 用数学归纳法证明: (Ⅰ)2274297n n --能被264整除; (Ⅱ)121(1)n n a a +-++能被21a a ++整除(其中n ,a 为正整数) ③ 是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意正整数n 都能被m 整除?若存在, 求出最大的m 值,并证明你的结论;若不存在,请说明理由. 3. 小结:两个步骤与一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n =k 到n =k +1时,变形方法有乘法公式、因式分解、添拆项、配方等. 三、巩固练习: 1. 练习:教材50 1、2、5题 2. 作业:教材50 3、4、6题.

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

《数学归纳法》导学案

第5课时数学归纳法 1.使学生了解归纳法,理解数学归纳法的原理与实质. 2.掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题. 多米诺骨牌游戏,首先要用力推第一块骨牌,在任何两块骨牌之间有恰当的距离时,第一块倒下,就会使第二块倒下,第二块倒下就会导致第三块倒下,……以致很多都会倒下!如果我们在骨牌间抽出几块,使有两块之间存在一个较大的缺口,推倒了第一块骨牌,后面的骨牌就不会都倒下了.如果第一块骨牌我们不使它倒下,后面的骨牌也就不会倒下的. 问题1:要使得所有骨牌全都倒下须满足的条件 (1); (2). 问题2:数学归纳法:证明一个与正整数有关的命题,可按下列步骤进行 (1)(归纳奠基)证明当n取时命题成立; (2)(归纳递推)假 设. 问题3:数学归纳法是一种只适用于与有关的命题的证明方法,第一步是递推的“”,第二步是递推的“”,两个步骤缺一不可. 问题4:在证明过程中要防范以下两点 (1)第一步验证n=n0时,n0不一定为1,要根据题目要求. (2)第二步中,归纳假设起着“已知条件”的作用,在证明1时,命题也成立的过程中一定要用,否则就不是数学归纳法. (n∈N+),验证n=1时,左边应取的项是1.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4) 2 (). A.1 B.1+2 C.1+2+3 D.1+2+3+4 2.某个命题与自然数n有关,若n=k(k∈N+)时命题成立,那么可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得(). A.n=6时该命题不成立 B.n=6时该命题成立 C.n=4时该命题不成立 D.n=4时该命题成立

数学归纳法教学设计电子教案

数学归纳法教学设计

授课日期: 2016 年 4 月 8 日授课班级:高二年级2 班

【教学难点】 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性; (2)假设的利用,即如何利用假设证明当n=k+1时结论正确. 教法、学法分析 教法: 学习数学归纳法的过程紧扣多米诺骨牌是怎样倒下的,通过对科技节活动中多米诺骨牌倒下的分析类比得出数学归纳法的应用步骤,尤其是在引导学生理解数学归纳法由n=k得出n=k+1时必要性和有效性中,类比“后一块骨牌必须是被前一块骨牌砸倒的”起到重要作用。在教师的组织启发下,师生之间、学生之间共同探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动性、平等性、开放性、合作性。这节课主要选择以合作探究式教学法组织教学. 学法: 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习.本课学生的学习主要采用下面的模式进行: 教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用. 教学资源 导学案、PPT 教学过程 教学环 节 教师活动学生活动设计意图 课前复习准备 1、布置导学案内容; 2、批改纠正学生出现的错误; 3、及时了解学生学习情. 完成学案内容 1、归纳推理: 2、回忆等差数列,等比数 列的通项公式;思考等 差、等比数列通项公式的 得出过程,你能证明该公 式吗? 3、已知数列{}n a中, 1 1 = a, ) (* + ∈ + =N n a a a n n n2 2 1 , 试猜想这个数列的通项公 式并证明你的猜想. 复习公式及 其得出过 程,为本节 学习做好铺 垫. 使学生发现 不能解决的 问题,激发 学生学习新 知的愿望. 创设问题情景,引出新课问题情景:引导学生共同回顾学案 第3小题数列{}n a通项公式的得出过 程,提问:你的猜测正确吗?如何证 明? 学生回忆第3小题数列 {} n a通项公式的得出过 程,并思考老师的问题. 发现问题, 突出矛盾. 合作探索解决问题的方法1. 多媒体演示多米诺骨牌游戏. 引导学生共同探讨多米诺骨牌全 部依次倒下的条件: (1)第一块要倒下; 学生类比多米诺骨牌依顺 序倒下的原理,探究出证 明有关正整数命题的方 播放视频活 跃课堂氛 围,激发学 生的兴趣. 提 出 问 分 析 问 猜想与 置疑 论证 观察 情景 应用

