文档库 最新最全的文档下载
当前位置:文档库 › 48压载水操作须知

48压载水操作须知

48压载水操作须知
48压载水操作须知

压载水操作须知

船舶压载水操作是为了调整船舶吃水、保持船舶稳性、改善船体受力状态而进行的一项经常性作业,必须规范其操作,以保护海洋环境,保障船舶安全。

2.1遵守船舶压载水及沉积物管理的公约规定和港口国有关法律、法规,按相关要求进

行压载水的排放、置换作业。

2.2船长应收集、整理和更新相关压载水管理信息、资料,特别是所到港口、国家、地

区的特殊规定或要求,及时对船舶相关岗位人员进行培训,部署和组织落实。

2.3大副应严格执行《船舶压载水管理计划》,按《船舶装载计算手册》(Loading Manual)

计算和校核具体操作方案,确保各项作业符合国际公约、法规、标准、主管机关和港口国的规定;确保每一个作业环节都满足稳性、强度等要求。

2.4大副按《船舶压载水管理计划》负责船舶压载水的具体管理工作并按代理要求做好

抵港压载水申报工作。

2.5木匠负责按大副指令执行压载水的注/排、换舱和水舱测量操作。

2.6三管轮负责执行大副指令,操作并定期检查和保养泵浦及系统。

2.7甲板部与轮机部建立《压载指令簿》,确保信息沟通准确、规范。

2.8木匠应按大副事先填写的《压载指令簿》,书面通知三管轮具体的压/排水作业。作

业时保持与三管轮和大副的沟通,确保各项操作准确无误,要勤测水位,避免压载泵空转或水从空气管溢出,以防造成其它事故。

2.9三管轮和木匠应估算作业完成时间,若水位变化超出预期应即停泵,及时查明原因

和解决问题。

2.10高边柜或水线上压载水柜只能用泵压载,故更要勤测水位,木匠和三管轮要及时转

换压载舱或调整速率,以低速率完成所剩容积的压载工作。

2.11三管轮按照大副指令,准确操作压载泵及有关阀门,与木匠保持联系。若有任何疑

问应及时查询清楚。

2.12注/排或置换压载水作业完成后,大副要把压载水的作业时间、数量、舱位、船位等,

记录在《压载水记录簿》上。

2.13三管轮负责压载系统的日常维护保养工作,必须保持设备设施处于良好使用状态,

防止不能正常排水影响装货和船期。

2.14大副妥善保管好《压载水记录簿》,自完成最后一项记录之日起,存船2年。

2.15压、排水注意事项

2.15.1压载水置换在距最近陆地大于200海里,水深大于200米海域进行。如条件无法满

足,应在距最近陆地大于50海里,水深大于200米海域进行。

2.15.2采用顺序法进行压载水置换,要求置换95%以上舱容的压载水;采用溢流法进行压

载水置换,要求注入3倍于舱容的压载水并随船龄增加而增加。

2.15.3货舱压/排水,注意自由液面对船舶稳性和货舱舱壁的影响,以安全为前提,选择适

当时机进行。压载前先打开压载水管盲板,移放在安全处所,并将污水管的吸口封死,以防污水阀泄漏将压载水倒流到其它货舱,压载后将舱盖围筋打紧;压载或排放时,打开透气孔和道门,避免船体和舱盖变形;载货前,压载水管须用盲板封死;

装有二氧化碳灭火管路,压载时将二氧化碳管路阀门关闭,装货时,重新复位。为保证航行安全,要求空载航行必须重压载(货舱压载)。

2.15.4无货舱压载系统的船舶,若需货舱压载,须取得公司相关部门的同意后方可进行。

压载前,应确认大舱已清扫干净,打开该货舱的双层底压载柜人孔盖,通过双层底压载系统将水注入。排水时,如压载水泵无法完全排空货舱时,利用潜水泵抽干。

不得利用货舱污水系统排压载水,以防可能因其它货舱污水阀门关闭不严或泄漏,导致压载水渗入其它货舱或货处所造成货损/污染。

2.15.5压载水作业宜选择白天进行。必须夜间进行时,确保防范措施充分。

2.15.6日常工作中,密切注意各货舱的喉管(空气管/测量管)情况,发现有破损,通知轮

机长尽快修理。船上不能自修时,应记录并开列清单报船舶总管安排修理;对安全构成影响的破损,应及时报告船舶总管。

2.15.7航行中进行压载水作业,严格注意自由液面的影响,确保船舶稳性。如天气海况恶

劣,必须首先考虑船舶安全,可另找时机、地点进行压载水更换作业

2.15.8在港口、锚地排放压载水前,须先征得港口当局同意。许可后,应先检查压载水有

否油渍,排放压载水要有人全过程中监控,注意观察其水质是否被污染。

2.15.9压载水泵、管路系统等应保持清洁,所压入的水应是清洁的,避免排压载水时造成

污染。在内河压入的压载水,应在公海进行置换。条件许可,也可设几个专用柜,专门压载河水。以便在条件允许时对沉积物进行处理。

2.15.10压双层底柜尽量采用自然压入法进行压载。若时间不足,可先泵入3/4压载水,

其余部分用自然压入法压满。

2.15.11高边柜压载,尽可能避免相邻货舱有货物时进行,以防高边柜渗漏或被装卸设备

碰漏,造成货损。

观察压舱水有无打出,除了测量(sounding)外,看出口有无压舱水排出,也是方便直接的办法。

排压舱水期间,原则上是尾倾越大排水越容易,所以在安排装货顺序时就要事先计算并控制好各阶段的前后吃水使排水能顺序进行但同时要保证各舱有足够的净空高度(airdraft)不能妨碍港口装货机的正常作业。

控制好边水舱压载水的排水有如下作用:一是刚开始时可留做压舱使船舶各货舱有足够的净空高度,以免船浮得太高而妨碍装货机装货;二是在扫舱时如有需要使船倾侧一边以提高扫舱效率,则可利用边水舱来调整,或因船舶倾侧而妨碍扫舱时亦可用边水舱的压载水来纠正倾侧。

压载水处理装置(BWMS)技术条件

船舶压载水处理装置(BWMS) 技术条件 (企业标准) (第一版) 20XX年X月XX日发布20XX年X月XX日实施拟制:批准: 日期:日期:

