文档库 最新最全的文档下载
当前位置:文档库 › 物联网在智能农业中的应用(终稿)汇总

物联网在智能农业中的应用(终稿)汇总

物联网在智能农业中的应用(终稿)汇总
物联网在智能农业中的应用(终稿)汇总

物联网在智慧农业中的应用

摘要

人类历史进入新的时期,农业生产也随着人类文明的发展而有了巨大的飞跃。从生产工具、生产方式的不断更新中,我们的农作物产量不断提升。刀耕火种的日子一去不复返,人们的生活水平也有了很大的提升。

进入21世纪以后,科学技术的发展也带动着农业技术的革命。农业生产与现代网络联姻,将农业和因特网技术联系在一起,创新了生产方式,也催生了现代的智能精确农业。本文试着将所学的物联网技术用于现代农业,名为“精确农业”的高科技农业工程,即利用卫星、遥感、计算机和自动控制等高新技术于农业生产,以提高产量,降低能耗。这项国际先进的农田耕作技术成熟后将向全国推广,以解决我国地少人多的农业发展瓶颈、减少污染和浪费,走农业持续发展的道路。

高科技可以促进农业发展方式的转变,智能管理可以实现各类农业资源的高效利用,也可以实现改善环境这一可持续发展目标;不但可以最大限度的提高农村农业现实生产力,而且是实现优质、高产出、低能耗和环保的可持续发展型农业的高效途径。

关键词:精确农业; 物联网; 智能农业

目录

引言 (3)

1 研究背景和意义 (3)

1.1研究的背景 (3)

1.2 智能精确农业实例介绍 (4)

1.3 研究的现实意义 (5)

2 研究目标 (5)

2.1 无线网络监控平台 (5)

2.2 农业灌溉控制系统 (6)

2.3 农业大棚信息系统 (6)

3 农业应用中各类传感器简介 (7)

3.1 各类传感器产生背景 (7)

3.2 各类传感器简介 (8)

4 研究内容 (9)

4.1 精确农业物联网监测平台 (9)

4.2 精准农业的数字化管理系统 (10)

4.3 物联网感应的智能农业灌溉系统 (10)

5 在农业中的应用 (12)

5.1 典型应用之智能农业大棚 (12)

5.1.1温室信息环境采集 (12)

5.1.2无线传感器网络自动灌溉系统 (13)

5.1.3 系统功能特点 (14)

5.2 智能农业在应用领域的未来 (14)

5.3 智能精确农业的特点 (15)

结束语 (16)

参考文献 (16)

致谢 (17)

引言

物联网基本定义:

物联网是新一代信息技术的重要组成部分。物联网的英文名称叫“The Internet of things”。顾名思义,物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物体与物体之间,进行信息交换和通信。因此,物联网的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物体与互联网相连接,进行信息交换和通信,以实现对物体的智能化识别、定位、跟踪、监控和管理的一种网络[1]。

现代智能农业的定义:

“精确农业”(Precision Agriculture),指的是利用全球定位系统(GPS)、地理信息

系统(GIS)、连续数据采集传感器(CDS)、遥感(RS)、变率处理设备(VRT)和决

策支持系统(DSS)等现代高新技术,获取农田小区作物产量和影响作物生长的环境因素(如土壤结构、地形、植物营养、含水量、病虫草害等)实际存在的空间及时间差异性信息,分析影响小区产量差异的原因,并采取技术上可行、经济上有效的调控措施,区域对待,按需实施定位调控的“处方农业”;它是当今世界农业发展的新潮流,是由信息技术支

持的根据空间变异,定位、定时、定量地实施一整套现代化农事操作技术与管理的系统,其基本涵义是根据作物生长的土壤性状,调节对作物的投入,即一方面查清田块内部的土

壤性状与生产力空间变异,另一方面确定农作物的生产目标,进行定位的“系统诊断、优

化配方、技术组装、科学管理”,调动土壤生产力,以最少的或最节省的投入达到同等收

入或更高的收入,并改善环境,高效地利用各类农业资源,取得经济效益和环境效益[2]。

1 研究背景和意义

1.1研究的背景

传统农业的运行模式已适应不了农业可持续发展的需要,对于产品质量问题,资源分配

不均、严重不足且普遍浪费,环境污染,农产品种类需求多种多样等诸多问题使农业的发展陷入不良循环,而精确农业的出现为现代农业的发展提供了一条光明道路,精确农业与传统农业相比而言最大的特点是以高新技术和合理管理换来了对资源的最优利用。它是一项综合性很强的系统工程,让我国的农业实现低能耗、高效、优质、环保等目标,是世界农业发展新的趋势,同时也让我国农业迈向21世纪。

1.2 智能精确农业实例介绍

精确农业是最近几年来在美国、加拿大和欧盟一些国家发展起来的高新技术与农业生产相结合的新型农业模式。它的特点是“精确”,它利用卫星全球定位系统、遥测遥感技术和计算机,做到精确作业、精确施肥和精确估产。

波特是美国明尼苏达州的农民,他驾驶拖拉机在田里工作,表面上看它和别的农民没有什么区别。但是,他的拖拉机上装了一部586电脑,从屏幕上可看到面积达700公顷的玉米和大豆田的地图,计算机还会告诉他哪个地方需要施肥,施多少肥;如果再装一个卫星信号接收器,就可以收到全球卫星定位系统发出的遥感遥测信息,根据这些信息可进行精确的土壤调查、合理施肥、作物估产、农业环境监测和土地合理利用等[10]。

土壤调查和合理施肥可减少用肥量,减少浪费、减少投入,从而提高经济效益。土壤调查首先要采集土壤样品,如在播种之前,农民驾驶适合地形的车辆在土地上行驶一遍,采集土壤样品数据,并输入计算机;同时全球定位系统精确记录下样品采集地的位置,绘出土壤成分分布图。另外,存入计算机的施肥软件就能根据不同土壤、不同肥料类型和不同作物的施肥标准,推荐最佳方案,做到合理施肥。

作物估产不但能较准确监测产量,还能绘出产量分布图。当农民驾驶联合收割机收割玉米时,玉米棒就碰动收割机上计数器的开关,从而计算出收割的玉米棒子数;与此同时,卫星全球定位系统记录收割这些玉米棒时收割机所处的地理位置,这样就可画出产量分布图和计算出每块土地的产量,根据产量分布图也可判断出何处缺肥,需要施多少肥。

精确农业能针对各条块农田的土壤结构。肥力状况和作物生长情况等因素的精确测量和计算,提出种子、化肥、生长剂、除草剂、杀虫剂等的合理用量。美国农业生产部依阿华州艾姆斯土壤耕作实验室制订了一项“卫星指导农业生产联合计划”,在种

植大豆、玉米、燕麦和苜蓿的450公顷农田上进行试验,每隔13米收集一组农田各种数据信息,输入计算机,并同时在拖拉机上安装了无线电信号接收系统,接收卫星信号,并确定自身位置。拖拉机即可根据联合计划,进行各种农业生产活动。

1.3 研究的现实意义

通过分析,让我们知道,在实现精确农业的道路上,智能农业系统依然存在着诸多问题,因为现有的技术是基于有线的;而基于无线传感网的物联网精确农业系统无疑更具发展潜力,无线网络系统具有较高的带宽传输能力,抗干扰能力强、安全保密性良好,而且功率谱密度低。我们可以利用上述特点,针对农田信息采集和管理组建新的无线网络,实现农田信息的无线、实时传输。同时,可以给用户提供更多的决策信息和技术支持,实现整个系统的远程管理。

对比国内外的发展现状,不难发现国内在精确农业发展模式上的弊病,没有在应用的结合点上技术熟练的人才,信息标准不统一和技术不成熟。最为尴尬的是,国内更多的是示范工程和项目,仅仅停留在试验和演示阶段而没有能够形成产业的应用项目。而随着物联网技术的发展,基于物联网的智能精确农业系统则致力于将精确农业从概念化转化为产业化,更专注于应用领域和产品化,力图为智能精确农业的大规模推广应用打下良好的基础。

综上所述,智能精确农业取代传统农业是农业发展的必然,更是符合我国国情的选择,智能精确农业可以促进农业发展方式的转变,可以实现高效利用各类农业资源和改善环境这一可持续发展目标,不但可以最大限度提高农业现实生产力,而且是实现优质、高产、低耗和环保的可持续发展农业的有效途径。

2 研究目标

2.1 无线网络监控平台

建立无线的网络监控平台,对农作物的生长过程进行多方面监管和精确调控。在大棚控制系统中,物联网系统的温度传感器、湿度传感器、PH值传感器、光传感器、离子传感器、生物传感器、CO2传感器等设备,检测环境中的温度、相对湿度、PH值、光照强度、土壤养分、CO2浓度等物理量参数,通过各种仪器仪表实时显示或作为自动控制的参变量参与

到自动控制中,保证农作物有一个良好的、适宜的生长环境。远程控制的实现使技术人员在办公室就能对多个大棚的环境进行监测控制。采用无线网络来测量来获得作物生长的最佳条件,可以为温室精准调控提供科学依据,达到增产、改善品质、调节生长周期、提高经济效益的目的。

