文档库 最新最全的文档下载
当前位置:文档库 › 高三物理原子物理练习题

高三物理原子物理练习题

高三物理原子物理练习题
高三物理原子物理练习题

高二物理 原子物理练习题

〖基础达标〗

1. 下列叙述中符合历史史实的是( ) A .卢瑟福的α粒子散射实验揭示了原子核有复杂结构 B .玻尔理论成功地解释了各种原子的发光现象 C .爱因斯坦成功地解释了光电效应现象 D .赫兹从理论上预言了电磁波的存在

2. 一个氘核(H 21)与一个氚核(H 31)发生聚变,产生一个中子和一个新核,并出现质量亏损,则聚变过程( )

A .吸收能量,生成的新核为He

42 B .放出能量,生成的新核为He 3

2 C .吸收能量,生成的新核为He 3

2 D .放出能量,生成的新核为He 42 3. 颜色不同的a 光和b 光由某介质射向空气时,临界角分别为C a 和C b ,且C a >C b 。当用a 光照射某种金属时发生了光电效应,现改用b 光照射,则( )

A .不一定能发生光电效应

B .光电子的最大初动能增加

C .单位时间内发射的光电子数增加

D .入射光强度增加

4. 如图14-3所示,1、2、3、4为玻尔理论中氢原子最低的四个能级。处在n =4能级的一群氢原子向低能级跃迁时,能发出若干种频率不同的光子,在这些光子中,波长最长的是( )

A .n =4跃迁到n =1时辐射的光子

B .n =4跃迁到n =3时辐射的光子

C .n =2跃迁到n =1时辐射的光子

D .n =3跃迁到n =2时辐射的光子

5. 用蓝光照射某种金属表面,发生光电效应。现将该蓝光的强度减弱,则( )

A .从光照至金属表面上到发射出光电子之间的时间间隔将明显增加

B .逸出的光电子的最大初动能将减小

C .单位时间内从金属表面逸出的光电子数目将减少

D .有可能不发生光电效应 6. 有一种核聚变反应为:21H+21H→11H+X 。已知21H 的质量为2.0136u ,1

1H 的质量为1.0073u ,X 的质量为3.0180u 。则下列说法正确的是( )

A .X 是质子,该反应吸收能量

B .X 是氕,该反应吸收能量

C .X 是氘,该反应释放能量

D .X 是氚,该反应释放能量 7. 用α粒子轰击铍94

Be ()核,生成物是碳126C ()核和另一个粒子,则该粒子是( ) A. H 11 B. n 10 C. e 01 D. H

21 8. 在以下关于光的波粒二象性的说法中,错误..

的是( ) A .有些光具有波动性,有些光具有粒子性,复合光具有波粒二象性

B .光子的波动性是光子本身固有属性,不是由光子之间的相互作用引起的

C .光的波长越长,波动性就越显著;光的波长越短,粒子性就越显著

D .光子数量越多,波动性就越显著;光子数量越少粒子性就越显著

1 2 3 4 ∞

n - 13.6 - 3.4 - 1.51

- 0.85 0 E /eV 图14-3

9. 完成下列核反应方程,并指出其中哪个是发现质子的核反应方程,哪个是发现中子的核反应方程。 ⑴147N+

1

n →

146

C+__ ⑵

14

7

N+

42

He →

178

O+_____ ⑶

10

5

B+

10n →_____+42He

⑷94Be+42He →_____+10n ⑸5626Fe+21H →57

27Co+_____

10. 一个铀235的原子核裂变时释放196MeV 的能量,1kg 铀235完全裂变释放的能量为_____MeV 。 11.

U 23292

(原子质量为232.0372u )衰变为Th

22890(原子质量为228.0287u )。释放出a 粒子(He 4

2的原子质量为 4.0026u )。则核反应方程为____________,在衰变过程中释放的能量为

__________。(1u=931.5MeV )

12. 波长为λ=0.17μm 的紫外线照射至金属筒上能使其发射光电子,光电子在磁感强度为B 的匀强磁场中,做最大半径为r 的匀速圆周运动时,已知r ?B =5.6×10?6T ?m ,光电子质量m =9.1×10?31Kg ,电量e =1.6×10?19C ,求(1)每个光电子的最大初动能;(2)金属筒的逸出功。(h =6.63×10?34 J·s )

13. 太阳内部氢元素的质量约占太阳质量的一半以上,在超高温条件下氢被电离并相互碰撞,能使四个质子聚变成一个氦核,同时释放出大量的能量。(已知m He =4.002623u ,m H =1.008142u ,m e =0.000548u )(1u=931.5MeV )

(1)写出此热核反应的核反应方程; (2)求出反应前后的质量亏损; (3)求出反应释放的能量。

〖能力提升〗

1. 光照射到金属表面上能够发生光电效应,下列关于光电效应的叙述中,正确的是( )

A .金属电子逸出功与入射光的频率成正比

B .单位时间内逸出的光电子数与入射光强度无关

C .用绿光照射金属比用紫光照射同种金属产生的光电子最大初动能大

D .对某一种金属,入射光的波长必须小于极限波长才能产生光电效应

2. 利用光电管研究光电效应实验原理示意图如图14-4所示,用可见光照射阴极K ,电流表中有电流通过,则( )

A .若移动滑动变阻器的滑动触头到a 端时,电流表中一定无电流通过

B .滑动变阻器的滑动触头由a 端向b 端滑动的过程中,电流表的示数一定会持续增大

C .将滑动变阻器的滑动触头置于b 端,改用紫外光照射阴极K ,电流表一定有电流通过

D .将滑动变阻器的滑动触头置于b 端,改用红外线照射阴极K ,电流表一定无电流通过

3. 氢原子核外电子由一轨道向另一轨道跃迁时,可能发生的情况( ) A .原子吸收光子,电子动能增大,原子电势能增大,原子能量增大 B .原子放出光子,电子动能减少,原子电势能减少,原子能量减少 C .原子吸收光子,电子动能减少,原子电势能增大,原子能量增大 D .原子放出光子,电子动能增加,原子电势能减少,原子能量减少

4. 有大量的氢原子,吸收某种频率的光子后从基态跃迁到n =3的激发态,已知氢原子处于基态时的能量为E 1,则吸收光子的频率ν=________,当这些处于激发态的氢原子向低能态跃迁发光时,可发出_____条谱线,辐射光子的能量分别为_____,_____,_______ 。

5. K -介子方程为

0ππK +→--,其中K -介子和π?介子带负的基

元电荷,π0介子不带电。一个K ?介子沿垂直于磁场的方向射入匀强磁场中,其轨迹为圆弧AP ,衰变后产生的π?介子的轨迹为圆弧PB ,两轨迹在P 点相切,它们的半径R K?与R π?之比为2∶1。如图14-5所示,π0介子的轨迹未画出。由此可知π?介子的动量大小与π0介子的动量大小之比为____。

6. 静止在匀强磁场中的一个B 105核俘获了一个速度为v =

7.3×104m/s 的中子而发生核反应,生成α粒子与一个新核。测得α粒子的速度为2×104m/s ,方向与反应前中子运动的方向相同,且与磁感线方向垂直。

⑴写出核反应方程。 ⑵画出核反应生成的两个粒子的运动轨迹及旋转方向的示意图(磁感线方向垂直于纸面向外)。

⑶求α粒子与新核轨道半径之比。 ⑷求α粒子与新核旋转周期之比。

一、选择题

1. 原子的核式结构学说是卢瑟福根据以下哪个实验现象提出的?( ) A. 光电效应现象 B. 氢光谱实验

C. a 粒子散射实验

D. 阴极射线的有关现象

2、根据玻尔理论,氢原子的电子由外层轨道跃迁到内层轨道后( ) A. 原子的能量增加,电子的动能减少 B. 原子的能量增加,电子的动能增加

E 图14-4

K ? π?