1.内容及适用范围 本标准规定了船舶压载水处理系统的设计,制造,检验,性能测试方法及包装,运输,贮存等要求。 本标准适用于船舶压载水处理系统的设计、制造和检验。 压载水管理系统,是基于国际海事组织(IMO)关于《国际船舶压载水及其沉积物控制和管理公约》D-2规定,设计并建造的船舶压载水处理系统,目的在于有效控制压载水中的海洋生物,病毒和其它微生物的转移,防止外来物种的迁徙。本系统适用于远洋船舶的压载水处理。本系统也适用于中水回用,工业冷却水系统等的末端处理。 本产品特点是采用纯物理处理工艺,不添加或产生任何化学物质,对船舶无任何腐蚀影响。设备布置紧凑,占地小,系统全自动控制,操作简单,维护方便等。 2. 引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。如其中某个标准被修订,使用本标准应参照相应的最新版执行。 IMO,《2004年国际船舶压载水及其沉积物控制和管理公约》 IMO,《船舶压载水管理系统认可导则》(G8) IMO,《船舶压载水管理系统取样导则》(G2)Resolution MEPC, 173(58) 中国船级社,《船舶压载水管理计划编制指南》(2006) 中国船级社,《电气电子产品型式认可试验指南》(2006) 3. 产品组成及型号 3.1 产品组成 船舶压载水处理系统由全自动自清洗过滤器、紫外杀菌装置和控制系统三个主要部分组成。

3.2 产品命名及型号编制方法 3.3 产品规格 3.3.1 BWMS 设备规格系列

常用运动生理学实验操作流程

常用运动生理学实验操作流程体育系运动人体科学实验中心

人体安静、运动时脉搏、血压的测定 [实验目的] 了解人体动脉血压测定的原理,学会人体在安静时和运动前后脉搏及血压的测定。 [实验原理] 血压的测定,最常用的是间接法。通过使用血压计在动脉外加压,根据血管音的变化测定血压。通常血液在血管内流动时并没有声音,如果对血管施加压力,使血管腔变窄而形成血液涡流时可发生血管音。当外加压力超过动脉血压的收缩压时,受压部位的血流完全被阻挡,此时在受压部位的远侧听不到声音。当外加压力低于收缩压而高于舒张压时,血液则可断续地通过受压部位使血流形成涡流而发出声音。当继续降低压力时,且外加压力等于舒张压时,受压部位的血流由断续流动恢复到持续流动,受压部位远侧的声音则由强变弱或突然消失。因此,动脉血流刚能发出声音时的最大外加压力相当于收缩压,而动脉内血流声音突变后消失时的外加压力则相当于舒张压。正常成人安静时心率约在60—-100次/分。心率常受年龄、性别、生理状况、训练水平、体力劳动及体育运动的影响。在实践中通过测定血压、心率可了解受检查者循环系统的功能,了解运动量、运动强度、运动训练对人的影响、运动后的恢复情况、运动的密度。 [实验对象] 人体 [实验器材]

血压计、听诊器、秒表、电子节拍器 [实验步骤] 一、安静时脉搏血压的测定 (一)脉搏的测定 1.扪诊法桡动脉扪诊法:在测试安静脉搏时较为方便。 颞浅动脉扪诊法:位于耳前部略偏上,颞浅动脉经过此处,适合于运动后。 心前区扪诊法:位于左心前区心尖部,适合于运动后。 颈动脉扪诊法:位于胸锁乳头肌前、下颌角下部。 2.器械法 听诊法:用听诊器在心前区直接听诊,计算心率。 心率遥测仪:可准确记录运动中和运动后心率。 (二)安静时动脉血压的测定。 1.将脉压带绑在被试者的上臂,其下缘应距肘关节上约2--3厘米,松紧以能放入一指为宜。 2.在肘窝内侧找到搏动点,将听诊器头紧贴肘窝肱动脉处。 3.把气球的气门旋紧打气,随脉压带内的压力升高,逐渐可以听到有节奏的“咚咚”声,继续打气等声音消失时再使压力升高20--30毫米汞柱或2--4千帕,然后旋开气门徐徐放气。 4.在放气时注意听有节奏的“咚咚”声响的第一声出现时,水银面所指示的压力即为收缩压。 5.继续放气,随压力逐渐下降,听到突然变声或声音消失时,水银面

压载水处理系统-CCS通函TM18

Form: RWPRR401-B C C S通 函 Circular 中国船级社 China Classification Society (2010年)通函第 18 号总第 18 号 (2010)Circ.18 /Total No. 18 2010年4 月28日(共8页) 28 / 04 / 2010 (total pages: 8) 发: 本社总部有关处室,本社验船师、审图中心,有关船东,船舶管理公司,船厂,设计单位 To relevant departments of CCS Headquarters, CCS surveyors, plan approval centers, related shipowners, ship management companies, shipyards and design units 关于实施IMO《2004年国际船舶压载水及沉积物控制和管理公约》 的信息通告 Notice on Information regarding Implementation of IMO International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004 国际海事组织在2004年2月召开的外交大会上通过了《2004年国际船舶压载水及沉积物控制和管理公约》(以下简称压载水公约)。虽然目前压载水公约尚未生效,但该公约对现有船舶安装压载水管理系统有追溯要求。为方便业界及时了解公约生效及实施要求现状,现将相关信息通告如下,并附上压载水公约的中英文本,供参照实施。 The International Convention for the Control and Management of Ships’ Ballast Water and Sediments, 2004 (hereinafter referred to as the Ballast Water Convention) was adopted at a Diplomatic Conference at IMO held in February, 2004. Although the Ballast Water Convention has not yet entered into force, it contains retroactive requirements for installation of ballast water management systems on existing ships. The following information is notified to the industries for understanding the status quo in relation to the entry-into-force and implementation requirements of the Ballast Water Convention in a timely manner. Both the English and Chinese texts of the Ballast Water Convention are also attached for reference.

一级水处理设计计算

第一章 污水的一级处理构筑物设计计算 1.1格栅 格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。被截留的物质称为栅渣。 设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。 格栅断面有圆形、矩形、正方形、半圆形等。圆形水力条件好,但刚度差,故一般多采用矩形断面。格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5~10mm );按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处 的格栅。 1.1.1格栅的设计 城市的排水系统采用分流制排水系统,城市污水主干管由西北方向流入污水处理厂厂区,主干管进水水量为s L Q 63.1504 ,污水进入污水处理厂处的管径为1250mm ,管道水面标高为80.0m 。 本设计中采用矩形断面并设置两道格栅(中格栅一道和细格栅一道),采用机械清渣。其中,中格栅设在污水泵站前,细格栅设在污水泵站后。中细两道格栅都设置三组即N=3组,每组的设计流量为0.502s m 3。 1.1.2设计参数 1、格栅栅条间隙宽度,应符合下列要求: 1) 粗格栅:机械清除时宜为16~25mm ;人工清除时宜为25~40mm 。特殊情况下,最大间隙可为100mm 。 2) 细格栅:宜为1.5~10mm 。 3) 水泵前,应根据水泵要求确定。 2、 污水过栅流速宜采用0.6~1.Om /s 。除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60~90°。人工清除格栅的安装角度宜为30°~60°。 3、当格栅间隙为16~25mm 时,栅渣量取0.10~0.0533310m m 污水;当格栅间隙为30~50mm 时,栅渣量取0.03~0.0133310m m 污水。 4、格栅除污机,底部前端距井壁尺寸,钢丝绳牵引除污机或移动悬吊葫芦