2.2 农业灌溉控制系统

开发基于物联网感应的农业灌溉控制系统,达到节水、节能、高效的目的。利用传感器感应土壤的水分并控制灌溉系统以实现自动节水节能,可以构建高效、低能耗、低投入、多功能的农业节水灌溉平台。

农业灌溉是我国的用水大户,其用水量约占总用水量的70%。据统计,因干旱我国粮食每年平均受灾面积达两千万公顷,损失粮食占全国因灾减产粮食的50%。长期以来,由于技术、管理水平落后,导致灌溉用水浪费十分严重,农业灌溉用水的利用率仅40%。如果根据监测土壤墒情信息,实时控制灌溉时机和水量,可以有效提高用水效率。而人工定时测量墒情,不但耗费大量人力,而且做不到实时监控;采用有线测控系统,则需要较高的布线成本,不便于扩展,而且给农田耕作带来不便。因此,设计一种基于无线传感器网络的节水灌溉控制系统,该系统主要由低功耗无线传感网络节点通过ZigBee自组网方式构成,从而避免了布线的不便、灵活性较差的缺点,实现土壤墒情的连续在线监测,农田节水灌溉的自动化控制,既提高灌溉用水利用率,缓解我国水资源日趋紧张的矛盾,也为作物生长提供良好的生长环境。

2.3 农业大棚信息系统

构建智能农业大棚物联网信息系统,实现农业从生产到质检和运输的标准化和网络化管理。智能农业大棚物联网信息系统主要研究温度、化学等多种传感器对农产品的生长过程全程监控和数据化管理;结合RFID电子标签在培育、生产、

图1 农业物联网的体系构架

质检、运输等过程中,进行可识别的实时数据存储和管理。本系统致力于构建基于物联网的专用农业评估信息系统以实现数据的存储和管理,实现农业生产的标准化、网络化、数字化。

3 农业应用中各类传感器简介

3.1 各类传感器产生背景

有需求就有市场,当今世界在各项技术方面都有先驱者,传感器领域也是科学发展十分重要的分支。在十五期间,国家863计划数字农业重大专项实现了农田信息采集技术的突破,推出了一批成本低、高性能的土壤水分和作物营养信息采集技术产品,基本解决了数字农业信息快速获取技术瓶颈问题。开展了农田水分、养分、作物长势、冠层生理与生态因子、品质、产量和虫害草害等信息采集关键技术研究,开发了具有自主知识产权的新型土壤水分传感器,研制了土壤和作物养分信息快速采集方法与新型配套仪器设备;在虫害与杂草动态监测系统的研究方面取得了重大进展,开发了基于称重传感器的高精度智能测产系统,解决了智能测产与谷物品质监测系统的精度难题;使我国农业信息快速获取迈出了新的步伐[5]。

3.2 各类传感器简介

为了适应现代化温室和工厂化栽培调节与环境控制(控制温度、湿度、光照、喷灌量、通风等),以培育各种秧苗,栽培各种果蔬和作物。在这个过程中,需要温度传感器、湿度传感器、PH 值传感器、光传感器、离子传感器、生物传感器、CO2传感器等检测环境中的温度、相对湿度、PH 值、光照强度、土壤养分、CO2浓度等物理量参数,通过各种仪器仪表实时显示或作为自动控制的参变量参与到自动控制中,保证农作物有一个良好的、适宜的生长环境。

在果蔬和粮食的储藏中,传感器也发挥着巨大的作用,制冷机根据冷库内温度传感器的实时参数值实施自动控制并且保持该温度的相对稳定。气调库相比冷藏库是更为先进的贮藏保鲜方法,除了温度之外,气调库内的相对湿度(RH)、O2浓度、CO2浓度、乙烯(C2H4)浓度等均有相应的控制指标。控制系统采集气调库内的温度传感器、湿度传感器、O2 浓度传感器、CO2浓度传感器等物理量参数,通过各种仪器仪表适时显示或作为自动控制的参变量参与到自动控制中,保证有一个适宜的贮藏保鲜环境,达到最佳的保鲜效果。

在作物的生长过程中还可以利用形状传感器、颜色传感器、重量传感器等来监测物的外形、颜色、大小等,用来确定物的成熟程度, 以便适时采摘和收获;可以利用二氧化碳传感器进行植物生长的人工环境的监控,以促进光合作用的进行[4]。例如, 塑料大棚蔬菜种植环境的监测等;可以利用超声波传感器、音量和音频传感器等进行灭鼠、灭虫等;可以利用流量传感器及计算机系统自动控制农田水利灌溉。

生物技术、遗传工程等都成为良种培育的重要技术,在这其中生物传感器发挥了重要的作用。农业科学家通过生物传感器操纵种子的遗传基因,在玉米种子里找到了防止脱水的基因,培育出了优良的玉米种子。此外,监测育种环境还需要温度传感器、湿度传感器、光传感器等;测量土壤状况需用水分传感器,吸力传感器、氢离子传感器、温度传感器等;测量氮磷、钾各种养分需要用各种离子敏传感器[7]。

在动物饲养中也有传感器应用,如有可用来测定畜、禽肉鲜度的传感器。它可以高精度地测定出鸡、鱼、肉等食品变质时发出的臭味成分二甲基胺( DMA ) 的浓度,其测量的最小浓度可以达到1ppm,利用这种传感器可以准确地掌握肉类的鲜度,防止腐败变质。也有用来检测鸡蛋质量的传感器。

4 研究内容

4.1 精确农业物联网监测平台

研究智能农业大棚中的物联网技术,建立无线网络监控平台。密集的网络是一种无中心节点的全分布系统。通过随机投放的方式,众多传感器节点被密集部署于监控区域。这些传感器节点集成有传感器、数据处理单元、通信模块和能源单元,它们通过无线信道相连,自组织地构成网络系统。其目的是协作地感知、采集和处理网络覆盖区域中被监测对象的信息并发送给观察者。无线传感器网络集传感器技术、微机电系统(MEMS) 技术、无线通信技术、计算技术和分布式信息处理技术于一体,因其广阔的应用前景而成为当今世界上备受关注的、多学科高度交叉的热点研究领域[6]。 在传统农业中。人们获取农田信息的方式都很有限,主要是通过人工测量,获取过程需要消耗大量的人力,而通过使用无线传感器网络可以有效降低人力消耗和对农田环境的影响,获取精确的作物环境和作物信息。

目前无线技术在农业中的应用比较广泛,但大都是具有基站星型拓扑结构的应用,并不是真正意义上的无线传感器网络。农业一般应用是将大量的传感器节点构成, 通过各种传感器采集信息,以帮助农民及时发现问题,并且准确地确定发生问题的位

置,这样农业将有可能逐渐地从以人力

图2 农业无线网络示意图

控制命令

监测数据

为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式, 从而大量使用各种自动化、智能化、远程控制的生产设备。

图2所示为该控制系统网络架构图。其主控系统为嵌入式系统,采用ARM9 S3C2410处理器与Linux操作系统,具有通信网络、通用外设接口,能对其中设备进行控制管理。该嵌入式网关连接内、外信息传输通道皆采用无线的方式,外部网络以基于IP网络技术、提供通用分组无线业务的GPRS通信网络为基础。内部网络采用短距离、低功率ZigBee 无线通信技术,结合农业领域专用系列传感器对农产品生长环境中的温湿度、PH值、光照以及土壤养分等数据进行采集和传输。

4.2 精准农业的数字化管理系统

数字化管理技术主要研究温度、化学等多种传感器对农产品的生长过程全程监控和数据化管理;结合RFID电子标签在培育、生产、质检、运输等过程中,进行可识别的实时数据存储和管理,实现农业生产的标准化、网络化、数字化。

数字化农业管理系统集成网络地理信息系统、物联网监控管理系统,可实现数据共享和动态数据服务。生态农业数字化管理系统以一定物理模式和逻辑模式的形式进行架设。具体涉及:遥感影像或相关图像的处理与分析:包括高分辨率的遥感影像及其它以图像方式提供的各类数据;地物的空间模型:包括对象、地形、环境、网络和拓朴关系等;属性信息管理:即动、静态数据管理;空间分析:包括缓冲区、测量、等值线及地统计分析与图表等;应用程序:包括服务器和客户端程序,以实现农业生产管理平台的系统功能;其它附属功能:统计分析等[8]。

此系统在功能上可实现农产品信息查询与发布、专家决策知识库优化决策与分析,达到信息、技术和网络的高效结合,最终实现农业精准数字化控制管理。

4.3 物联网感应的智能农业灌溉系统

本系统采用混合网,底层为多个ZigBee监测网络,负责监测数据的采集。每个ZigBee 监测网络有一个网关节点和若干的土壤温湿度数据采集节点。监测网络采用星型结构,网关节点作为每个监测网络的基站。网关节点具有双重功能,一是充当网络协调器的角色,负责网络的自动建立和维护、数据汇集;二是作为监测网络与监控中心的接口,与监控中心传递信息。此系统具有自动组网功能,无线网关一直处于监听状态,新添加的无线传感器节点会