数学归纳法优秀教学设计

数学归纳法 【教学目标】 1.进一步理解“数学归纳法”的含意和本质;掌握数学归纳法证题的两个步骤一个结论;会用“数学归纳法”证明简单的恒等式;理解为证n=k+1成立,必须用n=k成立的假设;掌握为证n=k+1成立的常见变形技巧。 2.掌握归纳与推理的方法;培养大胆猜想,小心求证的辩证思维素质;培养学生对于数学内在美的感悟能力。 【教学重点】 使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤 【教学难点】 如何理解数学归纳法证题的有效性;递推步骤中如何利用归纳假设 【授课类型】 新授课 【课时安排】 1课时 【教学准备】 多媒体、实物投影仪 【教学过程】 一、复习引入: 1.归纳法:由一些特殊事例推出一般结论的推理方法。特点:特殊→一般 2.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法。 3.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法。与不完全归纳法不同,用完全归纳法得出的结论是可靠的。通常在事物包括的特殊情况数不多时,采用完全归纳法。 4.数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性: )时命题成立,证明当n=k+1先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k≥n 时命题也成立这种证明方法就叫做数学归纳法

5. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n 0,如果当n=n 0时,命题成立,再假设当n=k(k ≥n0,k ∈N*)时,命题成立。(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立。 6.用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当n 取第一个值n 0结论正确; (2)假设当n=k(k ∈N*,且k ≥n 0)时结论正确,证明当n=k+1时结论也正确。 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 二、讲解范例: 例1用数学归纳法证明 6 )12)(1(3212222++=++++n n n n 例2用数学归纳法证明 2)1()13(1037241+=+++?+?+?n n n n 三、课堂练习: 1.用数学归纳法证明:().125312n n =-++++ 证明:(1)当1=n ,左边=1,右边=1,等式成立。 (2)假设当k n =时,等式成立,就是(),125312k k =-++++ 那么()()[]11212531-++-++++k k ()[]1122-++=k k 122++=k k ().12+=k 这就是说,当1+=k n 时等式也成立。 根据(1)和(2),可知等式对任何的*N n ∈都成立。 2.用数学归纳法证明()()(),1121531n n n n -=--+-+- 当1=n 时,左边应为_____________。 3.判断下列推证是否正确,并指出原因。 用数学归纳法证明:126422++=++++n n n 证明:假设k n =时,等式成立 就是 126422++=++++k k k 成立 那么()122642++++++k k ()1212++++=k k k =()()1112++++k k 这就是说当1+=k n 时等式成立, 所以*N n ∈时等式成立。

数学归纳法的应用习题

第2课时数学归纳法的应用双基达标(限时20分钟) 1.利用数学归纳法证明1 n+ 1 n+1 + 1 n+2 +…+ 1 2n<1(n∈N *,且n≥2)时,第二步 由k到k+1时不等式左端的变化是 (). A.增加了 1 2k+1 这一项 B.增加了 1 2k+1 和 1 2k+2 两项 C.增加了 1 2k+1 和 1 2k+2 两项,同时减少了 1 k这一项 D.以上都不对 解析不等式左端共有n+1项,且分母是首项为n,公差为1,末项为2n 的等差数列,当n=k时,左端为1 k+ 1 k+1 + 1 k+2 +…+ 1 2k;当n=k+1时, 左端为 1 k+1 + 1 k+2 + 1 k+3 +…+ 1 2k+ 1 2k+1 + 1 2k+2 ,对比两式,可得结论. 答案 C 2.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是 ().A.假使n=2k+1时正确,再推n=2k+3正确 B.假使n=2k-1时正确,再推n=2k+1正确 C.假使n=k时正确,再推n=k+1正确 D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N*) 解析因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第(k+1)个正奇数即n=2k+1正确. 答案 B 3.已知平面内有n条直线(n∈N*),设这n条直线最多将平面分割成f(n)个部分,则f(n+1)等于