水力空化处理压载水技术

水力空化处理压载水技术 摘要:针对水力空化技术进行了全方位的阐述,包括空化的产生、发展及溃灭的过程,以及空化产生的机理及其应用,并设计制作了一套用于处理船舶压载水的水力空化发生装臵。 关键词:空化;空泡;孔板[3] 一.压载水 船舶空载时为了保持稳定性,在起航时要将一定量的海水抽进压载舱以增强抗风浪能力,到港装货时再将水排出,这部分海水称为船舶压载水。 油轮卸油后在回程途中,为保证规定的适航性,避免砰击现象或空船振荡,必须加装压载水。沿海油轮所需压载水量为总载油量的20%-25%,远洋油轮为35%-40%,恶劣天气为40%-50%,特殊情况下高达50%-60%[4]。 目前,压载水处理系统采用的处理方法主要有: (1)机械法 利用离心、过滤等方法去除有害生物,一般机械法和其它方法配合使 用。 (2)物理法 利用紫外线直接杀毒,利用脱氧法去除舱室和海水的氧气使微生物死 亡。 (3)化学法

在水中生成强氧化性物质,杀死水中的微生物。电解产生次氯酸钠, 化学药剂产生的过氧化氢都是属于这种类型。[2] 二.水力空化原理 三.远洋船舶压载水可能造成的危害 人们对船舶产生的油污染、柴油机排放造成的空气污染等环保问题已达成共识,但对船舶压载水造成污染还缺乏足够重视。船舶装载压载水是船舶离岸时携带用于船舶稳定平衡的压载物,许多种细菌、植物、动物存活于压载水及其沉淀物中,会不可避免地吸入水生微生物,其中一些是有毒害的。且其它一些微生物当从它们本地生态系统进入另外一个不同生态系统时会出现潜在的危害性。这不仅污染当地的水域环境,也危及人类健康。 据估计,全球所有海上运输船舶所携带的压载水数量,每年大约有120亿吨,每天存在于船舶压载水中随船周游世界的生物达7000种。如此,从一个国家港口加装的压载水所含的水生物,就会在船舶到达另一个国家港口装货时随压载水被排放到改过的水域中,其中某些生物可能会造成经济和环境方面的灾难性后果。有关方面在对大连港口船舶压载水入侵生物现状的调查时发现,4种甲藻等有毒藻类是通过船舶压载水传播到我国的,并造成大面积的赤潮灾害。 随着经济全球化和世界贸易的发展,船舶越来越大,船速也越快。不幸的是,船速的加快导致船舶两港航行时间的缩短,也增加了外来有害水生物存活和转移的可能性。[1]

各类土工试验的操作步骤

土工试验的操作步骤 实验一、含水量试验 一、概述 1.土的含水量是指土在105~110℃下烘至恒量时所失去的水质量和干土质量的比值,用百分数表示。 2.测定土的含水量,用作计算孔隙比、饱和度和干密度等指标。测定风干土含水量,用作各项试验由风干土质量换算为烘干土质量的指标。3.本试验规定采用烘干法为测定土的含水量的标准方法。在野外如无烘箱设备或求快速测定含水量时,可采用酒精燃烧或炒干法等。本试验介绍烘干法。 二、实验仪器设备 1.烘箱:可采用电热烘箱或能控制温度105~110℃的其他能源烘箱;2.天平:称量200g,感量0.01g; 3.其他:干燥器,称量盒(为简化计算手续,可将盒重定期(3~6个月)调整为恒重值)等。 三、操作步骤

1.取其代表性试样:粘性土为15~20g;砂类土,有机土为50g以上,放入称量盒内,盖上盒盖,称量。称量时可在天平的一端放上与盒等量的砝码或称量盒,可直接称得土的质量。准确至0.01g。 2.打开盒盖,将盒置于烘箱内,在105~110℃的恒温下烘至试样质量不变为止,对含有有机质超过5%的土,应在65~75℃的恒温下烘至试样质量不变为止。 3.将称量盒从烘箱中取出,盖上盒盖,放入干燥器内冷却至室温,称干土质量,准确至0.01g。 四、计算及记录 1.按下式计算含水量 式中——含水量,%; m——湿土质量,g; m s——干土质量,g。 计算至0.1%。 2.本试验需进行两次平行测定,其平行差值,含水量小于40%为1%,大于40%为2%,记录并举例如下:

含水量试验(烘干法)工程名称试验者 试验方法计算者 试验日期校核者

压载水处理装置(BWMS)产品检验大纲

船舶压载水处理装置(BWMS) 产品检验大纲 (第一版) 20XX年X月XX日发布20XX年X月XX日实施 拟制:批准: 日期:日期:

1.适用范围 本大纲适用于船舶压载水处理装置的产品检验,确保达到有关技术标准和用户的要求。 2.参考标准和文件 IMO 《船舶压载水管理系统认可导则》(G8) 《压载水处理装置(BWMS)技术条件》 产品图纸 产品调试报告 3. 一般技术要求 3.1 系统设备应符合《船舶压载水处理系统技术条件》要求,设计的图纸和技术文件经公司相关部门审核批准后,方能有效,才能制造。 3.2 原材料包括制作用的钢板、法兰、钢管,应有质量合格证明文件,经供应商进货检验合格后,方能投入生产。 3.3 罐体的强度符合设计及工艺要求,应为吊装制作合适的吊耳。 4. 制作方面的要求 4.1 排板要求: 相邻筒节的纵向焊接接头之间的距离不得小于200mm;盖、底的拼接接头端点与相邻筒节的纵向焊接接头之间的距离不得小于200mm;接管、补强圈、支座、支座垫板、吊耳、吊耳垫板等与筒体焊接接头的边缘距离不得小于50mm。 4.2 坡口要求:坡口加工表面应平滑,不得有裂纹、分层、夹渣等缺陷。施焊前 须将坡口及其母材两侧表面20毫米范围内的氧化物、油污、熔渣等清除干净。 4.3 筒身组装后,必须保持内壁平齐,壳体上纵、环形焊接接头的最大允许对口 错边量,应符合下表1规定;复合钢板的对口错边量,应不大于钢板的50%,且不大于2mm。 表1