被网络自动发现,这时无线路由会把节点的信息送给无线网关,有无线网关进行编址并计算其路由信息,更新数据转发表和设备关联表等。

该系统由无线传感节点、无线路由节点、无线网关、监控中心心四大部分组成,通过ZigBee自组网,监控中心、无线网关之间通过GPRS进行墒情及控制信息的传递。每个传感节点通过温湿度传感器,自动采集墒情信息,并结合预设的湿度上下限进行分析,判断是否需要灌溉及何时停止。每个节点通过太阳能电池供电,电池电压被随时监控,一旦电压过低,节点会发出电压过低的报警信号,发送成功后,节点进入睡眠状态直到电量充足。其中无线网关连接ZigBee无线网络与GPRS网络,是基于无线传感器网络的节水灌溉控制系统的核心部分,负责无线传感器节点的管理。传感器节点与路由节点自主形成一个多跳的网络。温湿度传感器分布于监测区域内,将采集到的数据发送给就近的无线路由节点,路由节点根据路由算法选择最佳路由,建立相应的路由列表,其中列表中包括自身的信息和邻居网关的信息。通过网关把数据传给远程监控中心,便于用户远程监控管理。本文设计的基于无线传感器网络的节水灌溉控制系统组成框图如下图所示。

图3 节水灌溉控制系统

5 在农业中的应用

5.1 典型应用之智能农业大棚

由于瓜果蔬菜对生长环境有着严格的要求,所以现代农业搭建了温室大棚来控制植物的生长环境,以实现跨地区与跨季节的瓜果蔬菜培育。可见,环境在温室大棚中起着重要的作用。

传统的大棚环境控制,是通过全人工的方式来实现的。在每一大棚中放置一个温度计,湿度计,二氧化碳浓度计等,由技术员巡查每一大棚的环境参数后,若发现环境参数不对,就要采取一定的措施来进行补偿。比如,温度过高的话,就要打开卷帘通风或者打开通风机等。这样的操作方式对于只有少量大棚的农户,还可以应付的过来,但如果大棚数量多,就需要花费大量的人工去查看各大棚的环境参数,对环境异常的大棚进行操作,大大降低了工作效率。

GHM智能温室系统,可对各不同大棚的环境参数进行实时的监测并报警,并可远程控制各大棚不同的电动设备,如卷帘机,灌溉机等。使技术人员在办公室就能对多个大棚的环境进行监测控制,以使植物获得最佳的生长环境。

5.1.1温室信息环境采集

在温室环境里,单个温室即可成为无线传感器网络一个测量控制区,采用不同的传感器节点和具有简单执行机构的节点(风机、低压电机、阀门等工作电流偏低的执行机构) 构成无线网络来测量土壤湿度、土壤成分、pH 值、降水量、温度、空气湿度和气压、光照强度、CO2浓度等来获得作物生长的最佳条件,同时将生物信息获取方法应用于无线传感器节点,为温室精准调控提供科学依据[9]。

图4 只能大棚示意图

5.1.2无线传感器网络自动灌溉系统

农业节水灌溉平台的建立是通过传感器对土壤中水分的感应,对灌溉系统进行有效的控制从而达到自动节水、节能的目的,完善农业节水灌溉平台,实现节水、节能、高效的目标。我国用水总量的七成是用于农业灌溉。调查发现,平均每年全国因灾减产粮食的近半成是由干旱造成的,由此造成的受灾面积也有两千万公顷之多。我国农业生产中对灌溉用水的利用率一直不高,导致农业灌溉用水利用率低、浪费的主要原因是技术和管理水平的落后。为了提高灌溉用水利用率,可根据土壤墒情信息的监测情况,对灌溉时机和水量进行实时控制。若采用人工对墒情进行定时测量的方法,不仅会过度的浪费人力资源,而且不能够保证监控的实时性;测控系统若采用有线的形式,布线会增加成本,难扩展,影响作物的耕种。所以,节水灌溉控制系统设计的理论基础是在无线传感器网络,系统采用ZigBee 自组网,把低功耗的无线传感器网络节点连接起来,这样就减少了布线成本、布线带来的农田耕作不便和灵活性差的问题,不仅可以实时监测到土壤墒情,还可实现自动化控制农田灌溉,节省灌溉用水,缓解用水紧张,保证农作物良好的生长环境。

系统是底层为多个具有监测数据采集功能的ZigBee 监测网络构成的混合网,每个网络都有它们各自的网关节点及几个关于土壤湿度的数据采集点。ZigBee 监测网络使用的是星型结构,把网关节点作为每个监测网络的基站。能够自动的建立和维护网络、汇集数据,在监控中心与监控网络之间传递信息成为了网络关节点的两个功能。该系统可实现自动组网,新添加的无线传感器节点会在无线网关处于监听状态下被网络自动发现,无线网关会接收到无线路由传来的信息,自身进行编址并分析路由信息,并对设备关联表及数据转发表等进行

更新。

智能灌溉系统的基本构成是无线传感节点、无线路由节点、无线网关和监控中心,在ZigBee 自组网的基础上,利用2G/3G 网络完成无线网关和监控中心之间墒情、控制信息的传输。墒情信息是利用传感节点访问温湿度传感器得到的,并通过分析采集的信息来选择要实施的灌溉方案,选择具体方案时依据预设的湿度上下限。传感节点都是利用电池供电,且可实时监测电池电压,如果电压过低节点就会报警,节点接收到报警便会进入休眠状态,电充满时便恢复工作状态。这些传感器节点主要是由无线网关连接ZigBee 无线网络与2G/3G 网络进行管理,可以说是整个系统的核心。多跳网络会由传感器节点与路由节点自主生成。监测区域内的温湿度传感器会依据就近的原则选取无线路由节点来传递监测数据,路由节点遵循路由算法获得合适的路径,创建对应的包含自身和邻居网关信息的路由列表。利用网关传送数据到远程监控中心实现用户远程控制。

5.1.3 系统功能特点

本智能管理系统具有如下特点:

(1)软件界面实时显示各大棚的环境参数。

(2)设置报警,软件可对异常的环境进行报警,报警记录可供查询。

(3) 自动控制功能,当计算机检测到环境异常,将自动进行操作。如检测到温度过高,将自动打开通风。检测到下雨,将自动关闭卷帘机与天窗。

(4) 手动控制功能,由技术人员根据环境参数的变化,点击鼠标对各电动设备进行操作。

(5) 远程控制,即使你不在大棚基地,也可以实现关闭卷帘等操作,比如下雨天或者起大风时,可以远程关闭卷帘。

(6) 远程视频监控功能。配合网络摄像头,对整个大棚基地进行监控,做到心中有数。

“以信息化引领现代农业发展将是大势所趋。”物联网将是实现农业集约、高产、优质、高效、生态、安全的重要支撑,同时也为农业农村经济转型、社会发展、统筹城乡发展提供“智慧”支撑[11]。

5.2 智能农业在应用领域的未来

应用自动控制和电子计算机实现农业生产和管理的自动化,是农业现代化的重要标志之一,近年来电子技术和信息技术的飞速发展,带来了温室控制与管理技术方面的一场革命,

在农业生产,园艺生产,动植物养殖等等方面有着广泛的运用,对于农业生产的增产增质增量产生了巨大的经济效益与社会效应。

国内温室大棚控制系统在九五期间有了长足快速的增长,但普遍水平居于低端水平或大部分引自于国外的成熟技术与产品,然而引进费用的昂贵以及维护服务难以跟进等严重制约着该产业的长足快速发展。

但是经过科学研究,物联网在农业领域仍然具有远大应用前景:

(1)在农田、果园等大规模生产方面,如何把农业小环境的温度、湿度、光照、降雨量等,土壤的有机质含量、温湿度、重金属含量、PH值等,以及植物生长特征等信息进行实时获取传输并利用,对于科学施肥、灌溉作业来说具有非常重要的意义。

(2)在生鲜农产品流通方面,需要对储运环境的温度和农产品的水分进行控制,环境温度过高可能会发生大批农产品的腐烂,水分不足品质会受到影响,在这个环节要借助物联网的帮助。

(3)还有一类具有典型意义的应用是工厂化健康养殖作业,需要通过实现畜禽、水产养殖环境的动态监测与控制。

5.3 智能精确农业的特点

在应用领域,智能精确农业在大范围应用过程中应具有其以下特点:

(1)智能化、傻瓜化的友好人机界面;

(2)突破传统控制系统的多线路铺设,工程量大,线路复杂,成本高等缺点,分布式管

理,采用多区化调控管理,各区独立智能化总线寻址控制,系统铺设简单,精确度

高,可控区域广;

(3)远程自动控制,参数实时在线显示,精确度高,真正实现“在家也能种田”;

(4)集成加热系统、通风系统、遮荫/保温内帘幕系统、外遮荫系统、C02施肥系统、空

气循环系统、植物保护系统、高压喷雾降温系统、湿帘—风机系统、屋顶喷淋系统、补充光照系统、灌溉施肥系统、废液回收—消毒系统、电气与计算机控制系统等于

一体,真正实现多功能,可多场合运用;

(5)由于自主开发设计,与国外温室大棚控制系统相比,系统费用低,维护方便;