A

B P

C. 原子的能量减少,电子的动能减少

D. 原子的能量减少,电子的动能增加

3. 图1为氢原子n =1,2,3,4的各个能级示意图。处于n =4能量状态的氢原子,当它向较低能级发生跃迁时,发出的光子能量可能为( )

A. 2.55eV

B. 13.6eV

C. 12.75eV

D. 0.85eV

4. 氢原子从n =4的激发态直接跃迁到n =2的激发态时,发出蓝色光,

则当氢原子从n =5的激发态直接跃迁到n =2的激发态时,可能发出的是( ) A. 红外线 B. 红光 C. 紫光 D. γ射线 5. 天然放射现象的发现揭示了( ) A. 原子不可再分 B. 原子的核式结构

C. 原子核是可分的

D. 原子核由中子和质子组成

6. 某放射性元素的原子核发生两次a 衰变和六次β衰变,关于它的原子核的变化,下列说法中正确的是( )

A. 中子数减小8

B. 质子数减小2

C. 质子数增加2

D. 核子数减小10

7. 当一个中子和一个质子结合成氘核时,产生γ光子辐射,对这一实验事实,下列说法正确的是( )

A. 核子结合成原子核时,要放出一定的能量

B. 原子核分裂成核时,要放出一定的能量

C. γ光子的质量为零,氘核的质量等于中子与质子的质量之和

D. γ光子具有一定的能量,氘核的质量小于中子与质子的质量之和

8. 新发现的一种放射性元素X ,它的氧化物X 2O 的半衰期为8天,X 2O 与F 能发生如下反应:2X 2O+2F 2===4XF+O 2,XF 的半衰期为( )

A. 2天

B. 4天

C. 8天

D. 16天 9.一个U235吸收一个中子后发生的反应是

n Sr Xe n U 109038136541023592

10++→+,

放出的能量为E 。235U 核的质量为M ,中子的质量为m 0,136Xe 核的质量为m 1,90Sr 核的质

量为m 2,真空中的光速c ,则释放的能量E=______。

图1

原子物理 (B 卷)

一、选择题

1.如图1所示为卢瑟福和他的同事们做α 粒子散射实验装置的示意图,荧光屏和显微镜一起分别放在图中的A 、B 、C 三个位置时,关于观察到的现象,下述说法中正确的是( ) A .相同时间内放在A 位置时观察到屏上的闪光次数最多 B .相同时间内放在B 位置时观察到屏上的闪光次数最少 C .相同时间内放在C 位置时观察到屏上的闪光次数最少 D .放在C 位置时观察不到屏上有闪光

2.下列说法中正确的是( ) A .卢瑟福首先提出原子的核式结构学说 B .汤姆生在α粒子散射实验中发现了电子 C .玛丽·居里发现了天然放射现象 D .爱因斯坦为解释光电效应的实验规律提出了光子说

3.光子能量为E 的一束光照射容器中的氢(设氢原子处于n =3的能级),氢原子吸收光子后,能发出频率ν1、ν2、ν3、ν4、ν5、ν6六种光谱线,且ν1<ν2<ν3<ν4<ν5<ν6,则E 等于( ) A .h ν1 B .h ν6 C .h (ν6-ν1) D .h (ν1+ν2+ν3+ν4+ν5+ν6)

4.质子、中子和氘核的质量分别为m 1、m 2和m 3,一个质子和一个中子结合成氘核时,若放出的能量全部转变为一个γ光子的能量,已知普朗克常量为h ,真空中的光速为c 。则放出的γ光子的频率为( )

A. ()h

c m m m 2

321++

B. ()h

c m m m 2

321-+

C. h

c m 2

3 D. ()h c m m m 2321-+

5.处于激发态的原子,如果在入射光子的作用下,引起高能态向低能态跃迁,同时在两个能态之间的能量差以辐射光子的形式发射出去,这种辐射叫做受激辐射。原子发生受激辐射时,发出的光子的频率、发射方向等都跟入射光子完全一样,这样使光得到加强,这就是激光产生的机理。那么发生受激辐射时,产生激光的原子的总能量E n 、电子的电势能E P 、电子动能E K 的变化关系是( )

A .E P 增大、E K 减小、E n 减小

B .E P 减小、E K 增大、E n 减小

C .E P 增大、E K 增大、E n 增大

D .

E P 减小、E K 增大、E n 不变

6.处于基态的氢原子,要想从基态跃迁到能量较大的激发态,可以有两种方法:一种是用光照射,氢原子吸收了入射光子的能量而跃迁到激发态;另一种是氢原子间相互碰撞,基态氢原子从相互碰撞中得到一定的能量而发生跃迁.已知氢原子从基态跃迁到某一个激发态需要吸收的能量为12.09 eV ,下面哪种情况可以使一个原来静止并处于基态的氢原子跃迁到该激发态( ) A .吸收一个能量大于12.09 eV 的光子

B .吸收一个能量小于12.09 eV 的光子

C .动能等于12.09 eV 的另一个氢原子与这个氢原子发生正碰

D .动能比12.09 eV 大得足够多的另一个氢原子与这个氢原子发生碰撞

7.下列关于原子结构和原子核的说法中正确的是( )

z 图2

A

A .卢瑟福在α粒子散射实验的基础上提出了原子的核式结构模型

B .天然放射性元素在衰变过程中核电荷数和质量数守恒,其放射线在磁场中不偏转的是γ射线

C .据图2可知,原子核A 裂变成原子核B 和C 要放出核能

D .据图2可知,原子D 和

E 聚变成原子核

F 要吸收能量

8.一个静止的放射性原子核处于垂直纸面向里的匀强磁场中,由于发生了衰变而形成了如图3所示的两个圆形径迹,两圆半径之比为1∶16 ,下面正确的是( ) A .该原子核发生了α衰变

B .反冲核沿小圆作顺时针方向运动

C .原静止的原子核的原子序数为15

D .沿大圆和小圆运动的粒子的周期相同

9.若原子的某内层电子被电离形成空位,其它层的电子跃迁到该空位上时,会将多余的能量以电磁辐射的形式释放出来,此电磁辐射就是原子的特征X 射线。内层空位的产生有多种机制,其中的一种称为内转换,即原子中处于激发态的核跃迁回基态时,将跃迁时释放的能量交给某一内层电子,使此内层电子电离而形成空位(被电离的电子称为内转换电

子)。214

Po 的原子核从某一激发态回到基态时,可将能量E 0=1.416MeV 交给内层电子(如K 、L 、M 层电子,K 、L 、M 标记原子中最靠近核的三个电子层)使其电离。实验测得从214Po 原子的K 、L 、M 层电离出的电子的动能分别为E K =1.323MeV 、E L =1.399MeV 、E M =1.412MeV 。则可能发射的特征X 射线的能量为( ) A .0.013MeV B .0.017MeV C .0.076MeV D .0.093MeV