4.4 各接管的中心线应与设计中心线吻合,其最大偏差不得超过接管长度的0.5%, 且不大于3 mm。各接管的安装位置允许偏差为2 mm,伸出长度允许偏差为 3 mm。 4.5 接管法兰面、人孔法兰面应垂直于接管或圆筒的主轴中心线,安装时应保证 法兰面的水平或垂直,其偏差Δe不得超过法兰外径Do的1%(法兰外径小于100毫米时,按100毫米计),且不大于3mm;法兰螺栓孔应对称分布在筒体主轴中心线的两侧。 4.6 护栏、爬梯和平台的制作所选用的标准,以与客户签订的技术协议为准,如 无特殊要求,按中国标准执行; 5 焊接要求 5.1 冷作工、电焊工必须具有有效的资质证书。 5.2 焊条及焊剂使用前按产品说明书规定的烘焙时间和温度进行烘焙,低氢型焊 条经烘焙后,放入保温桶内,随取随用。 5.3 施焊前,焊工应检查焊件的接头质量和焊区的处理情况;如发现有不符合的 质量要求时,应修正合格后方可施焊。 5.4 为使筒体内表面减少变形,在保证质量的前提下,宜选用小工艺规范、短电 弧和多层多道焊工艺;层间温度不宜过高, 每一层焊道焊完后,应即时检查,清除缺陷后再焊。 5.5 双面焊时,对内表面焊接接头的坡口两侧各100 mm范围内应涂上白垩粉或 其他防溅剂,以防止飞溅物沾污焊件表面。焊接完毕,焊工应清理焊缝表面的熔渣及两侧的飞溅物。 5.6 焊件的焊缝应平整、光滑、不应有裂纹、气孔、夹渣、未焊透、未熔合等缺 陷。 5.7 焊缝咬边深度不大于0.5mm,咬边连续长度不大于100mm,焊缝两侧咬边

船舶压载水系统

船舶压载水系统 目录 定义 系统设计原则 船舶压载水处理系统 定义 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成,系统的作用是:根据船舶营运的需要,对全船压载舱进行注入或排出,以达到调整船舶的吃水和船体纵、横向的平稳及安全的稳心高度;减小船体变形,以免引起过大的弯曲力矩与剪切力,降低船体振动;改善空舱适航性的目的。 系统设计原则 组成 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成。 舱室布置 根据船舶的种类、用途和吨位的不同,压载水舱在船上的位置、大小和数量也不同。 一般船可用首尖舱、尾尖舱、双层底舱、边舱、顶边舱与深舱等作为压载水舱。 货油船可以用货油舱兼压载舱。 管路 1、船舶压载水系统的管路布置有三种形式:支管式、总管式和管隧式。 2、船舶压载水舱内吸口管应当同时具有加水功能。 3、各压载水舱的压载吸入口应布置在有利于压载水排出的位置。 4、为满足压载水系统的工作特点和简化管路,多采用调驳阀箱来调驳各压载水舱的压载水。 5、船舶压载水系统应当能够将全船各压载舱的压载水驳进、驳出或相互调驳。也可不用压载泵,舷外海水靠压差自动流入压载水舱。 船舶压载水处理系统 定义 船舶压载水处理系统就是对船舶排放海里的压载水进行处理的装置。

前景 因为船舶压载水的无控制排放对海洋生态、公众健康造成严重危害,2004年,国际海事组织(IMO)通过了《国际船舶压载水和沉积物控制与管理公约》,旨在防止船舶压载水排放引起的外来物种入侵,病原体传播导致的环境、人类健康、财产及资源方面损害。“公约”规定,从2009年起新造船舶必须安装压载水处理设备,并对现有船舶实施追溯,到2017年所有远洋船舶均须安装压载水处理设备。否则,公约生效后就不能驶入IMO成员国港口,违反公约将面临制裁和处罚。随着“压载水公约”生效日期的临近,世界各国都在加紧研发船舶压载水处理技术。截至目前,国外研发机构共30余家,已有13家研发机构获得IMO初步批准,其中瑞典、德国、韩国及挪威已获最终批准。 我国现拥有占世界总吨位3.4%的庞大船队,我国又是造修船大国,拥有一个巨大的船舶关键设备市场,同时,国际市场也蕴含巨大潜力。 压载水处理技术的产业化不仅是保护海洋生态环境的迫切需要,而且对提高国产船舶关键设备装船率、提高航运业和造修船业核心竞争力具有重要意义。同时,对海军自主装备建设意义也十分重大。

压载水处理设备解决方案

压载水处理设备解决方案 压载水处理解决方案 水生物种通过压载水入侵到不同海域已经成为日益增长的严峻问题。人们正在研究通过机械、物理及化学等方式避免此类事 件的发生。2004年国际海事压载水与沉淀物管控大会主要研究课题为加强压载水处理系统的发展和技术革新。联合国国际海 事组织中的海上环境保护协会推出了新的规章制度用于防止水生物种入侵事件的发生。 压载水处理系统采用电解和特有的方式在不使用任何化学药剂情况下从海水中制取生物杀灭药剂。压载水处理系统通过生物控制系统研发而成,拥有良好的血统。压载水解决方案严格遵循IMO大会D-2压载水处理规则。 压载水处理系统有三个重要部分: ? 过滤系统 ? 电解系统 ? 自动控制

过滤系统的重要作用是利用40微米的特殊金属滤网对大型 生物或杂质进行滤除或破坏,当沉积物过多时仍然可以实现不间断 操作,利用较少的水量进行自动反冲洗。特有的反冲过滤器提供了可靠的品质,减少了系统的维护需求。 压载水处理系统中电解模块利用海水生产出次氯酸钠(NaOCl)溶液,投加到过滤后的压载水中,从而防止海洋生物的 种类 入侵。次氯酸钠在港口、海上平台、船舶上的海水管道及热交换系统等等已经被使用了很多年。SiCURE?系统利用同心管电极技术,在线电解海水,按需求自动投加,此项技术基于Chloropac?生物控制系统。 压载水处理系统配置有人机界面对整个系统进行监控,并根据实际需求进行自动投加,从而避免有害物对船舶本身、海员以及外界环境的影响。由于压载水的水质不同,主要是物理、化学及生物特性的区别,所以次氯酸钠的投加量为变量。压载水处理系统只在压载水入口进行投加,并可根据压载水流量配置系统,可在高流速下进行投加。其非常适合在集装箱和散装船舶上使用,例如一个泵流入,两个泵排除的情况。