结束语

物联网作为新一代信息技术的重要组成部分。它的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的新一代网络; 但是它在用户端延伸了新的领域,扩展到了任何物与物之间,以进行信息交换和通信。本文将物联网应用于农业,将农民从传统的耕作方式之中解放出来。让物联网与现代农业联合,一方面让高科技得到了应用,另一方面也提高了农业生产的效率。高科技可以促进农业发展方式的转变,智能管理可以实现各类农业资源的高效利用,也可以实现改善环境这一可持续发展目标。既有利于发展,也对环境保护起到了积极的作用。

我们研究智能农业大棚中的物联网技术,进一步建立无线网络监控平台。通过采用无线网络测量来获得各种作物生长的最佳条件,这可以为温室精准调控提供科学依据,改善农作物生长环境,以达到增加产量、改善品质、调节生长周期、提高经济收入的目的。另一方面,结合RFID电子标签,在培育、生产、质检、运输等过程中,我们可以进行可识别的实时数据存储和管理,实现农业生产的标准化、网络化、数字化。总的来说,该系统由无线传感节点、无线路由节点、无线网关、监控中心心四大部分组成,通过ZigBee自组网,监控中心、无线网关之间通过GPRS进行数据及控制信息的传递,将农作物与环境有机结合起来,通过精确的控制,使农作物在最佳环境中生长,提高产量。

事实上,物联网在实际应用上,还需要各行各业的参与;并且国家政府以及相关法规政策上也应有所主导和扶助。但是,就目前物联网发展的形式来看,今后,物联网技术无论是在农业还是物流等其他行业都是很有发展潜力的。

参考文献

[1]田美花.基于RFID技术的生产执行系统关键技术研究.青岛:中国海洋大学,2007。

[2]肖慧彬.物联网中企业信息交互中间件技术开发研究.北京:北方工业大学,2009

[3]马宇健.基于电子标签的签名系统设计与实现.北京:北方工业大学,2009

[4]赵莹.基于物联网架构的EPC无线通讯协议研究.山东:山东大学,2005

[5]张莉.ZigBee技术在物联网中的应用[J].电信网技术,2010年3月,第3期.

[6].美国迪进上海代表处系统工程师.

[7] 赵德海,邵万清. 我国流通产业的创新研究[J]. 物流科技,2004,27(3).

[8] 杨青松. 欧洲超市发展新趋势[J].经贸参考,2006 (10).

[9] 潘金生.基于物联网的物流信息增值服务[J]. 经济师, 2007 (9 ).

[10] 王晓静,张晋.物联网研究综述[J].辽宁大学学报,2010, 37(1).

[11] 甘勇,郑富娥.基于 EPC 技术的物联网在供应链的应用[J].商场现代化

致谢

本论文是在上完耿老师的物联网相关课程之后完成的。通过此次论文的撰写,我学到了很多非常宝贵的知识,不仅从中学习了经验,历练了意志,还学会了虚心求教,脚踏实地的可贵精神。通过对物联网相关课程的学习,我了解到了此技术在世界前沿的知识,开阔了眼界,也增长了见识,为以后的学习研究打好了基础。

在论文工作中,耿老师通过让同学们讲解PPT的形式为我提供了大量的修改意见,我能顺利完成论文的撰写,与耿老师的关心、支持和帮助是分不开的。

在此,向支持与帮助我的同学和在此门课程中教导我的老师表示最衷心的感谢。

智慧农业物联网系统设计

毕业设计(报告)课题:智慧农业物联网系统设计 学生: 夏培元系部: 物联网学院 班级: 物联网1404班学号: 2014270307 指导教师: 杨昌义 装订交卷日期: 2017年01 月日 I / 20

摘要 随着经济社会的发展,农业已经越发智能化智慧农业是农业生产的高级阶段是集新兴的互联网、移动互联、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。 基于ZigBee技术的智慧农业解决方案,成本低廉,是一般人都能负担的价格;控制更简单,让每一位刚接触的人都能轻松使用;功耗更低、组网更方便、网络更健壮,给您带来高科技的全新感受。您的温室大棚规模越大,基于ZigBee 技术的智慧农业解决方案在使用中,要准确及时地操控所有设备,最值得关注的应该就是网络信号的稳定性。鉴于温室大棚的网络覆盖区域比较广泛,我们贴心为您呈现物联无线组网!智慧农业能有效连接物联Internet通信网关和超出物联Internet通信网关有效控制区域的其它ZigBee网络设备,实现中继组网,扩大覆盖区域,并传输网关的控制命令到相关网络设备,达到预期传输和控制的效果。基于先进的ZigBee技术,物联无线中继器无需接入网线,就可自行中继组网,扩散网络信号,让网络灵活顺畅运行,保障您的所有设备正常运行。主要采集温湿度,从而控制农植物的水分和光照。 关键词:物联网;智慧农业;云计算;物联网架构;ZigBee II / 20

智慧农业物联网的概念和意义

中国农业物联网领航者——托普农业物联网 智慧农业物联网的概念和意义 所谓“智慧农业”就是充分应用现代信息技术成果,集成应用计算机与网络技术、物联网技术、音视频技术、3S技术、无线通信技术及专家智慧与知识,实现农业可视化远程诊断、远程控制、灾变预警等智能管理及实现智能自动化。除了精准感知、控制与决策管理外,从广泛意义上讲,智慧农业还包括农业电子商务、食品溯源防伪、农业休闲旅游、农业信息服务等方面的内容。 智慧农业是农业生产的高级阶段,是集新兴的互联网、移动互联网、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。 “智慧农业”是云计算、传感网、3S等多种信息技术在农业中综合、全面的应用,实现更完备的信息化基础支撑、更透彻的农业信息感知、更集中的数据资源、更广泛的互联互通、更深入的智能控制、更贴心的公众服务。“智慧农业”与现代生物技术、种植技术等高新技术融合于一体,对提高世界农业水平具有重要意义。 2010年,托普仪器开始专注于“智慧农业”方面的研究,五年来不断摸索前进,通过吸纳专业的研究人才、和高等院校合作及相关政府领导的方向性指导,使得托普仪器的农业物联网技术在时间的打磨下越来越成熟,越来越贴近用户需求。2014年,托普仪器联合中国工程院孙九林院士团队建立企业院士工作站,使公司研发水平更加精进,更具实力。5年来,托普仪器先后完成农业物联网系统10余个,在全国各地成功搭建的项目不胜枚举。其中,长春农博园、慈溪海通时代农场、山东兰陵(苍山)农业物联网示范园、江西凤凰沟物联网生态餐厅等项目更是被广大用户所熟知,成为众人津津乐道的农业物联网成功案例。 紧跟时代,助力农业,托普人在追求自身“农业梦”的同时,也一直都在帮助别人实现他们心中的农业梦想。相信通过大家的不懈努力,托普农业物联网技术必将惠及更多的农业人。

物联网在畜牧业上的应用

物联网技术在现代畜牧业的应用 随着饲料配方筛选、动物育种分析及牧场管理计算机技术应用,荷兰于20世纪80年代建立了数字化奶牛场;以色列阿菲金公司1984年研究出阿菲牧管理系统;西班牙Agritee软件公司1989年开发了奶牛肉牛管理软件,实际开始畜牧业物联网技术应用。随着计算机互联网通信技术、二维码识读、无线射频识别技术(RFID)、红外感应器、全球定位系统和激光扫描器等信息传感设备的发展,物联网技术从虚拟走向现实,融入人类生活,广泛应用于工业、农业、交通运输、医疗卫生等各个行业,畜牧业也进入物联网时代。 一、动物溯源及管理 1.追踪溯源 继美国疯牛病后,欧盟、美国、日本、澳大利亚等国首先将RFID用于肉牛生产、销售的溯源跟踪,以保证肉品安全。2003-2004年我国上海科芯、烟台威尔、杭州力汇等开始动物识别器等射频技术的研发。较早形成产品的常州高特使用RFID耳标,能快速有效查询牛品种、来源、免疫、治疗、用药、健康状况以及饲养、生长情况等,可以开展畜产品的来源追踪。2004年农业部在北京市、上海市、四川省、重庆市开展动物标识溯源试点,2006年4月提出建立我国畜产品溯源系统,2006年6月农业部发布第67号令《畜禽标识及免疫档案管理办法》开始在全国应用。数据传入农业部数据中心,对动物运输、屠宰检疫的追踪追溯,发挥了重要作用。但是,由于养殖户及企业档案记录不全,耳标录入不完善,读写设备缺乏等问题,全国性动物溯源徘徊不前。 2.动物管理 通过植入RFID对马和试验动物跟踪在国外早有报道。我国通过温度传感器、生物观察仪、病菌监测器等物联网技术,成功进行野生动物管理和监测,如大熊猫定位跟踪系统的开发和应用。目前,物联网广泛应用于宠物管理,如北京市、上海市、大连市等对地犬(鸽、猫)等宠物佩戴二维码标牌+后台管理+GPS,不仅可定位追踪,还可连接智能手机,方便主人查找,同时便于宠物管理,如北京的犬冠以010开头,八位数编号,信息涵盖宠物主的联系方式、防疫等信息。目前二维码、RFID耳标、瘤胃芯片、肢环、颈环等电子标识及读写设备研发生产企业众多、甚至产品出口国外,动物管理信息化正纵深发展。 3.牧场管理 RFID技术对规模养殖场进行个体识别和记录,自动统计动物数量,不仅可以进行场内、外追踪管理,还可进行生长发育的自动测定、记录、分析,数据传入管理中心,结合育种软件进行选种、选配,突破动物传统选育技术。在牧场管理中,有关发情、配种、分娩、防疫、驱虫、消毒、出售等个体档案管理及汇总,可借助物联网技术大幅度减小工作量,数字化牧场管理将成为未来发展趋势。