().A.f(n)+n-1 B.f(n)+n C.f(n)+n+1 D.f(n)+n+2 解析要使这n条直线将平面所分割成的部分最多,则这n条直线中任何两条不平行,任何三条不共点.因为第n+1条直线被原n条直线分成n+1条线段或射线,这n+1条线段或射线将它们所经过的平面区域都一分为二,故f(n+1)比f(n)多了n+1部分. 答案 C 4.已知S n=1 1·3+ 1 3·5+ 1 5·7+…+ 1 (2n-1)(2n+1) ,则S1=________,S2=________, S3=________,S4=________,猜想S n=________. 解析分别将1,2,3,4代入观察猜想S n=n 2n+1 . 答案1 3 2 5 3 7 4 9 n 2n+1 5.用数学归纳法证明“当n为正偶数时x n-y n能被x+y整除”第一步应验证n =________时,命题成立;第二步归纳假设成立应写成________________.解析因为n为正偶数,故第一个值n=2,第二步假设n取第k个正偶数成立,即n=2k,故应假设成x2k-y2k能被x+y整除. 答案2x2k-y2k能被x+y整除 6.用数学归纳法证明: 1+1 22+ 1 32+…+ 1 n2<2- 1 n(n≥2). 证明:(1)当n=2时,1+1 22= 5 4<2- 1 2= 3 2,命题成立. (2)假设当n=k时命题成立,即1+1 22+ 1 32+…+ 1 k2<2- 1 k,当n=k+1时, 1+1 22+ 1 32+…+ 1 k2+ 1 (k+1)2 <2- 1 k+ 1 (k+1)2 <2- 1 k+ 1 k(k+1) =2- 1 k+ 1 k- 1 k+1=2- 1 k+1 ,命题成立. 由(1)、(2)知原不等式在n≥2时均成立. 综合提高(限时25分钟)

高中数学 2.3数学归纳法教学设计 新人教A版选修22

数学归纳法教学设计 【教学目标】 (1)知识与技能: ①理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤; ②会用数学归纳法证明某些简单的与正整数有关的命题; ③能通过“归纳、猜想”的过程得出结论并用数学归纳法证明结论。 (2)过程与方法: 努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想。 (3)情感态度与价值观: 通过本节课的教学,使学生领悟数学归纳法的思想,由生活实例,激发学生学习的热情,提高学生学习的兴趣,培养学生大胆猜想,小心求证,以及发现问题、提出问题,解决问题的数学能力。 【教学重点】 借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,能熟练运用它证明一些简单的与正整数n 有关的数学命题; 【教学难点】 数学归纳法中递推关系的应用。 【辅助教学】 多媒体技术辅助课堂教学。 【教学过程】 一、创设问题情境,启动学生思维(说明引入数学归纳法的必要性) (情景一)问题1:大球中有5个小球,如何证明它们都是绿色的? 问题2: 如果{}n a 是一个等差数列,怎样得到()11n a a n d =+-? (情境二)数学家费马运用不完全归纳法得出费马猜想的事例。 【设计意图:】以上两个情境分别是完全归纳法和不完全归纳法的体现,发现其结论正确性不同,而这里实际上体现了数学中的归纳思想。归纳法分为“不完全归纳法(只验证几个个体成立,得到一般性结论,但结论不一定正确)”和“完全归纳法(验证每个个体都成立,得到一般性结论,其结论一定正确)”。 (情景三)问题:如何解决不完全归纳法存在的问题呢? 如何保证骨牌一一倒下?需要几个步骤才能做到? 二、搜索生活实例,激发学生兴趣