二、填空题

1.如图4所示,是利用放射线自动控制铝板厚度的装置。假如放射源能放射出α、β、γ三种射线,而根据设计,该生产线压制的是3mm 厚的铝板,那么是三种射线中的__________射线对控制厚度起主要作用。当探测接收器单位时间内接收到的放射性粒子的个数超过标准值时,将会通过自动装置将M 、N 两个轧辊间的距离

调节得 些(填“大”或“小”)。

2.放射性同位素在技术上有很多应用,不同的放射源

对于以下几种用途,分别选取表中哪一种放射性元素作放射源。 (1)塑料公司生产聚乙烯薄膜,方法是让较厚的聚乙烯膜通过轧辊变薄,利用适当的放射线来测定通过轧辊后的薄膜厚度是否均匀。 答:________。 (2)医生用放射性方法治疗肿瘤。答:____________。 (3)放射源和控制器间相隔很小一段距离,若它们之间烟尘浓度超过某一设定的临界值,探测器探测到的射线强度将比正常情况下小得多,从而通过自动控制装置,触发电铃,发出火灾警报,预防火灾。答:___________。 (4)用放射性同位素作示踪原子,用来诊断人体内的器官是否正常。方法是给被检查者注射或口服附有放射性同位素的元素的某些物质,当这些物质的一部分到达要检查的器官时,可根据放射性同位素的射线情况分析器官正常与否。答:_________。

B

图3

图4

三.计算题

10. 一个中子以1.9×107m/s 的速度击中一个静止的氮核N 147,并发生核反应,生成甲、乙两种新核,它们的运动方向与中子原来的运动方向相同,测得甲核质量是中子质量的11倍,速度是1×106m/s ,乙原子核垂直进入B =2T 的匀强磁场中,做匀速圆周运动的半径为R =0.02m ,已知中子质量m =1.6×10?27kg ,e =1.6×10?19C ,求乙原子核是何种原子核?并写出核反应方程。

11. 用质子轰击锂核(Li )生成两个a 粒子。已知质子质量M p =1.0078u ,锂核质量为M Li =7.0160u ,M α=4.0026u ,质子的初动能是E 1=0.6MeV 。求: (1)写出核反应方程式;

(2)核反应前后发生的质量亏损; (3)核反应过程中释放的能量△E ; (4)核反应释放的能量全部用来增加两个α粒子的动能,则核反应后两个a 粒子具有总能量是多少?

原子物理选择题(含答案)

原子物理选择题 1. 如图所示是原子核的核子平均质量与原子序数Z 的关 系图像,下列说法正确的是(B ) ⑴如D 和E 结合成F ,结合过程一定会吸收核能 ⑵如D 和E 结合成F ,结合过程一定会释放核能 ⑶如A 分裂成B 和C ,分裂过程一定会吸收核能 ⑷如A 分裂成B 和C ,分裂过程一定会释放核能 A .⑴⑷ B .⑵⑷ C .⑵⑶ D .⑴⑶ 2. 处于激发状态的原子,如果在入射光的电磁场的影响下,引起高能态向低能态跃迁,同 时在两个状态之间的能量差以辐射光子的形式发射出去,这种辐射叫做受激辐射,原子发生受激辐射时,发出的光子的频率、发射方向等,都跟入射光子完全一样,这样使光得到加强,这就是激光产生的机理,那么发生受激辐射时,产生激光的原子的总能量E n 、电子的电势能E p 、电子动能E k 的变化关系是(B ) A .E p 增大、E k 减小、E n 减小 B .E p 减小、E k 增大、E n 减小 C .E p 增大、E k 增大、E n 增大 D . E p 减小、E k 增大、E n 不变 3. 太阳的能量来自下面的反应:四个质子(氢核)聚变成一个α粒子,同时发射两个正 电子和两个没有静止质量的中微子。已知α粒子的质量为m a ,质子的质量为m p ,电子的质量为m e ,用N 表示阿伏伽德罗常数,用c 表示光速。则太阳上2kg 的氢核聚变成α粒子所放出能量为 (C ) A .125(4m p —m a —2m e )Nc 2 B .250(4m p —m a —2m e )Nc 2 C .500(4m p —m a —2m e )Nc 2 D .1000(4m p —m a —2m e )Nc 2 4. 一个氘核(H 21)与一个氚核(H 31)发生聚变,产生一个中子和一个新核,并出现质 量亏损.聚变过程中(B ) A.吸收能量,生成的新核是e H 42 B.放出能量,生成的新核是e H 42 C.吸收能量,生成的新核是He 32 D.放出能量,生成的新核是He 32 5. 一个原来静止的原子核放出某种粒子后,在磁场中形成如图所示 的轨迹,原子核放出的粒子可能是(A ) A.α粒子 B.β粒子 C.γ粒子 D.中子 6. 原来静止的原子核X A Z ,质量为1m ,处在区域足够大的匀强磁场中,经α衰变变成质 量为2m 的原子核Y ,α粒子的质量为3m ,已测得α粒子的速度垂直磁场B ,且动能为0E .假设原子核X 衰变时释放的核能全部转化为动能,则下列四个结论中,正确的是(D ) ①核Y 与α粒子在磁场中运动的周期之比为2 2-Z

(完整版)原子物理学第五章填空判断题(有答案)

第五章增加部分 题目部分,(卷面共有50题,96.0分,各大题标有题量和总分) 一、判断题(16小题,共16.0分) 1.(1分)同一电子组态形成的诸原子态间不发生跃迁。 2.(1分)跃迁可以发生在偶宇称到偶宇称之间。 3.(1分)跃迁只发生在不同宇称之间。 4.(1分)两个s电子一定可以形成1S0和3S1两个原子态。 5.(1分)同科电子形成的原子态比非同科电子形成的原子态少。 6.(1分)镁原子有两套能级,两套能级之间可以跃迁。 7.(1分)镁原子的光谱有两套,一套是单线,另一套是三线。 8.(1分)钙原子的能级是二、四重结构。 9.(1分)对于氦原子来说,第一激发态能自发的跃迁到基态。 10.(1分)标志电子态的量子数中,S为轨道取向量子数。 11.(1分)标志电子态的量子数中,n为轨道量子数。 12.(1分)若镁原子处于基态,它的电子组态应为2s2p。 13.(1分)钙原子的能级重数为双重。 14.(1分)电子组态1s2p所构成的原子态应为1P1和3P2,1,0。 15.(1分)1s2p ,1s1p 这两个电子组态都是存在的。 16.(1分)铍(Be)原子若处于第一激发态,则其电子组态为2s2p。 二、填空题(34小题,共80.0分) 1.(4分)如果有两个电子,一个电子处于p态,一个电子处于d态,则两个电子在LS耦合下L的取值为()P L的可能取值为()。 2.(4分)两个电子LS耦合下P S的表达式为(),其中S的取值为()。3.(3分)氦的基态原子态为(),两个亚稳态为()和()。 4.(2分)Mg原子的原子序数Z=12,它的基态的电子组态是(),第一激发态的电子组态为()。 5.(2分)LS耦合的原子态标记为(),jj耦合的原子态标记为()。6.(2分)ps电子LS耦合下形成的原子态有()。 7.(2分)两个电子LS耦合,l1=0,l2=1下形成的原子态有()。 8.(2分)两个同科s电子在LS耦合下形成的原子态为()。 9.(2分)两个非同科s电子在LS耦合下形成的原子态有()。 10.(2分)两个同科s电子在jj耦合下形成的原子态为()。 11.(4分)sp电子在jj耦合下形成()个原子态,为()。12.(2分)洪特定则指出,如果n相同,S()的原子态能级低;如果n和S均相同,L ()的原子态能级低(填“大”或“小”)。 13.(2分)洪特定则指出,如果n和L均相同,J小的原子态能级低的能级次序为(),否则为()。 14.(2分)对于3P2与3P1和3P1与3P0的能级间隔比值为()。 15.(2分)对于3D1、3D2、3D3的能级间隔比值为()。 16.(2分)郎德间隔定则指出:相邻两能级间隔与相应的()成正比。 17.(3分)LS耦合和jj耦合这两种耦合方式所形成的()相同、()相同,但()不同。 18.(4分)一个p电子和一个s电子,LS耦合和jj耦合方式下形成的原子态数分别为()