基于农业物联网的智能监控系统

基于农业物联网的智能监控系统 0 引言 物联网拥有业界最完整的专业物联产品系列,覆盖从传感器、控制器到云计算的各种应用,构建了“质量好、技术优、专业性强,成本低,满足客户需求”的综合优势。而农业物联网技术作为一个分支,在现代农业生产中发挥重要的作用。 何为农业物联网? 农业物联网技术就是将网络技术、感应技术、应用开发技术结合,及时采集空气温湿度、光照强度、土壤温湿度、CO2浓度等环境信息,通过有线和无线方式发送给中央监控器,并以直观的图表和曲线方式将数据显示给用户,用户可以根据生产需要,设置温室卷膜、卷帘、滴灌等执行设备的自动调控条件。 目前,农业物联网技术在许多地区逐渐开展起来,在传统的大棚上运用了物联网技术。农民们灌溉土地只需要轻点鼠标即可完成,无须奔走田间,大大节省了人力。这是物联网技术和传统农业结合的产物。 传统农业的浇水、施肥、打药,农民全凭经验、靠感觉。如今瓜果蔬菜该不该浇水,施肥、打药怎样保持精确的浓度,温度、湿度、光照如何实行按需供给,都由信息化智能监控系统实时定量“精确”把关。 1 案例:在养鱼场建立智能监控系统 农业物联网技术有利于节本增效,在现代化养鱼场中也发挥着高效的作用。24小时对水产苗种繁育阶段的水温、pH值和溶氧量等进行实时监测预警。一旦发现问题,能够及时自动处理或通过短信迅速通知相关人员。据相关应用测算,使用物联网智能控制管理系统养鱼后,可节本增效20%左右,亩均可增收1000元以上,极大地提高了渔民收入。 农业物联网是物联网产业的分支,从上述案例中我们看到了这一技术对未来农业生产的改变,也看到了作为一场科技革命浪潮即将开始。 墨翟科技基于飞思卡尔I.MX27开发的视频监控系统正是基于农业市场对视频监控系统的迫切需求推出的一款智能化高科技成熟产品。它是由服务器和终端设备共同构成一个视频监视系统,终端负责采集图像,并将图像通过网线接入以太网或者通过3G传输到服务器端,服务器端完成图像显示、存储和处理功能。在服务器端可以将采集到的图像利用不同的智能识别算法可以实现对不同场合环境下智能监测的需求。即摄像头安装在需要监测的地方,接入以太网或者通过3G将图像传输给监控中心。 2视频监控系统功能设计 2.1 视频图像采集 通过摄像头采集视频图像,并将视频图像进行压缩编码。若采用高清摄像头,则图像可以达到D1(720*576)分辨率,视频压缩编码可以有很多种格式,如MPEG2、MPEG4、H.264等等,常用的是H.264格式,因为压缩率高,可减小文件大小,增加传输速率。我们采用的I.MX27平台是一个带硬件H.264编解码的CPU,采用H.264编解码不占用CPU资源,大大提高了CPU工作效率,很好的降低了系统功耗。 2. 2 视频图像本地存储和上传 摄像头采集到的图像可以选择本地存储和上传,也可以选择直接上传,选择哪种方式是根据用户需要和系统的配置决定的。本地存储的介质可以是SD卡,也可以是SATA硬盘,两

基于物联网的智慧农业系统研究_朱茗

基于物联网的智慧农业系统研究□朱茗浙江省公众信息产业有限公司 农业种植中,为了防治病虫害和追求产量,过量使 用、滥用农药和化肥已成为不争的事实,同时随着全球变 暖,各种极端气象条件频发,使脆弱的农业更加雪上加 霜。中国农业需要变革,变革要从源头抓起。将物联网技 术应用在农业中,可以实现智能化识别、定位、追踪、监控 和管理,是智慧农业和精细化生产、管理、决策的技术支 撑,是发展“智慧农业”的核心。 一、中国农业发展现状 我国人均耕地面积和人均水资源只有世界平均水平 的30%和25%,且现有耕地中2/3是中低产田,农田灌溉 水的有效利用率只有30% ̄40%(发达国家已达50%  ̄70%)。化肥、农药等生产资料投入水平高且利用率低,并 导致了农业生态环境污染和破坏,土壤沙化、碱化、盐渍 化严重,耕地单位面积产量与世界粮食高产国家相比甚 至要低一半以上,21世纪我国人口增长和土地资源减少 的矛盾不可逆转。我国农业信息技术经过多年的研究, 有一定基础,但与目前应用需求差距很大,在生产过程科学 管理、 农产品质量安全与溯源、农业远程技术服务,农民远程培训等方面的研究刚刚起步;农业种植结构的调整, 养殖业以及其他相关产业迅速发展,用于优质生产和标 准化养殖的智能管理信息系统刚开始起步;面向农村快 捷的网络接入服务和低成本智能化信息接入终端问题仍 未取得重要突破。 二、中国物联网发展现状 物联网技术涵盖范围极广,包括具备“内在智能”的 传感器、移动终端、智能电网、工业系统、楼控系统、家庭 智能设施、视频监控系统等、和“外在使能”(Enabled)的, 如贴上RFID、条形码标签的各种资产、携带无线终端的 个人与车辆等等“智能化物件或动物”或“智能尘埃”,通 过各种无线和/或有线的长距离和/或短距离通讯网络 实现互联互通(M2M)、应用大集成(GrandIntegration)、以及 基于云计算的SaaS营运等模式,在内网(Intranet)、专网 (Extranet)、和/或互联网(Internet)环境下,采用适当的信 息安全保障机制,提供安全可控乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、远程控制、安全防范、远程维保、在线升级、统计报表、决策支持、领导桌面等管理和服务功能,实现对“万物”的“高效、节能、安全、环保”的“管、控、营”一体化。物联网相关技术在中国已经广泛应用于交通、物流、工业、农业、医疗、卫生、安防、家居、旅游、军事等二十多个领域,在未来3年内中国物联网产业将在智能电网、智能家居、智慧城市、智慧医疗、车用传感器等领域率先普及,预计将实现三万亿的总产值。三、物联网在农业中的应用在大棚控制系统中,物联网系统的温度传感器、湿度传感器、PH值传感器、光传感器、离子传感器、生物传感器、CO2传感器等设备,监测环境中的温度、相对湿度、PH值、光照强度、土壤养分、CO2浓度等物理量参数,并通过基于Zigbee网络协议的无线设备将参数传送到标准网关设备,标准网关通过GSM、CDMA或者以太网将数据发送到服务器中进行分析控制,通过各种仪器仪表实时显示或作为自动控制的参变量参与到自动控制中,保证农作物有一个良好的、适宜的生长环境。远程控制的实现使技术人员在办公室就能对多个大棚的环境进行检测控制。采用无线网络传递测量得到的农作物的各种参数,可以为精准调控提供科学依据,达到增产、改善品质、调节生长周期、提高经济效益的目的。下一步的目标是一方面加入更多不同种类的传感器采集数据并加大采集频率,另一方面在云平台侧建立更多的数学模型,摸清不同地区、不同季节、不同农作物的最佳养殖规律,达到最优化品质、最优化质量的产品,并建立突然预案应对突发天气情况和其他一些突然情况对农作物生长的影响。四、小结与传统农业不能适应农业持续发展的需要相比,智慧农业可以实现高效利用各类农业资源和改善环境这一可持续发展目标,不但可以最大限度提高农业生产力,而且是实现优质、高产、低耗和环保的可持续发展农业的有效途径。【摘要】本文分析了中国农业的现状,以及物联网对当前农业生产的推进作用,并以农业养殖大棚为例,说明了物联网 在农业养殖大棚中实现智慧农业管理的过程。 【关键词】物联网智慧农业Zigbee传感器 参考文献[1]黄桂田.《物联网蓝皮书:中国物联网发展报告(2012 ̄2013)》社会科学文献出版社2013 [2]徐勇军.《物联网关键技术》电子工业出版社2012 [3]李道亮.《农业物联网导论》科学出版社2012 新聚焦ewFocusN19