压载水处理系统

压载水处理系统 【定义: 1、船舶压载水处理系统就是对船舶排放海里的压载水进行处理的装置。也称船舶压载水管理系统。英文简称BWMS。 2、系指对压载水进行处理使其达到或高于《国际船舶压载水及其沉积物管理和控制公约》第D-2条规定的压载水性能标准的任何系统。压载水管理系统包括压载水处理设备、所有相关控制设备、监测设备以及取样设施。 【背景: 船舶航行中,压载是一种必然状态。船舶在加装压载水的同时,海水中的生物也随之被加装入到压载舱中,直至航程结束后排放到目的地海域。压载水跟随船舶从一地到它地,从而引起了有害水生物和病原体的传播。压载水的无控制排放可能会对海洋生态系统、社会经济和公众健康造成危害。全球环保基金组织(GEF)已经把船舶压载水引起的外来物种入侵问题列为海洋四大危害之一。 为了更有效的控制船舶压载水传播有害水生物和病原体,国际海事组织(IMO)于2004年通过了《国际船舶压载水和沉积物控制和管理公约》。“公约”自2009年开始,规定所有新建船舶必须安装压载水处理装置,并对现有船舶追溯实施。“公约”对压载水的处理标准,即处理水中可存活生物的种类及数量作了明确规定(D-2标准)。 【D2标准生效日的不确定性: 《压载水公约》中对船舶的要求是排放经处理的压载水必须满足D2标准,而D2标准的生效并不取决于该公约的生效。这是因为虽然该公约生效日期不确定,但公约中D2标准的生效日对各类型船舶很明确,而该条款又是追溯性的,这就意味着无论公约是否生效,无论是否缔约国,对船舶安装满足D2标准压载水管理系统的要求都是强制性的,所以船舶尤其是新造船舶一定要在船舶设计时考虑这一要求。目前的问题是没有满足所有船舶需要的、足够数量的压载水管理系统,所以D2标准第1个生效日的推迟在所难免。2007年召开的IMO 第25次大会A.1005(25)决议解决了2009年建造的船舶问题,将D2标准的适用日推迟到2011年12月31日,但2010年及之后建造的船舶和现有船舶的适用时间是否推迟要由2009年召开的MEPC(59)会议决定。 【压载水处理D-2标准

水处理常用计算公式汇总

水处理常用计算公式汇总 水处理公式是我们在工作中经常要使用到的东西,在这里我总结了几个常常用到的计算公式,按顺序分别为格栅、污泥池、风机、MBR、AAO进出水系统以及芬顿的计算,大家可有目的性的观看。 格栅的设计计算 一、格栅设计一般规定 1、栅隙 (1)水泵前格栅栅条间隙应根据水泵要求确定。 (2)废水处理系统前格栅栅条间隙,应符合下列要求:最大间隙40mm,其中人工清除 25~40mm,机械清除16~25mm。废水处理厂亦可设置粗、细两道格栅,粗格栅栅条间隙 50~100mm。 (3)大型废水处理厂可设置粗、中、细三道格栅。 (4)如泵前格栅间隙不大于25mm,废水处理系统前可不再设置格栅。 2、栅渣 (1)栅渣量与多种因素有关,在无当地运行资料时,可以采用以下资料。 格栅间隙16~25mm;0.10~0.05m3/103m3(栅渣/废水)。 格栅间隙30~50mm;0.03~0.01m3/103m3(栅渣/废水)。 (2)栅渣的含水率一般为80%,容重约为960kg/m3。 (3)在大型废水处理厂或泵站前的大型格栅(每日栅渣量大于0.2m3),一般应采用机械清渣。3、其他参数 (1)过栅流速一般采用0.6~1.0m/s。 (2)格栅前渠道内水流速度一般采用0.4~0.9m/s。 (3)格栅倾角一般采用45°~75°,小角度较省力,但占地面积大。 (4)机械格栅的动力装置一般宜设在室内,或采取其他保护设备的措施。 (5)设置格栅装置的构筑物,必须考虑设有良好的通风设施。 (6)大中型格栅间内应安装吊运设备,以进行设备的检修和栅渣的日常清除。 二、格栅的设计计算 1、平面格栅设计计算 (1)栅槽宽度B 式中,S 为栅条宽度,m;n 为栅条间隙数,个; b 为栅条间隙,m;为最大设计流量, m3/s;a 为格栅倾角,(°);h为栅前水深,m,不能高于来水管(渠)水深;v 为过栅流速, m/s。 (2)过栅水头损失如

压载水处理装置(BWMS)功能检验大纲

船舶压载水处理系统(BWMS) 功能检验大纲 (第一版) 20XX年X月XX日发布20XX年X月XX日实施 拟制:批准: 日期:日期:

为了确保船舶压载水管理系统的有效运行,对船舶压载水管理系统的各种功能进行系统有效的检测验证,特编制本大纲。 本大纲适用于船舶压载水管理系统产品出厂或现场交付前对相关功能进行检验和检测。 2. 术语和定义 数据采集: 数据处理: 数据储存: 数据显示: 显示告警: 通讯: 3. 基本功能描述 见工艺描述相关内容。 4. 基本功能检验 4.1 基本功能检验前应具备的基本条件 系统检验前应提供下列技术文件: ●P&ID; ●设备配置表; ●接线测试记录(包括查线记录、绝缘电阻和接地电阻测试记录); ●调试记录和调试报告; ●系统检验报告(包括产品检验报告、合格证书及相关材料) ●系统已经完成全部的内部和外部连线,确认正确; 4.2 基本功能检验项目 4.2.1资料文件

电气原理图 用户手册 接线检查表 产品检验单 产品合格证 4.2.2 电源输入: 工作电压 供电电源频率 其它参数 4.2.3 柜内功能项 柜内开关: -主电源开关 -24VDC电源开关 -PLC/触摸屏电源 -其它开关 柜内照明:15W 柜内通风:排风扇 温度控制:温控器 过载保护: 柜内电源插座:3孔、2孔多功能模数化插座 4.2.4 柜面板和触摸屏功能确认 指示灯: -电源指示:主电源合闸,电源指示灯亮 -运行指示:UV预热指示:指示灯红色指示UV运行指示:指示灯绿色指示 UV冷却指示:指示灯红绿闪烁 -故障指示:故障指示灯闪烁,且蜂鸣报警

转换开关 -就地/远程转换开关 -压载/旁通/排放转换开关 按钮开关 -急停开关 触摸屏显示:10寸彩色屏 4.2.5 触摸屏画面显示 开机页面 次页面 -过滤器页面 -UV页面 运行模式 参数设定 系统状态 报警状态 阀门检查 工程师模式 -工程师模式1:参数设定 数据查询 -工程师模式2:过滤器参数设定 UV参数设定 5. 控制系统功能 5.1 数据采集功能 过滤器单元:差压控制信号 自清洗行程正向位置信号 自清洗行程反向位置信号 UV消毒单元:UV强度信号 UV腔体温度检测信号 UV自清洗行程正向位置信号

船舶压载水处理系统项目可行性报告

船舶压载水处理系统项目可行性报 告 国统调查报告网(即中金企信国际咨询公司)拥有10余年项目可行性报告撰写经验,拥有一批高素质编写团队,卓立打造一流的可行性研究报告服务平台为各界提供专业可行的报告(注:可出具各类项目的甲级资质)。 项目可行性报告用途(企业投融资、国家发改委立项、银行贷款申请、申请进口设备免税、境外投资项目核准、政府资金项目申报) 可行性研究报告是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。 由于可行性研究报告属于订制报告,以下报告目录仅供参考,成稿目录可能根据客户需求和行业分类有所变化。 第一章船舶压载水处理系统项目总论 第一节船舶压载水处理系统项目背景 一、船舶压载水处理系统项目名称