原子物理学练习题及答案

填空题 1、在正电子与负电子形成的电子偶素中,正电子与负电子绕它们共同的质心的运动,在n = 2的状态, 电子绕质心的轨道半径等于 nm 。 2、氢原子的质量约为____________________ MeV/c 2。 3、一原子质量单位定义为 原子质量的 。 4、电子与室温下氢原子相碰撞,欲使氢原子激发,电子的动能至少为 eV 。 5、电子电荷的精确测定首先是由________________完成的。特别重要的是他还发现了 _______ 是量子化的。 6、氢原子 n=2,n φ =1与H + e 离子n=?3,?n φ?=?2?的轨道的半长轴之比a H /a He ?=____, 半短轴之比b H /b He =__ ___。 7、玻尔第一轨道半径是0.5291010-?m,则氢原子n=3时电子轨道的半长轴a=_____,半短轴 b?有____个值,?分别是_____?, ??, . 8、 由估算得原子核大小的数量级是_____m,将此结果与原子大小数量级? m 相比, 可以说明__________________ . 9、提出电子自旋概念的主要实验事实是-----------------------------------------------------------------------------和 _________________________________-。 10、钾原子的电离电势是4.34V ,其主线系最短波长为 nm 。 11、锂原子(Z =3)基线系(柏格曼系)的第一条谱线的光子能量约为 eV (仅需 两位有效数字)。 12、考虑精细结构,形成锂原子第二辅线系谱线的跃迁过程用原子态符号表示应 为——————————————————————————————————————————————。 13、如果考虑自旋, 但不考虑轨道-自旋耦合, 碱金属原子状态应该用量子数————————————表示,轨道角动量确定后, 能级的简并度为 。 14、32P 3/2→22S 1/2 与32P 1/2→22S 1/2跃迁, 产生了锂原子的____线系的第___条谱线的双线。 15、三次电离铍(Z =4)的第一玻尔轨道半径为 ,在该轨道上电子的线速度 为 。 16、对于氢原子的32D 3/2能级,考虑相对论效应及自旋-轨道相互作用后造成的能量移动与 电子动能及电子与核静电相互作用能之和的比约为 。 17、钾原子基态是4s,它的四个谱线系的线系限的光谱项符号,按波数由大到小的次序分别 是______,______,_____,______. (不考虑精细结构,用符号表示). 18、钾原子基态是4S ,它的主线系和柏格曼线系线系限的符号分别是 _________和 __ 。 19、按测不准关系,位置和动量的不确定量 ?x,x p ? 之间的关系为_____ 。 20、按测不准关系,位置和动量的不确定量 ?E,t ? 之间的关系为_____ 。

2021届高考物理一轮复习:原子物理 物理学史(含答案)

2021届高考物理:原子物理物理学史(一轮)培优附答案 专题:原子物理物理学史 1、以下有关物理学概念或物理学史的说法正确的是() A.牛顿发现了万有引力定律,卡文迪许用实验方法测出引力常量的数值,从而使万有引力定律有了真正的实用价值 B.匀速圆周运动是速度大小不变的匀变速曲线运动,速度方向始终为切线方向 C.行星绕恒星运动轨道为圆形,则它运动的周期的平方与轨道半径的三次方之比为常数,此常数的大小与恒星的质量和行星的速度均有关 D.奥斯特发现了电与磁之间的关系,即电流的周围存在着磁场;同时他通过实验发现了磁也能产生电,即电磁感应现象 2、光电效应的规律关于光电效应,有如下几种陈述,其中正确的是()A.金属电子的逸出功与入射光的频率成正比 B.光电流的强度与入射光的强度无关 C.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能要大 D.对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应 3、如图所示为伽利略研究自由落体运动规律时设计的斜面实验,他让铜球沿阻力很小的斜面从静止滚下,利用滴水计时记录铜球运动的时间。关于伽利略的“斜面实验”,下列说法正确的是: A伽利略测定了铜球运动的位移与时间,进而得出了速度随位移均匀增加的结论 B铜球在斜面上运动的加速度比自由落体下落的加速度小,所用时间长得多,时间容易测量 C若斜面长度一定,铜球从顶端滚动到底端所需时间随倾角的增大而增大 D若斜面倾角一定,铜球沿斜面运动的位移与所用时间成正比 4、(双选)国产科幻大片《流浪地球》讲述了太阳即将在未来出现“核燃烧”现象,从而导致人类无法生存,决定移民到半人马座比邻星的故事。据科学家

原子物理学试题汇编

临沂师范学院物理系 原子物理学期末考试试题(A卷) 一、论述题25分,每小题5分) 1.夫朗克—赫兹实验的原理和结论。 1.原理:加速电子与处于基态的汞原子发生碰撞非弹性碰撞,使汞原子吸收电子转移的的能量跃迁到第一激发态。处第一激发态的汞原子返回基态时,发射2500埃的紫外光。(3分) 结论:证明汞原子能量是量子化的,即证明玻尔理论是正确的。(2分) 2.泡利不相容原理。 2.在费密子体系中不允许有两个或两个以上的费密子处于同一个量子态。(5分) 3.X射线标识谱是如何产生的 3.内壳层电子填充空位产生标识谱。(5分) 4.什么是原子核的放射性衰变举例说明之。 4.原子核自发地的发射 射线的现象称放射性衰变,(4分)例子(略)(1分) 5.为什么原子核的裂变和聚变能放出巨大能量 5.因为中等质量数的原子核的核子的平均结合能约为大于轻核或重核的核子的平均结合能,故轻核聚变及重核裂变时能放出巨大能

量。(5分) 二、(20分)写出钠原子基态的电子组态和原子态。如果价电子被激发到4s态,问向基态跃迁时可能会发出几条光谱线试画出能级跃迁图,并说明之。 二、(20分)(1)钠原子基态的电子组态1s22s22p63s;原子基态为2S1/2。(5分) (2)价电子被激发到4s态向基态跃迁时可发出4条谱线。(6分)(3)依据跃迁选择定则1 0, j 1,± = ? ± ?= l(3分)能级跃迁图为(6分) 三、(15 耦合时,(1)写出所有 可能的光谱项符号;(2)若置于磁场中,这一电子组态一共分裂出多少个能级(3)这些能级之间有多少可能的偶极辐射跃迁 三、(15分)(1)可能的原子态为 1P 1,1D 2, 1F 3; 3P 2,1,0, 3D 3,2,1, 3F 4,3,2。 (7分) (2)一共条60条能级。(5分) (3)同一电子组态形成的原子态之间没有电偶极辐射跃迁。(3分)

3-5原子物理练习题(含参考答案)