物联网在农业的应用及其解决方案

物联网在农业的应用及其解决方案 农业物联网,即通过各种仪器仪表实时显示或作为自动控制的参变量参与到自动控制中的物联网。可以为温室精准调控提供科学依据,达到增产、改善品质、调节生长周期、提高经济效益的目的。 大棚控制系统中,运用物联网系统的湿度传感器、PH值传感器、光照度传感器、CO2传感器等设备,检测环境中的温度、相对湿度、PH值、光照强度、土壤养分、CO2浓度等物理量参数,保证农作物有一个良好的、适宜的生长环境。远程控制的实现使技术人员在办公室就能对多个大棚的环境进行监测控制。采用无线网络来测量获得作物生长的最佳条件。 农业物联网一般应用是将大量的传感器节点构成监控网络,通过各种传感器采集信息,以帮助农民及时发现问题,并且准确地确定发生问题的位置,这样农业将逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备。 农业物联网应用解决方案 一、智能农业大棚物联网解决方案系统简介 温室大棚在不适宜植物生长的季节,能提供生育期和增加产量,多用于低温季节喜温蔬菜、花卉、林木等植物栽培或育苗等。因此对种植作物生长环境的要求要精确的多。 大多数农户加温、浇水、通风等,全凭感觉。人感觉冷了就加温,感觉干了就浇水,感觉闷了就通风,没有科学依据。农业进入信息化时代后,对温室内部的空气温湿度、土壤温湿度、CO2浓度及光照等农业环境信息的采集也越来越重视。因此,将物联网技术引入温室大棚中

来,实现温室种植的高效和精准化管理。 农业物联网应用解决方案 图为:温室大棚种植图片 在温室环境里,单栋温室可利用物联网技术,采用不同的传感器节点和具有简单执行机构的节点(风机、低压电机、阀门等工作电流偏低的执行机构)构成无线网络来测量土壤湿度、土壤成分、PH值、降水量、温度、空气湿度和气压、光照强度、CO2浓度等来获得作物生长的最佳条件,通过模型分析、自动调控温室环境、控制灌溉和施肥作业,从而获得植物生长的最佳条件。 对于温室成片的农业园区,通过接收无线传感汇聚节点发来的数据,进行存储、显示和数据管理,可实现所有基地测试点信息的获取、管理和分析处理,并以直观的图表和曲线方式显示给各个温室的用户,同时根据种植植物的需求提供各种声光报警信息和短信报警信息,实现温室集约化、网络化远程管理。 此外,物联网技术可应用到温室生产的不同阶段,把不同阶段植物的表现和环境因子进行分析,反馈到下一轮的生产中,从而实现更精准的管理,获得更优质的产品。 二、智能农业大棚物联网解决方案的重要组成部分 1、数据采集 通过物联网系统可连接传感器采集土壤温度、湿度、养分含量(N、P、K)、PH值、降水量、空气温湿度、气压、光照强度等来获得作物生长的最佳条件,并根据参数变化实时调控或自动控制温控系统、灌溉系统等; 农业物联网应用解决方案

基于物联网的智能农业平台的设计与实现

基于物联网的智能农业平台的设计与实现 摘要:21世纪是物联网的时代,把物联网技术与农业相结合,不仅可以改变我 国传统农业落后的生产方式,同时,无论是在经济效益还是环境效益上都取得了 革命性的进步。给出了一个完整的智能农业平台的解决方案,包括平台设计目标,平台模块说明,以及设计思路和对该平台的实现,进行了详细的分析和说明。文 章主要是基于B/S的系统模式,运用了物联网的相关技术,构建了一个智慧农 业信息平台。通过智慧农业平台,可以实现高效率、便捷化的管理,大大减少了 投入成本,解放了劳动力。 关键词:物联网;智慧农业;智能农业平台 智能农业平台即借助物联网等信息技术手段,远程操作相关设备,按时、按 量地对指定位置完成一整套预定农事操作技术和管理的系统。具体监控采集的对 象有大棚内的温度、湿度、CO浓度、光照强度、土壤温湿度以及作物叶面的湿 度等相关环境参数,通过客户端对比采集对象参数与预设对象参数的区别,确定 操作指令,远程控制指定设备完成相关操作。该系统可以以最少的人力投入、最 小的能源消耗、最低的环境破坏,完成对控制对象定位、定时、定量的操作。 1基于物联网的智慧农业信息平台的相关技术 1.1农业物联网体系 平台业务层面技术采用分层结构实现,从低至高共包含如下五层:传感层、 传输层、业务层、应用层、用户层。 1.2系统开发模式 数据中心的主要功能在于为监测端提供应用服务,与上位机进行网络通信。 网络开发应用系统主要有两种模式:Client/Server客户端/服务端(c/s)模式和Brower/Server浏览器(B/S)模式。 1.3通讯技术 具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个执行绪,进而提升整体处理性能。因此,本系统选用是基于多线程背景的Socket技术 应用,可在有限的服务器资源内,同时并发地支持多终端采集、多业务入口查询 以及业务内部数据处理和应用。 1.4数据库技术 对于海量的信息,如何存储与处理取决于数据库技术。数据库技术在收集和 存储数据方面有着巨大的优势,因此采用SQLSERVER数据库,其中包括数据库建 表和数据库处理。 1.5HighCharts图线技术 High charts是一个用纯脚本编写的一个图表库。通过High charts技术,可以 将我们的数据以可视化的形式展示出来。一般来说,数据展示有五种基本的图线 型式:曲线图、饼图、柱状图、散点图、区域图等。High charts的界面简洁,又 纯脚本编写而成,不依赖于任何插件,运行速度较快。 2智能农业平台的解决方案 2.1智能农业平台设计目标 (1)实现的功能 智能农业解决方案可以实现的功能有:大棚内各路传感信息的存储、分析、 智能展示;阈值设置;智能报警;智能控制;身份验证及密码修改;账号与权限 管理;视频链接等。

基于物联网技术的现代智慧农业解决方案

基于物联网技术的现代智慧农业解决方案上世纪九十年代后,无线技术的广泛应用使得它在许多国民经济领域的应用研究获得迅速发展。尤其以Zibgee无线技术为主的物联网系统,使得精准农业的技术体系广泛运用于生产实践成为可能。精准农业技术体系的实践与发展,已经引起一些国家科技决策部门的高度重视。 那么什么是智慧农业了,根据维基百科上面的定义智慧农业主要有这些解释。 所谓“智慧农业”就是充分应用现代信息技术成果,集成应用计算机与网络技术、物联网技术、音视频技术、3S技术、无线通信技术及专家智慧与知识,实现农业可视化远程诊断、远程控制、灾变预警等智能管理。 智慧农业是农业生产的高级阶段,是集新兴的互联网、移动互联网、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。 “智慧农业”是云计算、传感网、3S等多种信息技术在农业中综合、全面的应用,实现更完备的信息化基础支撑、更透彻的农业信息感知、更集中的数据资源、更广泛的互联互通、更深入的智能控制、更贴心的公众服务。“智慧农业”与现代生物技术、种植技术等高新技术融合于一体,对建设世界水平农业具有重要意义。 根据最新研究结果显示,我国实施精准农业的近期目标,一方面是总结国外发展经验,根据中国的国情找准自己的切入点,另一方面切实做好有关基于Zigbee无线技术的物联网应用与研究开发,力求走出适合中国国情的精确农业的发展道路。 托普物联网是浙江托普仪器有限公司主要经营项目之一。托普物联网依据自身研发优势,开发了多种模块化智能集成系统。 1、传感模块:即环境传感监测系统。它依据各类传感设备可以完成整个园区或完成对异地园区所需数据监测的功能。

基于物联网的智能农业发展趋势

基于物联网的智能农业发展趋势 戴起伟[1] (江苏省农业科学院农业经济与信息研究所) 摘要:智能农业作为现代农业的重要标志和高级阶段,呈现出信息采集智能化、资源利用数字化、信息网络全球化、农产品电子商务分工专业化、信息应用全程化、生产管理智能化等发展趋势。物联网被视为战略新兴产业和新的经济增长点,对于智能农业未来发展具有着前所未有的应用前景,但目前在农业方面的应用还处于起步阶段,文章在分析了物联网技术对于提升农业信息化水平的重要作用后,提出了在农业方面的重点应用领域。 目前,信息技术正日益深刻地改变着世界经济格局、社会形态和人类生活方式,同时也被广泛应用于农业各个领域。智能农业或信息化农业是现代科学技术革命对农业产生巨大影响下逐步形成的一个新的农业形态,其显著特征是在农业产业链的各个关键环节,充分应用现代信息技术手段,用信息流调控农业生产与经营活动的全过程。在智能农业环境下,信息和知识成为重要投入主体,并能大幅度提高物质流与能量流的投入效率,智能农业是现代农业发展的必然趋势和高级阶段。在加快传统农业转型升级的过程中,智能农业将成为发展现代农业的重要内容,为加快发展农村经济,进一步提高农民收入提供新的经济增长极;为加快农业产业化进程,增强农业综合竞争力提供新的技术支撑。 1 智能农业是现代农业的重要标志和高级阶段 现代农业相对于传统农业,是一个新的发展阶段和渐变过程。智能农业既是现代农业的重要内容和标志,也是对现代农业的继承和发展。其基本特征是高效、集约,其核心是信息、知识和技术在农业各个环节的广泛应用。信息技术取代机械与人力,知识要素取代资本要