二、船舶压载水处理系统项目承办单位 三、船舶压载水处理系统项目主管部门 四、可行性研究工作的编制单位 五、研究工作概况 第二节编制依据与原则 一、编制依据 二、编制原则 第三节研究范围 一、建设内容与规模 二、船舶压载水处理系统项目建设地点 三、船舶压载水处理系统项目性质 四、建设总投资及资金筹措 五、投资计划与还款计划 六、船舶压载水处理系统项目建设进度 七、船舶压载水处理系统项目财务和经济评论 八、船舶压载水处理系统项目综合评价结论 第四节主要技术经济指标表 第五节结论及建议 一、专家意见与结论 二、专家建议 第二章船舶压载水处理系统项目背景和发展概况第一节船舶压载水处理系统项目提出的背景

压载水处理系统资料

一、船舶压载水处理的背景 1、船舶压载水的危害 船舶航行中,压载是一种必然状态。船舶在加装压载水的同时,海水中的生物也随之被加装入到压载舱中,直至航程结束后排放到目的地海域。压载水跟随船舶从一地到它地,从而引起了有害水生物和病原体的传播。压载水的无控制排放可能会对海洋生态系统、社会经济和公众健康造成危害。全球环保基金组织(GEF)已经把船舶压载水引起的外来物种入侵问题列为海洋四大危害之一。 为了更有效的控制船舶压载水传播有害水生物和病原体,国际海事组织(IMO)于2004年通过了《国际船舶压载水和沉积物控制和管理公约》。“公约”自2009年开始,规定所有新建船舶必须安装压载水处理装置,并对现有船舶追溯实施。“公约”对压载水的处理标准,即处理水中可存活生物的种类及数量作了明确规定(D-2标准)。 2、压载水处理D-2标准

3、船舶压载水处理系统的安装时间表 (D-1:压载水置换标准;D-2:压载水处理标准) 二、认证历程

2008年6月建成国内第一个压载水处理陆基实验基地

2009年12月通过CCS陆基实验型式认可

青岛双瑞公司的Bal C lor TM BWMS在第61次国际海事组织(IMO)大会上获得最终认可。 2010年12月将通过CCS实船实验型式认可,2011年初将通过DNV实船型式认可 三、BalClor TM BWMS的处理技术 BalClor TM BWMS对压载水的处理过程分为“过滤”、“电解海水产生次氯酸钠杀菌”、“中和”三步: “过滤”—压载时,利用过滤精度为50μm的自动反冲洗过滤器对所有压载水进行过滤,该步骤可以过滤掉尺寸大于50μm的大部分的海生物及固体颗粒; “电解海水产生次氯酸钠杀菌”—从压载水主管路引一支路海水进入电解装置,电解产生高浓度的次氯酸钠溶液,该溶液经过除气后,回注入压载水主管路,同主管路压载水混合到一定浓度。该浓度的次氯酸钠能够有效杀灭经过滤后的残余的浮游生物、病原体及其幼虫或孢子等,达到规定的杀菌效果(D-2标准),压载水管路中活性物质的浓度由TRO分析仪和控制系统自动控制; “中和”—压载水排放时,当其余氯浓度小于IMO规定值时,中和系统不启动,压载水直接排放;当压载水中余氯浓度大于IMO规定值时,中和系统自动启动,向排水管中注入中和药剂,中和残余的TRO残余氧化剂,中和剂量由控制系统自动控制。 1、灭活-核心技术 电解单元从过滤后的压载水抽取总量1%~2%左右的水流电解,制取氯气和次氯酸钠溶液,同时通过除气装置将电解产生的氢气稀释到安全界限以下,排出舷外。氯气会溶于水迅速产生次氯酸。 当海水进入电解槽后,电解反应机理如下: 阳极:2Cl-→ Cl2 + 2e 阴极:2H2O + 2e → 2OH- + H2↑ 阳极产生的氯气能够迅速溶在海水中生成次氯酸和盐酸: Cl2 + H2O → HOCl + Cl- + H+ 所以,总反应: NaCl + H2O → NaOCl + H2↑ 次氯酸钠溶液作为一种非常有效的杀菌剂可以在压载水中保持一定时间,并迅速有效的杀灭压载水中的浮游生物、孢子、幼虫及病原体。该技术已经在医学灭菌、自来水厂等水处理行业应用多年。

非标设备试压盛水试验方案

中冶焦耐工程技术有限公司 青海盐湖工业股份有限公司金属镁一体化240万吨/年焦化工程 非标设备试压试水方案 编制人: 批准人: 福建省庆龙工业设备安装有限公司 2013年7月22日

目录 一、概况 (3) 二、编制依据 (3) 三、设备概况 (3) 详见附表 (3) 四、试压前准备 (3) 五、塔体试压 (4) 六、贮槽满水试验 (5) 七、安全注意事项 (6) 八、组织机构 (7) 九、机械计划表 (7) 十、验收用表格 (8) 十一、附表非标设备试验方式汇总表 (11)

一、概况 本次工程内容为青海盐湖镁业有限公司金属镁一体化项目240万吨/年焦化工程。煤气净化设施非标设备现场制作。本工程范围内不包含设备、管道及钢结构的防腐保温。需试气压的设备为直冷塔(1台)、终冷塔(1台)、洗苯塔(1台)、脱硫塔(2台)、再生塔(2台);需做盛水试验的详见附表。 二、编制依据 设计蓝图,JB/T4735-97钢制焊接常压容器,工业企业煤气安全规程。 三、设备概况 详见附表 四、试压前准备 1、认真检查非标塔内的施工情况,塔内件已按设计和规范要求施工结束,内壁焊疤打磨完毕,塔内部的施工垃圾打扫结束,塔体的所有接管内外焊接施工完成,设备无损检测完成并且合格; 2、落实试压所需的各种器械已准备到位; 3、确定塔体所有的接管已经封堵完成; 4、与塔体相连的煤气管道在进出塔的阀门处增加盲板,随同塔体一起试压。

五、塔体试压 塔类的试压按照下图接管布置: 煤气出口 参与试压的部位为非标塔类本体。直冷塔(1台)、终冷塔(1台)、洗苯塔(1台)、脱硫塔(2台)、再生塔(2台)采用气压试验,根据设计要求试验空气温度不低于15℃。加压方式直接使用现场施工用的空压机进行打气加压。加压前,在所有法兰连接面处涂肥皂水,缓慢升压,至规定试验压力的10%时,保压5~10min,然后对所有焊接接头和连接部位进行初次泄漏检查,如有泄漏,修补后重新试验,初次泄漏检查合格后,再继续缓慢升压,按每级为规定试验压力的10%的级差逐级递增到规定的试验压力,保压30min后将压力降至规定设计压力,并保压30min,再次检查泄漏情况,检查期间压力应保持不变,如有泄露,修补后再按照上述规定重新进行试验。 气压试验过程中以整个系统无泄漏,无可见变形为合格。试压合格后缓慢泄压到常态,并拆除试压装置。 管道系统按照设计要求和相关规范单独试压。各塔类试验压力见附表。设备水压试验过程参考气压试验步骤。