浅谈数学归纳法及其在中学数学中的应用2

目录 1、数学归纳法---------------------------------------------------------- 3 1.1 归纳法定义-------------------------------------------------------- 3 1.2 数学归纳法体现的数学思想----------------------------------------- 4 1.2.1 从特殊到一般------------------------------------------------ 4 1.2.2 递推思想---------------------------------------------------- 4 2、数学归纳法在中学数学中的应用技巧------------------------------------- 5 2.1 强调------------------------------------------------------------- 5 2.1.1 两条缺一不可------------------------------------------------ 5 2.2 技巧------------------------------------------------------------- 5 2.2.1 认真用好归纳假设-------------------------------------------- 5 2.2.2 学会从头看起------------------------------------------------ 6 2.2.3 在起点上下功夫---------------------------------------------- 7 2.2.4 正确选取起点和过渡------------------------------------------ 8 2.2.5 选取适当的归纳假设形式-------------------------------------- 9 3、数学归纳法在中学数学中的应用 ---------------------------------------- 9 3.1 证明有关自然数的等式--------------------------------------------- 9 3.2 证明有关自然数的不等式------------------------------------------ 11 3.3 证明不等式------------------------------------------------------ 11 3.4 在函数迭代中的应用---------------------------------------------- 12 3.5 在几何中的应用-------------------------------------------------- 14 3.6 在排列、组合中的应用-------------------------------------------- 16 3.7 在数列中的应用-------------------------------------------------- 16 3.8 有关整除的问题-------------------------------------------------- 17

2017_2018学年高中数学第二章推理与证明2.3数学归纳法教学案新人教A版选修2_2

2.3 数学归纳法 预习课本P92~95,思考并完成下列问题 (1)数学归纳法的概念是什么?适用范围是什么? (2)数学归纳法的证题步骤是什么? [新知初探] 1.数学归纳法的定义 一般地,证明一个与正整数n有关的命题,可按下列步骤进行 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法. 2.数学归纳法的框图表示

[点睛] 数学归纳法证题的三个关键点 (1)验证是基础 数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0,就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是第一个关键点. (2)递推是关键 数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项. (3)利用假设是核心 在第二步证明n =k +1成立时,一定要利用归纳假设,即必须把归纳假设“n =k 时命题成立”作为条件来导出“n =k +1”,在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,这是数学归纳法的核心.不用归纳假设的证明就不是数学归纳法. [小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)与正整数n 有关的数学命题的证明只能用数学归纳法.( ) (2)数学归纳法的第一步n 0的初始值一定为1.( ) (3)数学归纳法的两个步骤缺一不可.( ) 答案:(1)× (2)× (3)√ 2.如果命题p (n )对所有正偶数n 都成立,则用数学归纳法证明时须先证n =________成立. 答案:2 3.已知f (n )=1+12+13+…+1n (n ∈N *),计算得f (2)=32,f (4)>2,f (8)>52 ,f (16)>3,f (32)>72 ,由此推测,当n >2时,有______________.

高中数学数学归纳法(1)苏教版选修2-2

数学归纳法(1) 一、教学目标: 1.了解数学归纳法的原理,理解数学归纳法的一般步骤。 2.掌握数学归纳法证明问题的方法。 3.能用数学归纳法证明一些简单的数学命题。 二、教学重点:掌握数学归纳法的原理及证明问题的方法。 难点:能用数学归纳法证明一些简单的数学命题。 三、教学过程: 【创设情境】 1.华罗庚的“摸球实验”。 2.“多米诺骨牌实验”。 问题:如何保证所摸的球都是红球?多米诺骨牌全部倒下?处了利用完全归纳法全部枚举之外,是否还有其它方法? 数学归纳法:数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数问题的有力工具。 【探索研究】 1.数学归纳法的本质: 无穷的归纳→有限的演绎(递推关系) 2.数学归纳法公理: (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 【例题评析】 例1:以知数列{a n }的公差为d,求证: 1 (1) n a a n d =+- 说明:①归纳证明时,利用归纳假设创造递推条件,寻求f(k+1)与f(k)的递推关系,是解题的关键。 ②数学归纳法证明的基本形式; (1)(递推奠基):当n取第一个值n0结论正确; (2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设) 证明当n=k+1时结论也正确。(归纳证明) 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。 EX: 1.判断下列推证是否正确。 P88 2,3 2. 用数学归纳法证明 2 )1 ( )1 3( 10 3 7 2 4 1+ = + + + ? + ? + ?n n n n K 例2:用数学归纳法证明 111 1 1231 n n n ++???≥ +++ (n∈N,n≥2) 说明:注意从n=k到n=k+1时,添加项的变化。