素和劳动要素,使得信息、知识成为驱动经济增长的主导因素,使农业增长从主要依赖自然资源转向主要依赖信息资源和知识资源。智能农业是低碳经济时代农业发展形态的必然选择,代表了农业发展的根本方向,符合人类可持续发展的愿望。 2 智能农业主要发展趋势 2.1 农作信息采集智能化、资源利用数字化 充分利用现代地球空间与地理信息技术、传感技术、手持便捷信息识别技术等获取与作物生产有关的各种生产信息和环境参数,对耕作、播种、施肥、灌溉、喷药和除草等田间作业进行数字化控制,使农业投入品的资源利用精准化,效率最大化。 2.2 农业信息网络全球化扩展 目前,信息技术已经深刻地渗透到世界的每一个角落。农业信息资源的获取和服务也正打破国界的限制,加速走向国际化和全球化。通过信息网络和各类媒体,农业信息在全世界的流量呈几何级数式扩张,流速也正以前所未有的方式进入高速时代。农业信息化深刻地影响着世界农业资源配制,助推农产品贸易的国际竞争日趋加剧。同时,农业信息资源数据库正向专业化、集成化、共享化和知识化管理方向发展,等等。 2.3 农产品电子商务分工专业化 网络和通讯技术的发展、电子商务交易的普及和成熟,使得通过网络销售农产品,可在瞬间完成信息流、资金流和实物流的交易,农产品电子商务已不再单是产品供求交易的操作,而是前延至产前订单、后续至流通配送等综合性的服务,即紧紧围绕产业链环节,在信息化管理的平台上实现信息共享、管理对接和功能配套。 2.4 农业信息传播多媒体化 视频制作与压缩技术、数字动漫技术、虚拟仿真技术、手机网络传媒技术等多媒体技术,具有传播快、覆盖广、形象生动、丰富多彩、易于操作等特点,为农业复杂问题的简化表达与传播提供了空前的便

智慧农业大棚物联网智能系统

智慧农业建设果蔬大棚物联网 项 目 方 案

前言 (4) 一、农业物联网在现代设施农业应用的意义 (5) 二、果蔬大棚物联网方案概述 (7) 2.1 系统设计原则 (7) 2.2 系统功能特点 (8) 2.3 系统组成 (9) 3.4 系统示意图 (10) 三、各子系统介绍 (11) 3.1 环境参数采集子系统 (11) 3.2 自动控制系统 (12) 3.3 视频监控子系统 (16) 3.4 信息发布系统 (16) 四、中央控制室及管理软件平台 (18) 4.1系统平台功能 (18) 4.2 数据采集功能 (20)

4.3 设备控制 (22) 4.4 视频植物生长态势监控功能 (23) 五、项目的需求 (26)

前言 物联网信息技术在2006 年被评为未来改变世界的十大技术之一,是继互联网之后的又一次产业升级,是十年一次的产业机会。总体来说,物联网是指各类传感器和现有的互联网相互衔接的新技术,物物相连,相互感知,若干年后,地球上的每一粒沙子都有可能分配到一个确定地址,它的各种状态、参数可被感知。2009 年8 月温家宝总理在无锡提出"感知中国",物联网开始在中国受到政府的重视和政策牵引。2010 年国家发布了"十二五"发展规划纲要,其中第十三章“全面提高信息化水平‘第一节’构建下一代信息基础设施”中明确提到:推动物联网关键技术研发和在重点领域的应用示范。在第五章“加快发展现代农业‘第二节’推进农业结构战略性调整”中提出:加快发展设施农业,推进蔬菜、果蔬、茶叶、果蔬等园艺作物标准化生产。提升畜牧业发展水平。促进水产健康养殖。推进农业产业化经营,促进农业生产经营专业化、标准化、规模化、集约化。推进现代农业示范区建设。第三节“加快农业科技创新”中提出:推进农业技术集成化、劳动过程机械化、生产经营信息化。加快农业生物育种创新和推广应用,做大做强现代种业。加强高效栽培、疫病防控、农业节水等领域的科技集成创新和推广应用,实施水稻、小麦、玉米等主要农作物病虫害专业化统防统治。加快推进农业机械化,促进农机农艺融合。发展农业信息技术,提高农业生产经营信息化水平。 2013 年国家一号文件更是着重讲述物联网技术在农业中的应用。物联网信息技术与现代农业的结合更加是国家重点推动的关键示范应用。

智能农业与物联网(论文)

农业复杂大系统的智能控制与农业物联网关系探讨 陈一飞 (中国农业大学信息与电气工程学院电子信息工程系,北京100083) 摘要:基于复杂大系统智能控制理念来研究农业大系统的控制智能问题是一个富有挑战意义的课题。本文基于大系统控制理论以及的智能控制的定义构造出以农业复杂大系统智能控制为核心的智能农业系统架构,并对智能农业的内涵进行了阐述,指出智能农业应该是以农业大系统智能控制为核心的闭环系统。同时按照网络结构体系论述了物联网的基本含义,首次对智能农业与农业物联网的关系进行了论述,并指出了农业物联网在智能农业大系统中的位置和作用,探讨了与智能农业大系统的接口问题。 关键词:智能农业农业物联网网络控制器 Discussing on Relation between Agricultural Internet of Things and Agriculture Complex Large System Intelligent Control Chen Yifei (Collage of Information & Electrical Power Engineering, China Agricultural University ,Beijing 100083,China) Abstract The study on Agriculture Complex Large System Intelligent Control (ACLSC) based on complex large systems cybernetics is an valuable researching content. In this paper, the frame of Intelligent Agriculture (IA) depending on large systems cybernetics and describing of intelligent control is presented, and we discussed the IA content. By the way, we indicated that IA must be close feedback control system with intelligent control. On the other hand, based on the network structure, the basic definition and frame of Internet of Things had been discussed too, and the relation between IA and Internet of Things had been researched firstly too. We designed the work position and function of Internet of Things in IA large system, and discussed the interface to connect IA system. Key words Intelligent Agriculture(IA), Agricultural Internet of Things, Network Controller 1 前言 进入21世纪后,特别是在我国十二五期间,如何使农业现代化更进一步、以及农业科技的发展支撑点在哪里等问题是农业工程界关注的话题。我国今后农业的发展是建立在农业物联网上、还是建立在发展智能农业、抑或其他方面上等都需要认真的研究。 回顾我国改革开放以来农业科技进步的脉络,无论是精准农业、数字农业、工厂化农业,还是后来提到更高层面上的农业信息化以及电脑农业等,似乎我们发现还没有很好的理顺彼此之间的关系,都是在跟着各自的概念和框架下在做各自的事情,还没有全面的、很好的从农业整体大系统角度把握农业科技的发展与技术进步[1]。十五、十一五期间、以及列入国家“863”计划的精准农业、智能化农业信息技术应用等取得了很好的研究成果。特别是2004年,我国组织实施了“数字农业科技行动”研究开发了一批实用性强的农业信息服务系统,各省地的农业信息网全面开通和附着于此的电脑农业和农业专家决策系统的普及标志着我

物联网在智慧农业中的应用

物联网在智慧农业中的应用 在传统农业中,灌溉、施肥、喷药,农民全凭经验和感觉。而如今,在智慧农业中,农作物浇水、施肥、打药时间,农作物的空气温度、空气湿度、酸碱度、光照、二氧化碳浓度、土壤水分,做到按需供给,一系列作物在不同生长周期的问题,都有信息化、智能化监控系统实时定量“精确”把关。智能农业、精准农业的发展,智能感知芯片、移动嵌入式系统、无线通信技术等物联网技术在现代农业中的应用逐步拓宽,作用显着,具体表现为:在监控农作物灌溉情况、土壤空气变更、畜禽的环境状况以及大面积的地表检测,收集温度、湿度、风力、大气、降雨量,有关土地的湿度、氮浓缩量、土壤污染和土壤pH 值等方面实现科学监测、科学种植, 帮助农民抗灾、减灾[1]. 在智慧农业中,可运用物联网的温度传感器、湿度传感器、PH 值传感器、光照传感器、CO2传感器等设备,检测环境中的温度、相对湿度、PH 值、光照强度、土壤养分、CO2浓度等参数,通过各种仪器仪表实时显示或作为变量参与到自动控制中,保证农作物有一个良好的、适宜的生长环境。采用物联网,特别是无线传感器网络来获得作物生长的最佳条件,可以为智慧农业提供科学依据,达到增产增收、改善品质、调节生长周期及提高经济效益的目的。 1 智慧农业 智慧农业是农业生产的高级阶段,是集新兴的互联网、移动通信网、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感器节点(环境温湿度传感器、土壤水分传感器、二氧化碳浓度传感器、光照强度传感器等)和无线传感器网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。 1.1 智慧农业定义 “智慧农业”也称为“智能农业”, 它充分应用现代信息技术、计算机与网络技术、物联网技术、音视频技术、3S 技术、无线通信技术及专家智慧与知识,实现农业可视化远程诊断、远程控制、问题预警等智能管理。智慧农业是以最高效率地利用各种农业资源,最大限度地降低农业成本和能耗、减少