水利坝体压水试验专项方案

B01 施工技术方案申报表 (承包[2015]技案03号) 合同名称:莆田市乌溪水库大坝工程合同编号: 说明:本表一式4份,由承包人填写。监理机构审签后,随同审批意见,承包人、监理机构、发

包人、设代机构机构各1份。

莆田市乌溪水库大坝工程 坝体砌筑(4~5m坝段)压水试验 施 工 方 案 编辑单位:兴锋盈(福建)集团有限公司 编辑人: 编制时间:2015年4月1日

编制人:审核人:审批人:

一、概况 乌溪水库大坝工程于2015年1月22日坝体拱圈EL159.5m 开始砌筑,3月29日坝体砌筑到EL164.0m,完成砌筑方量3050m3,EL164.0m层面面积为750m2。按照设计要求坝体每新砌筑一层次(4.5m高度),需进行一次简易密实性检查—钻孔压水试验,其主要任务是检测坝段砌筑体的透水性和密实度。 一、编制依据 (1)《水利水电工程钻孔压水试验规程》SL31—2003 (2)《水利水电工程施工质量与评定规程》SL176—2007 (3)《水利水电建设工程验收规程》SL223—2008 (4)设计施工图(WXSK-SGT-DB-TJ-01) 三、压水试验设备 (1)止水栓塞:单管顶压式栓塞,止水可靠,操作方便,栓塞长度不小于8倍的钻孔孔径。 (2)供水设备:试验用的灌浆机(G-105型立式双缸),压力稳定,出流均匀,工作可靠。在1MPa 压力下,流量能保持100L / m i n 。供水调节阀门应灵活可靠,不漏水,且不宜与钻进共用。 (3)量测设备:量测压力用的压力表应反应灵敏,卸压后指针回零,量测范围应控制在极限压力值的 1 / 3 ~3 / 4。 (4)管路:采用钢丝网胶管,承受压力为最大压力的1.5倍。 四、压水试验基本规定 (1)试验方法及试段长度:采用单管顶压式单栓塞隔离试段进行压

双瑞压载水处理系统说明(林双海)[1]

系统原理的BALCLORTM 电解过程中脱氯过滤 过滤:去除有机物和颗粒物大多数大型多 比最小尺寸为50μm; 电解过程:生产次氯酸钠溶液杀 有害水生物和病原体; 脱氯:周转率将要瓦解以下为0.1mg / L的 电解过程的原理 反应机理如下: 阳极: 2Cl- → Cl2 + 2e 阴极: 2H2O + 2e → 2OH- + H2↑ 氯气可溶于水的生产 次氯酸和盐酸迅速: Cl2 + H2O → HOCl + Cl- + H+因此整体的反应是: NaCl + H2O → NaOCl + H2↑ 作者:HYPOBROMOUS酸生成 由于通常有溴离子密度与 50?70mg / L的天然海水中存在的氧化 反应的次氯酸和溴离子会 生产hypobromous酸: HOCl + Br - → HOBr + Cl – Hypobromous酸也有效的杀菌剂,更稳定的比 氯在碱性海水。 氯胺和发电的 BROMAMINES 次氯酸反应和hypobromous酸 在海水氨会产生氯胺 和Bromamines

HOCl + NH3 == NH2Cl (monochloramine)+ H2O(均未配平) NH2Cl + HOCl ==NHCl2(dichloramine)+ H2O(均未配平) NHCl2 + HOCl ==NCl3(trichloramine)+ H2O(均未配平) 联名作者GEMICIDAL代理:周转率 氯胺和bromamines也gemicidal代理商,并 一般认为,其杀菌的行动是多 弱于HClO/ClO-和HOBr/OBr-人。 因此,gemicidal效果统称代理 总残余氧化剂(周转率),包括HClO/ClO- /氯气,HOBr/OBr-/Br2,氯胺和bromamines。

水处理计算公式

生物处理基本公式一 项目公式说明反应速度S—底物 S y?X z? P X —合成细胞 P――最终产物 dX dS y —y 又称产率系数,mg (生物量)/mg (降 dt dt解的底物) dX S— —底物浓度,冋P S y dS X ——合成细胞浓度或微生物浓度,冋p 反应级数dS n k— —-反应速度常数,随温度而异 v kS n dt n反应级数 Ig v n IgS Igk 零级反应dS v-反应速度 v k,k,S S0 kt dt t— —-反应时间 k——-反应速度常数,随温度而异 一级反应dS v kS kS, dt k IgS Ig S o一t 2.3 零级反应dS?—2 v kS2kS2, dt 11 kt S S o 米氏方程(表示酶dX 促反应速度与底物v v max S v酶反应速度,例如v X dt K S 浓度的关系)K m o V max-—最大酶反应速度 4K44P—底物浓度 1K m11K m —-一米氏常数 v V max S V max 莫诺特方程(表示Q 微生物比增长速度max□—微生物比增长速度,V X 与底物浓度的关K s S X 系)HY M max-—□的最大值,即底物浓度很大,不影y dX v X——响微生物增长速度时的卩值 dS V s q S— —-底物浓度 K s饱和常数

生物处理基本公式二 劳伦斯迈卡蒂公式(有机物比Y q max丫q max q底物比降解速度,q 上 降解速度与底X 物浓度的关系)S q q max 又有q VS dS K s S X X dt K i反应常数,K i q max ①P〉K s时, q q max K2 - -反应常数,K2q max K s dS X q max X K dt ②K s〉p时, S q q max K S dS S X q max X S K2 dt K S 劳伦斯迈卡蒂 dS S 第一方程由:q q max X dt K s S 「dS X S 得到:——q max dt K s S 劳伦斯迈卡蒂 dX dS dX 第二方程Y K d X——微生物净增长速度 dt g dt u dt g dX dS d , Y—- ――底物利用(或降解)速度 dt g dt u dt u K d X X Y ― ―-产率系数,同y K d- 内源呼吸(或衰减)系数 T q r\p x反应器中微生物浓度 dX/□反应器中微生物比净增长速度 V9c-污泥龄,d dt g1 X V c 1 故得到:一 c Y q K d 简化版dX dS Y obs-一实际工程中,产率系数Y常以实际—Y ob测得的观测产率系数Y obs替代 dt g s dt u