物理3-5:原子物理练习题 一、光电效应,波粒二象性 1.以下说法中正确的是() A.伽利略利用斜面“冲淡”时间,巧妙地研究自由落体规律 B.法拉第首先用电场线形象地描述电场 C.光电效应中,光电子的最大初动能与入射光频率成正比 D.太阳内发生的核反应方程是U+n→Ba+Kr+3n 2.用图所示的光电管研究光电效应的实验中,用某种频率的单色光a照射光电管阴极K,电流计G的指针发生偏转.而用另一频率的 单色光b照射光电管阴极K时,电流计G的指针不发生偏转,那么() A.a光的波长一定大于b光的波长 B.增加b光的强度可能使电流计G的指针发生偏转 C.用a光照射光电管阴极K时通过电流计G的电流是由d到c D.只增加a光的强度可使通过电流计G的电流增大 3、(2015高考一卷真题,多选题)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生。下列说法正确的是。 A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大 B. 入射光的频率变高,饱和光电流变大 C. 入射光的频率变高,光电子的最大初动能变大 D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生 E.遏止电压的大小与入射光的频率有关,与入射光的光强无关 4(2016海南17)(多选题).下列说法正确的是_________。 A.爱因斯坦在光的粒子性的基础上,建立了光电效应方程 B.康普顿效应表明光子只具有能量,不具有动量 C.波尔的原子理论成功地解释了氢原子光谱的实验规律 D.卢瑟福根据α粒子散射实验提出了原子的核式结构模型 E.德布罗意指出微观粒子的动量越大,其对应的波长就越长 5.如图所示是光电管使用的原理图.当频率为ν0的可见光照射至阴极K上时,电流表中有电流通过,则() A.若将滑动触头P移到A端时,电流表中一定没有电流通过 B.若将滑动触头P逐渐由图示位置移向B端时,电流表示数一定增大 C.若用紫外线照射阴极K时,电流表中一定有电流通过 D.若用红外线照射阴极K时,电流表中一定有电流通过 6.(多选题)光电效应的实验结论是:对于某种金属() A.无论光强多强,只要光的频率小于极限频率就不能产生光电效应 B.无论光的频率多低,只要光照时间足够长就能产生光电效应 C.超过极限频率的入射光强度越弱,所产生的光电子的最大初动能就越小 D.超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大

原子物理学09-10-2 B卷试题

2009—2010学年第2学期《原子物理学》期末试卷 专业班级 姓名 学号 开课系室应用物理系 考试日期2010年6月26日10:00-12:00

说明:请认真读题,保持卷面整洁,可以在反面写草稿,物理常数表在第4页。 一. 填空题(共30空,每空1分,共30分) 1. 十九世纪末的三大发现、、,揭开了近代物理学的序幕。 2. 原子质量单位u定义为。 3. 教材中谈到卢瑟福的行星模型(原子的有核模型)有三个困难,最重要的是它无法解释原子的问题。丹麦科学家玻尔正是为了解决这个问题,在其原子理论引入第一假设,即分离轨道和假设,同时,玻尔提出第二假设, 即假设,给出频率条件,成功解释了困扰人们近30年的氢光谱规律之谜,第三步,玻尔提出并运用,得到角动量量子化、里德堡常数等一系列重要结果。 4. 夫兰克- 赫兹(Franck-Hertz) 实验是用电子来碰撞原子,测定了使原子激发的“激发电势”,证实了原子内部能量是的,从而验证了玻尔理论。氢原子的电离能为eV,电子与室温下氢原子相碰撞,欲使氢原子激发,电子的动能至少为eV。 5. 在原子物理和量子力学中,有几类特别重要的实验,其中证明了光具有粒子性的有黑体辐射、、等实验。 6. 具有相同德布罗意波长的质子和电子,其动量之比为,动能(不考虑相对论效应)之比为。 7. 根据量子力学理论,氢原子中的电子,当其主量子数n=3时,其轨道磁距的可能取值为。

8. 考虑精细结构,锂原子(Li)第二辅线系(锐线系)的谱线为双线结构,跃迁过程用原子态符号表示为 , 。(原子态符号要写完整) 9. 原子处于3D 1状态时,原子的总自旋角动量为 , 总轨道角动量为 , 总角动量为 ; 其总磁距在Z 方向上的投影Z μ的可能取值为 。 10. 泡利不相容原理可表述为: 。它只对 子适用,而对 子不适用。根据不相容原理,原子中量子数l m l n ,,相同的最大电子数目是 ;l n ,相同的最大电子(同科电子)数目是 ; n 相同的最大电子数是 。 11. X 射线管发射的谱线由连续谱和特征谱两部分构成,其中,连续谱产生的机制是 , 特征谱产生的机制是 。 二、选择题(共10小题,每题2分,共20分) 1. 卢瑟福由α粒子散射实验得出原子核式结构模型时,理论基础是: ( ) A. 经典理论; B. 普朗克能量子假设; C. 爱因斯坦的光量子假设; D. 狭义相对论。 2. 假设钠原子(Z=11)的10个电子已经被电离,则至少要多大的能量才能剥去它的 最后一个电子? ( ) A.13.6eV ; B. 136eV ; C. 13.6keV ; D.1.64keV 。 3. 原始的斯特恩-盖拉赫实验是想证明轨道角动量空间取向量子化, 后来结果证明 的是: ( ) A. 轨道角动量空间取向量子化; B. 自旋角动量空间取向量子化; C. 轨道和自旋角动量空间取向量子化; D. 角动量空间取向量子化不成立。

原子物理学期末自测题

1、原子半径的数量级是: A.10-10cm; B.10-8m C.10-10m D.10-13m 2、原子核式结构模型的提出是根据α粒子散射实验中: A.绝大多数α粒子散射角接近180° B. α粒子只偏差2°~3° C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小角散射 3、进行卢瑟福理论实验验证时发现小角散射与实验不符这说明: A.原子不一定存在核式结构 B.散射物太厚 C.卢瑟福理论是错误的 D.小角散射时一次散射理论不成立 4、用相同能量的α粒子束和质子束分别与金箔正碰,测量金原子核半径的上限.试问用质子束所得结果是用α粒子束所得结果的几倍? A.1/4 B.1/2 C.1 D.2 5、动能E =40keV的α粒子对心接近Pb(z=82)核而产生散射,则最小距离 K 为(m): A.5.9 B.3.0 C.5.9╳10-12 D.5.9╳10-14 6、如果用相同动能的质子和氘核同金箔产生散射,那么用质子作为入射粒子测得的金原子半径上限是用氘核子作为入射粒子测得的金原子半径上限的几倍? A.2 B.1/2 C.1 D .4 7,每10000 现有4个粒子被散射到角度大于5°的围.若金箔的厚度增加到4倍,那么被散 A. 16 B.8 C.4 D.2 8、90°和60°角方向上单位立体角的粒子数之比为: A. 9,, 分布,在散射物不变条件下则必须使: A B C D 10、氢原子光谱莱曼系和巴耳末系的系线限波长分别为: A.R/4 和R/9 B.R 和R/4 C.4/R 和9/R D.1/R 和4/R