数学归纳法教学内容

数学归纳法

收集于网络,如有侵权请联系管理员删除 数学归纳法及其应用举例单元练习(二) 一、选择题(本大题共6小题,每小题3分,共18分) 1.在应用数学归纳法证明凸n 边形的对角线为 21n (n -3)条时,第一步验证n 等于 A. 1 B.2 C.3 D.0 2.等式12+22+32+…+n 2=2 4752+-n n A.n 为任何自然数时都成立;B.仅当n =1,2,3时成立 C.n =4时成立,n =5时不成立; D.仅当n =4时不成立 3.用数学归纳法证明不等式312111+++++n n n +…+24 1321>n (n ≥2,n ∈N *)的过程中,由n =k 逆推到n =k +1时的不等式左边 A. 增加了1项 )1(21+k ; B.增加了“)1(21121+++k k ”,又减少了“1 1+k ” C.增加了2项 )1(21121+++k k D.增加了)1(21+k ,减少了11+k 4.用数学归纳法证明(n +1)(n +2)…(n +n )=2n ·1·3·5·…(2n -1)(n ∈N *)时,假设n =k 时成立,若证n =k +1时也成立,两边同乘 A.2k +1 B.112++k k C.1)22)(12(+++k k k D.1 32+-k k

收集于网络,如有侵权请联系管理员删除 5.证明1+413121+++…+2 121n n >- (n ∈N *),假设n =k 时成立,当n =k +1时,左端增加的项数是 A. 1项 B.k -1项 C.k 项 D.2k 项 6.上一个n 级台阶,若每步可上一级或两级,设上法总数为f (n ),则下列猜想中正确的是 A.f (n )=n B.f (n )=f (n -1)+f (n -2) C.f (n )=f (n -1)·f (n -2) D.f (n )=???≥-+-=3 )2()1(2,1,n n f n f n n 二、填空题(本大题共5小题,每小题3分,共15分) 7.凸n 边形内角和为f (k ),则凸k +1边形的内角和 f (k +1)=f (k )+___________. 8.观察下列式子:1+23212<,1+223121+<35,1+474 13121222<++,…则可归纳出:___________. 9.设f (n )=(1+)11()111)(1n n n n ++???++,用数学归纳法证明f (n )≥3.在“假设n =k 时成立”后,f (k +1)与f (k )的关系是 f (k +1)=f (k )·___________. 10.有以下四个命题:(1)2n >2n +1(n ≥3) (2)2+4+6+… +2n =n 2+n +2(n ≥1) (3)凸n 边形内角和为f (n )=(n -1)π(n ≥3) (4)凸n 边形对角线条数f (n )=2 )2(-n n (n ≥4).其中满足“假设n =k (k

18年高考数学专题14二项式定理及数学归纳法教学案理

专题14 二项式定理及数学归纳法 【2018年高考考纲解读】 高考对本内容的考查主要有: (1) 二项式定理的简单应用,B级要求; (2)数学归纳法的简单应用,B级要求 【重点、难点剖析】 1.二项式定理 (1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n,上式中右边的多项式叫做(a+b)n的二项展开式,其中C r n(r=1,2,3,…,n)叫做二项式系数,式中第r+1项叫做展开式的通项,用T r+1表示,即T r+1=C r n a n-r b r; (2)(a+b)n展开式中二项式系数C r n(r=1,2,3,…,n)的性质: ①与首末两端“等距离”的两项的二项式系数相等,即C r n=C n-r n; ②C0n+C1n+C2n+…+C n n=2n;C0n+C2n+…=C1n+C3n+…=2n-1. 2.二项式定理的应用 (1)求二项式定理中有关系数的和通常用“赋值法”. (2)二项式展开式的通项公式T r+1=C r n a n-r b r是展开式的第r+1项,而不是第r项. 3.数学归纳法 运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可. 4.数学归纳法的应用 (1)利用数学归纳法证明代数恒等式的关键是将式子转化为与归纳假设的结构相同的形式,然后利用归纳假设,经过恒等变形,得到结论. (2)利用数学归纳法证明三角恒等式时,常运用有关的三角知识、三角公式,要掌握三角变换方法. (3)利用数学归纳法证明不等式问题时,在由n=k成立,推导n=k+1成立时,过去讲的证明不等式的方法在此都可利用. (4)用数学归纳法证明整除性问题时,可把n=k+1时的被除式变形为一部分能利用归纳假设的形式,另一部分能被除式整除的形式. (5)解题时经常用到“归纳——猜想——证明”的思维模式.

相关文档
相关文档 最新文档