船舶压载水处理方法研究进展

船舶压载水处理方法研究进展 发表时间:2019-12-12T14:20:14.377Z 来源:《科学与技术》2019年第15期作者:周孔[导读] 船舶在海上航行需要有一定的浮力与稳定性,压载水便是调节船舶浮力和保持船舶稳定性的重要因素。摘要:船舶在海上航行需要有一定的浮力与稳定性,压载水便是调节船舶浮力和保持船舶稳定性的重要因素。压载水的注入与排放会导致微生物、细菌、病毒的大范围传播,成为外来物种入侵的主要途径,对渔业、生态环境甚至人类健康造成严重的危害。基于此,笔者先是 介绍了现有船舶压载水的置换方法,再结合自身工作实际研究项目针对船舶压载水处理方法展开论述,以供参考。关键词:船舶;压载水;水处理引言 船舶航行中,压载是一种必然状态。船舶在加装压载水的同时,海水中的生物也随之被加装入到压载舱中,直至航程结束后排放到目的地海域。压载水跟随船舶从一地到它地,从而引起了有害水生物和病原体的传播。压载水的无控制排放可能会对海洋生态系统、社会经济和公众健康造成危害。为了更有效的控制船舶压载水传播有害水生物和病原体,国际海事组织(IMO)于2004年通过了《国际船舶压载水和沉积物控制和管理公约》。“公约”对压载水的处理标准,即处理水中可存活生物的种类及数量作了明确规定(D-2标准)。1压载水置换方法 压载水公约颁布之前,压载水的处理主要通过压载水的置换实现。现有船舶压载水置换方法主要分为三种:排空法、溢流法和稀释法。 1.1排空法 排空法又称顺序法或逐一更换法,是指将压载舱内压载水用泵抽空,并注入新的压载水的方法。这种方法可以置换95%以上的压载水,是置换最彻底、用时最短的方法。但是由于排空压载水对于船舶稳定性的影响较大,也会改变船舶的弯矩以及剪应力,因此这种方法对船舶结构和天气情况有严格的要求。 1.2 溢流法 溢流法,是指将新的压载水由压载舱底部注入,使原来的压载水从顶部溢水口溢出的方法,是目前船舶压载水置换最普遍的方法。使用该方法,至少要有压载舱容量3倍的海水流过才能保证较高的压载水置换率,并且这种方法在置换过程中会产生较大的压力,因此对于船舶的管路和泵要求较高。 1.3 稀释法 稀释法,是指将新的压载水由压载舱顶部注入,并从底部同流速排出的置换方法。与溢流法相比,该方法在注入排出过程中压载水水位不变,避免了置换过程中压载舱因自由液面产生压力,但是其所选用的管路系统更为复杂,需要对船舶进行改进,因此只在新船上使用。2压载水处理 为了能够有效提高压载水处理的效果,笔者所在团队对船舶污染防治系统的研发与产业化进行了深入研究创新,并在满足IMO提出的关于压载水处理的五项标准:安全、经济、实用、有效且环境允许的同时,也可有效解决目前电解海水产氯消毒存在的问题和难点:1)能耗高,大大增加处理成本;2)产生的H2存在安全隐患;3)电极在海水易损耗,表面易形成沉积,更换次数频繁;4)处理过的压载水腐蚀性强,会破坏船舱涂层;5)处理后的压载水直接排放可能会对排放的环境造成二次污染。具体内容如下:电极材料会直接影响电流效率,所使用的电极阳极析氯过电位和阴极析氢过电位越低,可以降低槽电压节省能耗。针对压载水的特点和处理要求,通过对传统钛板电极表面进行贵金属(钌、铱、铂等)修饰改性,提高其抑氯析氧性能,在保证处理效果的同时降低处理过程可能出现的安全隐患。改性后的电极使用效果好且运行寿命长,相比于常规电极,寿命可提高2到4倍。本项目中用于生成杀灭微生物的含氯溶液的反应是在电解槽中完成的,因此电解槽是整个系统的关键设备。一方面,电解槽必须使有效氯产率达到杀灭船舶压载水中有害水生物和病原体所需的要求;另一方面,还要求其能降低能耗,达到节能环保的目的。在电解槽的设计和研制过程中,结构形式的确定和材料的选择是两个重要方面,共同决定着电化学反应器的工作特性。本项目中将采用离子膜电解槽。离子膜是一种特殊的阳离子选择性透过膜,它只允许Na+等阳离子和水分子通过,阴离子和气体分子则难以透过。由Donnon膜理论,具有固定离子和对离子的膜有排斥外界溶液中某一离子的能力。在离子膜的膜体中,有由带负电荷的固定离子如SO3-、COO-和一个带正电荷的对离子如Na+组成的活性基团,他们以静电键的方式结合。如磺酸型阳离子交换膜,磺酸基团的亲水性使膜在溶液里溶胀,膜体变松并产生许多微细弯曲的通道,使活性剂团中的对离子Na+能够进行交换,同时活性基团的固定离子对Cl-和OH-具有排斥能力。电解过程中,阳极生成高浓度氯水进入主管系与海水混合,对其中微生物进行杀灭。阴极产生的OH-由于受到活性基团中固定离子的排斥,在阴极室富集形成高浓度碱液,导入吸收塔用以对废气进行洗涤。电解效率还与电解液的温度有关。本项目将创造性地对电解槽中的压载水进行加热,以提高其温度降低海水的欧姆降,同时降低阴阳极的理论分解电压和析氯过电位,提高电解效率,节省能耗。加热压载水的主要热源可以为船舶柴油机余热、锅炉系统蒸汽回气余热以及引擎排放废气余热。目前虽然最先进的柴油机效率可达50%,但排期和冷却水仍然带走大量的废热;锅炉系统蒸汽回气温度较高,尤其是加热负荷不高时,回气为气液混合,具有较高的能量;船舶引擎废气温度可达300-600oC,这几部分废热足以将压载水加热到40oC以上。一方面在这个温度下可以杀死部分藻类和原生动物,之后对其电解,利用电解过程产生的有效氯将仍然存活的生物和微生物杀灭;另一方面,回收了船舶柴油机、锅炉系统蒸汽回热及废气余热的利用,提高了能量利用率。IMO对压载水处理设备的控制系统有如下技术规范:1)控制系统需能自动监视和调整必要的处理剂量、强度或压载水管理系统的其他方面。它不直接影响处理过程,但能够对必要的处理过程进行适当的控制。2)控制系统能够在压载水处理操作过程中对其运行进行持续监视。根据上述技术规范,本项目的自动控制系统设计时主要将其分为压载模块、排放模块、报警模块以及停止模块,其中压载与排载又分别设置了自动手动模式。对于压载水处理的自动控制系统的设计,首先设计系统的管路结构图,然后将采用PLC以及HMI来实现整个系统的自动控制以及监控,触摸屏与PLC之间采用MPI通信,其上机位为西门子触摸屏,通过组态软件WinCCflexible来设计系统操作与监控界面;下机位为西门子的S7-300系列PLC,通过STEP7梯形图编程来实现系统自动控制。整个处理工艺流程如下图所示:

相关文档