11、氢原子基态的电离电势和第一激发电势分别是: A.13.6V和10.2V;B.–13.6V和-10.2V;C.13.6V和3.4V;D.–13.6V和-3.4V 12 A.5.29×10-10m B.0.529×10-10m C. 5.29×10-12m D.529×10-12m 电子的动能为1eV,其相应的德布罗意波长为1.22nm。 13、欲使处于激发态的氢原子发出H 线,则至少需提供多少能量(eV)? α A.13.6 B.12.09 C.10.2 D.3.4 14、用能量为12.7eV的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); A.3 B.10 C.1 D.4 15、按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的: A.1/10倍 B.1/100倍 C .1/137倍 D.1/237倍 16、已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的“正电子素”那么该“正电子素”由第一激发态跃迁时发射光谱线的波长应为: A. 17 A.-3.4eV B.+3.4eV C.+6.8eV D.-6.8eV +的第一轨道半径是: 18、根据玻尔理论可知,氦离子H e A. +处于第一激发态(n=2)时电子的轨道半径为: 19、一次电离的氦离子H e -10m-10-10-10m +离子中基态电子的电离能能是: 20、在H e A.27.2eV B.54.4eV C.19.77eV D.24.17eV 21、弗兰克—赫兹实验的结果表明: A电子自旋的存在B原子能量量子化C原子具有磁性D原子角动量量子化 22、为使电子的德布罗意假设波长为100nm,应加多大的加速电压: A.6V; B.24.4V;5V; D.15.1V 23、如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为(以焦耳为单位):

原子物理练习题答案知识讲解

原子物理练习题答案

一、选择题 1.如果用相同动能的质子和氘核同金箔正碰,那么用质子作为入射粒子测得的金原子核半径上限是用氘核子作为入射粒子测得的金原子核半径上限的几倍? A. 2 B.1/2 √ C.1 D .4 2.在正常塞曼效应中,沿磁场方向观察时将看到几条谱线: A .0; B.1; √C.2; D.3 3. 按泡利原理,当主量子数确定后,可有多少状态? A.n 2 B.2(2l+1)_ C.2l+1 √ D.2n 2 4.锂原子从3P 态向基态跃迁时,产生多少条被选择定则允许的谱线(不考虑精细结构)? √A.一条 B.三条 C.四条 D.六条 5.使窄的原子束按照施特恩—盖拉赫的方法通过极不均匀的磁场 ,若原子处于5F 1态,试问原子束分裂成 A.不分裂 √ B.3条 C.5条 D.7条 6.原子在6G 3/2状态,其有效磁矩为: A . B μ3 15; √ B. 0; C. B μ25; D. B μ215- 7.氦原子的电子组态为1s 2,根据壳层结构可以判断氦原子基态为: A.1P1; B.3S1; √ C .1S0; D.3P0 . 8.原子发射伦琴射线标识谱的条件是: A.原子外层电子被激发;B.原子外层电子被电离;

√C.原子内层电子被移走;D.原子中电子自旋―轨道作用很强。 9.设原子的两个价电子是p 电子和d 电子,在L-S耦合下可能的原子态有: A.4个 ; B.9个 ; C.12个 ; √ D.15个。 10.发生β+衰变的条件是 A.M (A,Z)>M (A,Z -1)+m e ; B.M (A,Z)>M (A,Z +1)+2m e ; C. M (A,Z)>M (A,Z -1); √ D. M (A,Z)>M (A,Z -1)+2m e 11.原子核式结构模型的提出是根据α粒子散射实验中 A.绝大多数α粒子散射角接近180? B.α粒子只偏2?~3? √C.以小角散射为主也存在大角散射 D.以大角散射为主也存在小角散射 12.基于德布罗意假设得出的公式V 26.12=λ ?的适用条件是: A.自由电子,非相对论近似 √B.一切实物粒子,非相对论近似 C.被电场束缚的电子,相对论结果 D.带电的任何粒子,非相对论近似 13.氢原子光谱形成的精细结构(不考虑蓝姆移动)是由于: A.自旋-轨道耦合 B.相对论修正和原子实极化、轨道贯穿 √C.自旋-轨道耦合和相对论修正 D. 原子实极化、轨道贯穿、自旋-轨道耦合和相对论修正

原子物理学习题答案5key

皖西学院近代物理期末考试试卷答案 (共100分) 一.选择题(共10题, 共有28分) 1.D ----(2分) 2.B ----(3分) 3.C ----(2分) 4.B ----(3分) 5.D ----(3分) 6.B ----(3分) 7.D 提示:mv2/R=Bqv , E=(1/2)mv2,则(m/R)?(2E/m) 1/2=Bq 所以B=(2Em) 1/2/(Rq)=0.410 (T)。 ----(3分) 8.A 提示: 因为5F1态的g=0,所以不分裂。 ----(3分) 9.C ----(3分) 10.B ----(3分) 二.填空题(共8题, 共有30分) 1.l=0时为一个,l≠0时为2个。 ----(3分) 2.7 (1分);() ±±±μB B(2分);10 (2分)。 ,,, 0123 ----(5分) 3.4s4s (或4s2)(1分);1S0 (或4s4s 1S0)(2分);单(或三)(1分);三(或单)(1分)。 ----(5分) 4.6.8 ----(3分) 5.4(1分);1、2,2、3(2分)。 ----(3分) 6.反应能Q>0 (1.5分);反应能Q<0 (1.5分)。 ----(3分) 7.利用可控制的热中子引起连续进行的链式反应 ----(3分) 8.13fm ----(5分)

三.计算题(共4题, 共有42分 ) 1.解:: (1) 依题意画出能级线跃迁图与各谱线的关系. 如图所示。 (8分) (2) 各能态的能量计算如下: 42S 1/2:E 1 = -E I = -4.32eV (2分) 42P 1/2: E 2 = E 1 +h c/λ1 = -4.32+1239.8/769.9 = -2.70966 eV (2分) 42 P 3/2: E 3 = E 1 +h c/λ2 = -4.32+1239.8/766.41= -2.70233eV (2分) 32D 3/2:E 4 = E 2 +h c/λ3 =-2.70966+1239.8/1168.98= -1.65 eV (2分) 32D 5/2:E 5 = E 3 +h c/λ5 = -2.70233+1239.8/1177.14= -1.65 eV (2分) (3) E Z R h c n i i =-*2 , Z E Rhc i i * /=?-?? ???412 ∴25.210124010097.132.4442 /1972 /11* S 4=? ? ? ??????=? ? ? ??-?=Rhc E Z 78.110124010097.171.2442 /19 72 /12*P 4=??? ??????=? ?? ??-?=Rhc E Z 04.110124010097.165.1442 /19 72/14* D 3=?? ? ??????=? ? ? ??-?=Rhc E Z (共4分) ----(18分) 2.解:: 由于U p m 02 2≈, ?p 可大到与p 相比, (2分) 所以有U p m m x 022 2 22≈≈()()?? , (2分) 贯穿深度D x mU ≈≈?( ) 2 21 . (2分) ----(6分) 3.解:: T T v P S 22=-~共振 (2分) 2 2 *d 333RZ T D = , 1* d 3?Z (4分) ~v = T 2P - T 3D = T 2S - ~v 共振 - R /9 = 43484 - 14903 - 13.6/(9?12400?10-8) = 1.64?104cm -1 (3分) λ = 1/~v = 6.1?102nm (1分) ----(10分) 4.解:: 对K α有h Rhc Z hc νλ =-- =()( )11112 22 2 ∴= ?-?λ43142112()R (3分) d = λ θ 2sin (2分) 32 D 5/2 2 D 3/2 42 S