物联网在农业中的应用

物联网在农业中的应用 农业具有对象多样,地域广阔,偏僻分散,远离都市社区,通信条件落后等特点,因此在多数情况下,农业数据信息的获取非常困难,随着电子技术,无线网络催生了物联网技术的发展,把物联网关键技术应用搭建在一个农业物联网智能化监控系统具有广阔的应用前景。 民以食为天,近年来,食品质量安全问题频发,农产品质量安全已经成为社会各界关注的焦点。农产品生产企业,流通企业,加工企业质量管理信息系统的缺失,是产生农产品质量安全问题的根本原因之一。因此,基于物联网搭建农产品供应链质量管理信息系统,能提高生态农业园内部的管理效率,加强农业生产,加工,运输到销售等全流程数据共享与透明管理,实现农产品全流程可追溯,对提高农产品的品牌建设进而增加农产品附加值,保证农产品质量安全具有十分重大的意义。 此外,农业生产过程中,避免不了天气因素的影响,如何做到恶劣天气的预警机制,从而做到提前防范进而减少损失?农业生产过程中,农产品生产者和市场需求之间的信息不对称,容易引发使农产品滞销,或人为的炒作,政府有关部门时候花很大力气去帮助促销或平抑也于事无补,如何规避这一信息不对称问题?农业生产过程中,大都凭经验生产,缺少专家指导,在遇到病虫害,天气因素,土壤生态变化等环境参数改变时如何应对?如何在这个时候引入专家指导?农业生产过程中如何配合国家政策的宏观调控和满足市场需求等? 物联网是继计算机、互联网与移动通信网之后的世界信息产业第3 次浪潮。近年来,随着智能农业、精准农业的发展,智能感知芯片、移动嵌入式系统等物联网技术在现代农业中的应用逐步拓宽,通过使用无线传感器网络可以有效降低人力消耗和对农田环境的影响,获取精确的作物环境和作物信息,从而大量使用各种自动化、智能化、远程控制的生产设备,足不出户就可以监测到农田信息,实现科学监测、科学种植,促进了现代农业发展方式的转变。笔者将物联网应用于农业,农业物联网技术的应用可以更好地控制农作物的生长环境,使之能够更好地适应作物的生长,提高农作物的产量和品质,有利于实现农作物的高产稳产,提高土地的产出率,提高农业抗御自然灾害的能力。农业物联网技术的推广应用,也是农业现代化水平的一个重要标志。农业物联网的快速发展,将会为中国农业发展与世界同步提供一个国际领先的全新的平台,也必将为传统产业改造升级起到巨大的推动作用。 1.何为物联网

基于物联网的智能农业系统设计

课程设计报告 (物联网技术与应用) 学院:电气工程与自动化学院 题目:基于物联网的智能农业系统设计专业班级:自动化131班 学号:2420132905 学生姓名:吴亚敏 指导老师:韩树人 时间:2016年4月30日

摘要 由于现代农业管理中农田的种植范围大、监控点设置多、布线复杂等,为此我们基于物联网技术对于当前的农业管理系统进行优化,研究开发了基于物联网技术的职能农业系统,并能够实现对管理区域内的农作物的土壤、环境、灾情预报、灌溉控制、温度控制在内的多项职能化的农业管理系统。 关键词:农业系统;物联网;系统设计

目录 摘要 (2) 第1章物联网技术的研究现状和发展情景 (1) 1.1研究现状 (1) 1.2发展趋势 (2) 第2章智能农业概述 (3) 第3章系统的需求分析 (4) 第4章系统的组成 (5) 第5章系统的开发平台设计 (6) 5.1无线传输协议选择 (6) 5.2硬件节点平台 (6) 5.3系统的软件设计 (7) 第6章系统调试 (8) 第7章心得体会 (9) 参考文献 (11)

第1章物联网技术的研究现状和发展情景 1.1研究现状 M2M技术、传感网技术及射频识别(RFID)技术、网络通信技术是物联网的关键技术。 (一)M2M技术。M2M技术通过实现机器与机器、人与人、人与机器之间的通信,与操作者共享了使机器设备、应用处理过程与后天信息系统提供的信息。M2M技术提供了传输数据的优良手段,使设备能够实时地在系统之间、远程设备之间、或个人之间建立无线连接成为可能。 (二)传感网技术。大规模无线传感网络技术、传感器及其智能处理技术的结合便是传感网技术。由于是一种检测装置,传感器能够感受到被测量的信息,并能将检测到的信息,按一定变换规律变换成电信号或其他所需形式的信息输出,以满足信息的存储、传输、显示、记录、处理等要求。实现自动控制与自动检测的首要环节是传感器,在实际应用中,传感器相当于人的“感觉器官。”新型技术的低能耗、小型化、可移动、低成本有点可以满足物联网的“物-物”相联需要,无线传感网能够在满足上述需要的前提下,提供具有自动修复功能和自动组网的网状网络,使无线网络具有初步的智慧功能。伴随着新技术革命的到来,全球已进入全新的信息化时代。在实际应用时,首先应解决的是如何获取准确可信的信息的问题,而在利用信息的过程中,传感器具有非常突出的地位,这是由于传感器是获取生产和自然领域中信息的手段和主要途径。 (三)射频识别(RFID)技术。通常,当特定的信息读写器通过带有电子标签的物品时,读写器激活标签,并向读写器及信息处理系统传送标签中的信息,从而完成信息的自动采集工作。一个典型的RFID系统是由读写器、RFID电子标签及信息处理系统组成的。信息处理系统根据需求承担相应的信息处理及控制工作。由于每个RFID标签都有一个唯一的识别码,如果它的数据格式有很多是互不兼容的,在闭环情况下,对企业的影响不是很大。

基于物联网的智慧农业发展与应用

基于物联网的智慧农业发展与应用 顿文涛1, 赵玉成2,袁帅3,马斌强1,朱伟1,李勉1,袁超1,赵仲麟1(1.河南农业大学,河南郑州450002;2.河南省农业机械试验鉴定站,河南郑州450008; 3.四川农业大学机电学院,四川雅安625014) 摘要:本文研究并论述了智慧农业的概念、特点和架构,结合物联网技术,分析了基于物联网的智慧农业在国内外的研究情况与典型应用,事实表明,物联网技术在智慧农业领域具有良好的发展前景。关键词:物联网;传感器;无线传感器网络;智慧农业;应用中图分类号:S126 文献标识码:A 文章编码:1672-6251(2014)12-0009-04 The Development and Application of Wisdom Agriculture Based on the Internet of Things DUN Wentao 1, ZHAO Yucheng 2,YUAN Shuai 3,MA Binqiang 1,ZHU Wei 1,LI Mian 1,YUAN Chao 1,ZHAO Zhonglin 1 (1.Henan Agricultural University,Henan Zhengzhou 450002; 2.Henan Agricultural Mechanical Test Appraisal Station,Henan Zhengzhou 450008; 3.College of Mechanical and Electrical Engineering,Sichuan Agriculture University,Sichuan Ya ′an 625014) Abstract:This paper studies and discussed the concept and characteristics and architecture of wisdom agriculture,and analyzed the domestic and overseas research situation and typical applications of wisdom agriculture based on the Internet of Things technology.The fact showed that Internet of things technology had bright development prospects in the field of wisdom agriculture.Key words:Internet of Things;sensor;wireless sensor network;wisdom agriculture;application 基金项目:国家自然科学基金项目(编号:31100067);河南农业大学博士科研启动项目(编号:30200345)。 作者简介:顿文涛(1980-),男,工程师,研究方向:计算机网络安全、传感器技术。通信作者:赵仲麟,男,副教授,研究方向:化学生物学、蛋白质工程、信息技术。收稿日期:2014-11-04 农业网络信息 AGRICULTURE NETWORK INFORMATION ·农业信息化· 2014年第12期 在传统农业中,灌溉、施肥、喷药,农民全凭经验和感觉。而如今,在智慧农业中,农作物浇水、施肥、打药时间,农作物的空气温度、空气湿度、酸碱度、光照、二氧化碳浓度、土壤水分,做到按需供给,一系列作物在不同生长周期的问题,都有信息化、智能化监控系统实时定量“精确”把关。智能农业、精准农业的发展,智能感知芯片、移动嵌入式系统、无线通信技术等物联网技术在现代农业中的应用逐步拓宽,作用显著,具体表现为:在监控农作物灌溉情况、土壤空气变更、畜禽的环境状况以及大面积的地表检测,收集温度、湿度、风力、大气、降雨量,有关土地的湿度、氮浓缩量、土壤污染和土壤 pH 值等方面实现科学监测、科学种植,帮助农民抗灾、减灾[1]。 在智慧农业中,可运用物联网的温度传感器、湿 度传感器、PH 值传感器、光照传感器、CO 2传感器等设备,检测环境中的温度、相对湿度、PH 值、光照强度、土壤养分、CO 2浓度等参数,通过各种仪器仪表实时显示或作为变量参与到自动控制中,保证农作物有一个良好的、适宜的生长环境。采用物联网,特别是无线传感器网络来获得作物生长的最佳条件,可以为智慧农业提供科学依据,达到增产增收、改善品质、调节生长周期及提高经济效益的目的。 1智慧农业 智慧农业是农业生产的高级阶段,是集新兴的互 联网、移动通信网、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感器节点(环境温湿度传感器、土壤水分传感器、二氧化碳浓度传感器、光照强度传感器等)和无线传感器网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、

相关文档
相关文档 最新文档