原子物理学第二章习题答案

第二章 原子的能级和辐射 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。 解:电子在第一玻尔轨道上即年n=1。根据量子化条件, π φ2h n mvr p == 可得:频率 21211222ma h ma nh a v πππν= == 赫兹151058.6?= 速度:61110188.2/2?===ma h a v νπ米/秒 加速度:222122/10046.9//秒米?===a v r v w 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。 解:电离能为1E E E i -=∞,把氢原子的能级公式2 /n Rhc E n -=代入,得: Rhc hc R E H i =∞-=)1 1 1(2=电子伏特。 电离电势:60.13== e E V i i 伏特 第一激发能:20.1060.1343 43)2 111(2 2=?==-=Rhc hc R E H i 电子伏特 第一激发电势:20.101 1== e E V 伏特 用能量为电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线 解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是: )1 11(22n hcR E H -= 其中6.13=H hcR 电子伏特 2.10)21 1(6.1321=-?=E 电子伏特 1.12)31 1(6.1322=-?=E 电子伏特 8.12)4 1 1(6.1323=-?=E 电子伏特 其中21E E 和小于电子伏特,3E 大于电子伏特。可见,具有电子伏特能量的电子不足以把基

态氢原子激发到4≥n 的能级上去,所以只能出现3≤n 的能级间的跃迁。跃迁时可能发出的光谱线的波长为: ο ο ο λλλλλλA R R A R R A R R H H H H H H 102598 )3 111( 1121543)2 111( 1 656536/5)3 121( 1 32 23 22 22 1221 ==-===-===-= 试估算一次电离的氦离子+ e H 、二次电离的锂离子+ i L 的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视为不动,这样简单些。 a) 氢原子和类氢离子的轨道半径: 3 1,2132,1,10529177.0443,2,1,44102 22 01212 2220= ======?==? ?===++++++ ++-Li H H Li H H H He Z Z r r Z Z r r Z Li Z H Z H Z me h a n Z n a mZe n h r e 径之比是因此,玻尔第一轨道半;,;对于;对于是核电荷数,对于一轨道半径;米,是氢原子的玻尔第其中ππεππε b) 氢和类氢离子的能量公式: ??=?=-=3,2,1,)4(222 12 220242n n Z E h n Z me E πεπ 其中基态能量。电子伏特,是氢原子的6.13)4(22 204 21-≈-=h me E πεπ 电离能之比: 9 00,4002 222== --==--+ ++ ++ H Li H Li H He H He Z Z E E Z Z E E c) 第一激发能之比:

原子物理习题

基本练习: 1.选择题: (1)在正常塞曼效应中,沿磁场方向观察时将看到几条谱线:C A .0; B.1; C.2; D.3 (2)正常塞曼效应总是对应三条谱线,是因为:C A .每个能级在外磁场中劈裂成三个; B.不同能级的郎德因子g 大小不同; C .每个能级在外场中劈裂后的间隔相同; D.因为只有三种跃迁 (3)B 原子态2 P 1/2对应的有效磁矩(g =2/3)是 A A. B μ33; B. B μ3 2 ; C. B μ32 ; D. B μ22. (4)在强外磁场中原子的附加能量E ?除正比于B 之外,同原子状态有关的因子有:D A.朗德因子和玻尔磁子 B.磁量子数、朗德因子 C.朗德因子、磁量子数M L 和M J D.磁量子数M L 和M S (5)塞曼效应中观测到的π和σ成分,分别对应的选择定则为:A A ;)(0);(1πσ±=?J M B. )(1);(1σπ+-=?J M ;0=?J M 时不出现; C. )(0σ=?J M ,)(1π±=?J M ; D. )(0);(1πσ=?±=?S L M M (6)原子在6 G 3/2状态,其有效磁矩为:B A . B μ315; B. 0; C. B μ25; D. B μ2 15- (7)若原子处于1 D 2和2 S 1/2态,试求它们的朗德因子g 值:D A .1和2/3; B.2和2/3; C.1和4/3; D.1和2 (8)由朗德因子公式当L=S,J ≠0时,可得g 值:C A .2; B.1; C.3/2; D.3/4 (9)由朗德因子公式当L=0但S ≠0时,可得g 值:D A .1; B.1/2; C.3; D.2 (10)如果原子处于2 P 1/2态,它的朗德因子g 值:A A.2/3; B.1/3; C.2; D.1/2 (11)某原子处于4 D 1/2态,若将其放于弱磁场中,则能级分裂为:C A .2个; B.9个; C.不分裂; D.4个 (12)判断处在弱磁场中,下列原子态的子能级数那一个是正确的:B A.4D 3/2分裂为2个; B.1P 1分裂为3个; C.2F 5/2分裂为7个; D.1 D 2分裂为4个 (13)如果原子处于2 P 3/2态,将它置于弱外磁场中时,它对应能级应分裂为:D A.3个 B.2个 C.4个 D.5个 (14)态1 D 2的能级在磁感应强度B 的弱磁场中分裂多少子能级?B A.3个 B.5个 C.2个 D.4个 (15)钠黄光D 2线对应着32P 3/2→32 S 1/2态的跃迁,把钠光源置于弱磁场中谱线将如何分裂:B A.3条 B.6条 C.4条 D.8条 (16)碱金属原子漫线系的第一条精细结构光谱线(2D 3/2→2 P 3/2)在磁场中发生塞曼效应,光

原子物理学第一章习题参考答案

第一章习题参考答案 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角-4 约为10rad. 要点分析:碰撞应考虑入射粒子和电子方向改变,并不是像教材中的入射粒子与靶核的碰撞(靶核不动),注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射.电子质量用m e表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲.α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) (3) (2) 作运算:(2)×sinθ±(3)×cosθ,得 (4) (5) 再将(4)、(5)二式与(1)式联立,消去V’与V, 化简上式,得 (6) 若记,可将(6)式改写为 (7)

视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令,则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0 (1)若sinθ=0则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90o-2φ(9) 将(9)式代入(7)式,有 由此可得 θ≈10弧度(极大)此题得证. (1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几 解:(1)依和金的原子序数Z 2=79 -4 答:散射角为90o所对所对应的瞄准距离为. (2)要点分析:第二问解的要点是注意将大于90°的散射全部积分出来.90°~180°范围的积分,关键要知道n,问题不知道nA,但可从密度与原子量关系找出注意推导出n值.,其他值从书中参考列表中找. 从书后物质密度表和原子量表中查出Z Au=79,A Au=197,ρ Au=×10kg/m

2020高三物理一轮复习学案: 原子物理

2020高三物理一轮复习学案:原子物理 教学目标 1.使学生加强理解掌握在卢瑟福核式结构学说基础上的玻尔原子结构理论;能够对氢原子根据能级(轨道)定态跃迁知识解决相关问题。 2.通过氢原子的电子绕核旋转和能级跃迁与卫星绕地球旋转的类比和分析讨论,提高学生应用力、电、原子知识的综合分析能力,特别是加强从能量转化守恒观点出发分析解决问题的能力。 3.通过人类认识原子核组成的过程复习,使学生明确认识依赖于实践;科学的认识源于科学家们的科学实验与研究探索。从而培养学生的科学态度与探索精神。 4.掌握衰变及原子核人工转变的规律——质量数守恒、核电荷数守恒。明确核力、结合能、平均结合能、质量亏损及爱因斯坦质能方程意义,并掌握其应用——获得核能的途径(裂变、聚变)。 教学重点、难点分析 1.卢瑟福的核式结构学说与玻尔的原子结构理论,作为重点难点知识。学生在理解掌握上的困难,一是不明确两种原子结构理论的区别与联系;二是对原子的定态和能级跃迁等知识的理解认识不够透彻,以致分析解决相关问题时易混易错。 2.放射性元素衰变时,通常会同时放出α、β和γ三种射线,即α、β衰变核反应同时放出γ射线(释放能量)。 3.爱因斯坦质能方程△E=△mc 2,是释放原子核能的重要理论依据。在无光子辐射的情况下,核反应中释放的核能转化为生成新核与粒子的动能,此情况可用动量守恒与能量守恒计算核能。 教学过程设计 一、原子模型 1.汤姆生模型(枣糕模型) 1897年,英国人汤姆生研究阴极射线时发现了电子。电子的发现说明原子是可分的。 2.卢瑟福的核式结构模型(行星式模型) α粒子散射实验是用α粒子轰击金箔,结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。这说明原子的正电荷和质量一定集中在一个很小的核上。 1911年英国人卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。 由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m 。 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n 叫量子数。) 1913年丹麦人玻尔提出“玻尔原子理论”,20世纪20年代,海森堡等科学家提出“量子力学的原子理论”。 (1)玻尔的三条假设(量子化) ①轨道量子化r n =n 2r 1r 1=0.53×10-10m ②能量量子化:2 1n E E n E 1=-13.6e V ③原子在两个能级间跃迁时辐射或吸收光子的能量hν=E m -E n (2)从高能级向低能级跃迁时释放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧;分子间的相互碰撞可以传递能量)。原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。(如在基态,可以吸收E ≥13.6e V 的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。 (3)玻尔理论的局限性。由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。

原子物理学平时测验题

原子物理平时测试题(20分) 1、 简述α粒子散射实验。 答:α粒子轰击Au 箔,在金箔的周围以R 为半径做一个圆形轨道,装上可以绕以金箔为圆心滑动的望远镜,物镜上涂上ZnS 薄层【α粒子碰撞到ZnS 上会有荧光】. 实验用准直的α射线轰击厚度为微米的金箔,发现绝大多数的α粒子都照直穿过薄金箔,偏转很小,但有少数α粒子发生角度比汤姆孙模型所预言的大得多的偏转,大约有1/8000 的α粒子偏转角大于90°,甚至观察到偏转角等于150°的散射,称大角散射……这证明了金箔上有能使α粒子完全反弹的一个正电荷组成的核心——这是卢瑟福提出原子核式模型的重要实验依据。 2、 写出氢原子光谱的前面五个线系的波数表达式,简述氢原子光谱的特点。 赖曼系 巴尔末系 帕邢系 布喇开系: 普丰特系: 光谱特点: (1)光谱的线状的。 (2)谱线间有一定的关系,谱线构成一个个的谱线系,不同的线系也有共同的光谱项。 (3)每一条谱线的波数都可以表达为二光谱项之差。 3、 简述经典理论在解释原子核核式结构模型时遇到的困难。 答:按照经典电动力学,当带电粒子有加速度时,就会辐射;而发出来的电磁波的频率等于辐射体运动的频率。 (1)原子稳定结构的困难。卢瑟福将行星模型用于原子世界,虽然都受平方反比有心力支配,但电子带-e 电荷,轨道加速运动会向外辐射电磁能,这样电子将会在10-9s 时间内连续缩小,落入核内,正负电荷中和,原子宣告崩溃(塌缩)。原子的半径按照这种理论应该为10-15米,而不是10-10米。 但现实世界原子是稳定的。 (2)原子线状光谱的困难。按照经典电动力学,原子所发出来的光的频率等于原子中电子运动的频率。那么如果电子轨道连续缩小,其运动的频率就会连续增大,那么所发光的频率就是连续变化的,原子的光谱应该是连续光谱。但实验发 ,3,2),111(~22=-=n n R H ν ,5,4),131(~2 2=-=n n R H ν ,6,5),141(~22=-=n n R H ν ,7,6),151(~22=-=n n R H ν,...5,4,3121~2 2=??????-=n n R H ν

原子物理学期末考试试卷(E)参考答案

《原子物理学》期末考试试卷(E)参考答案 (共100分) 一.填空题(每小题3分,共21分) 1.7.16?10-3 ----(3分) 2.(1s2s)3S1(前面的组态可以不写)(1分); ?S=0(或?L=±1,或∑ i i l=奇?∑ i i l=偶)(1分); 亚稳(1分)。 ----(3分) 3.4;1;0,1,2 ;4;1,0;2,1。 ----(3分) 4.0.013nm (2分) , 8.8?106m?s-1(3分)。 ----(3分) 5.密立根(2分);电荷(1分)。 ----(3分) 6.氦核 2 4He;高速的电子;光子(波长很短的电磁波)。(各1分) ----(3分) 7.R aE =α32 ----(3分) 二.选择题(每小题3分, 共有27分) 1.D ----(3分) 2.C ----(3分) 3.D ----(3分) 4.C ----(3分) 5.A ----(3分) 6.D 提示: 钠原子589.0nm谱线在弱磁场下发生反常塞曼效应,其谱线不分裂为等间距的三条谱线,故这只可能是在强磁场中的帕邢—巴克效应。 ----(3分) 7.C ----(3分) 8.B ----(3分) 9.D ----(3分)

三.计算题(共5题, 共52分 ) 1.解: 氢原子处在基态时的朗德因子g =2,氢原子在不均匀磁场中受力为 z B z B z B Mg Z B f Z d d d d 221d d d d B B B μμμμ±=?±=-== (3分) 由 f =ma 得 a m B Z =±?μB d d 故原子束离开磁场时两束分量间的间隔为 s at m B Z d v =?=??? ? ? ?212 22 μB d d (2分) 式中的v 以氢原子在400K 时的最可几速率代之 m kT v 3= )m (56.010400 1038.131010927.03d d 3d d 232 232B 2 B =??????=?=??= --kT d z B kT md z B m s μμ (3分) 由于l =0, 所以氢原子的磁矩就是电子的自旋磁矩(核磁矩很小,在此可忽略), 故基态氢原子在不均匀磁场中发生偏转正好说明电子自旋磁矩的存在。 (2分) ----(10分) 2.解:由瞄准距离公式:b = 22a ctg θ及a = 2 1204z z e E πε得: b = 20012*79 **30246e ctg MeV πε= 3.284*10-5nm. (5分) 22 22 ()()(cot )22 (60)cot 30 3:1(90)cot 45 a N Nnt Nnt b Nnt N N θ σθπθπ?=?==?==? (5分) 3.对于Al 原子基态是2P 1/2:L= 1,S = 1/2,J = 1/2 (1分) 它的轨道角动量大小: L = = (3分) 它的自旋角动量大小: S = = 2 (3分) 它的总角动量大小: J = = 2 (3分) 4.(1)铍原子基态的电子组态是2s2s ,按L -S 耦合可形成的原子态: 对于 2s2s 态,根据泡利原理,1l = 0,2l = 0,S = 0 则J = 0形成的原子态:10S ; (3分) (2)当电子组态为2s2p 时:1l = 0,2l = 1,S = 0,1 S = 0, 则J = 1,原子组态为:11P ; S = 1, 则J = 0,1,2,原子组态为:30P ,31P ,32P ; (3分) (3)当电子组态为2s3s 时,1l = 0,2l = 0,S = 0,1 则J = 0,1,原子组态为:10S ,31S 。 (3分) 从这些原子态向低能态跃迁时,可以产生5条光谱线。 (3分)

相关文档
相关文档 最新文档