文档库 最新最全的文档下载
当前位置:文档库 › 土压平衡盾构施工地层沉降控制技术_secret

土压平衡盾构施工地层沉降控制技术_secret

土压平衡盾构施工地层沉降控制技术_secret
土压平衡盾构施工地层沉降控制技术_secret

土压平衡盾构施工地层沉降控制技术

1 概述

土压平衡盾构由盾壳、刀盘及刀盘驱动装置、密闭土舱、盾构千斤顶、螺旋输送机、管片拼装机械手、自动导向系统、盾尾密封装置和人闸等组成,基本工作原理为:盾壳支承着围岩并保护着刀盘旋转,在千斤顶推力的作用下,刀盘上被切割、破碎的碴土,经过开口进入密闭土舱内,当密闭舱内的泥土压力与开挖面压力取得平衡的同时,端部伸入土舱下部的螺旋输送机排土,控制螺旋输送机的转速或者盾构机的推进速度,达到土舱内的泥土压力与开挖面压力的动态平衡。碴土通过电瓶车拖碴车运至洞外。

国内外实践表明,即使在当前盾构施工技术日趋完善的今天,在掘进过程中也难以避免地面隆陷及地层水平位移情况的发生,客观因素主要有:

①地质勘探资料与土层实际情况存在偏差,且地质情况往往复杂多变;

②由于规划不利,盾构隧道经常近距离的从大量地面建筑物基础下面通过;在一些老城区,隧道上方分布着许多建筑年代久远的对地层变形十分敏感的地下构筑物、地面建筑物;

③盾构施工是一个系统工程,施工中间环节多、影响因素多,稍有不慎,容易出现控制不到位的情况;

④掘进施工本身就是一个主动对围岩扰动的过程;

⑤现在对环境控制的要求越来越严格等。

由盾构施工引起的地层沉降过大时,可导致地表建筑物倾斜、开裂、倒塌;地下管线断裂;地面凹陷、隆起;桥面开裂等。引起的地层水平位移过大时可能引起地下桩基偏移及管线与通道错位,甚至毁坏,对周围环境产生了不利影响。因此有必要对盾构施工引起的地层变形情况进行研究,提前采取相应的预防措施,使施工安全顺利进行,周围环境少受影响。

2盾构施工引起地面沉降原因分析

通过对盾构施工过程的分析,可得盾构施工引起地面沉降的原因主要有以下3个:

2.1盾构掘进时的地层损失

掘进时地层损失的产生主要有4个方面的原因:

(1)刀盘前方土体的水土压力没有得到及时有效地平衡,使盾构前方土体被迫处于不稳定状态。这种地层损失极为有害,是地面沉降产生的主要原因之一。

(2)管片外侧与土层之间的间隙没有及时有效地充填,产生地层损失,出现地面沉降。

1)管片要在盾壳内安装,而盾壳为了抵御周围地层的水土压力势必需要一定的厚度,其钢壳的刚度才能满足抵挡水土压力的要求,此厚度一般为5~8cm。

2)土层可能存在软硬不均等现象,为降低盾构机掘进时的姿态偏差的影响,在管片安装时,需在管片与盾壳之间留有一定的间隙,一般约为3cm左右。

3)单从机械技术角度而言,盾构机千斤顶的推力可以做到很大,然而管片砼的抗压强度是有限的,因此在依靠已拼管片提供反力的情况下,盾构机的推力不可能设计得很大,为了减少推进时周围地层对盾壳的摩阻力,降低千斤顶推力的设计,一般将盾体做成梭形,即由刀盘向盾尾做成前大后小的梭子状,以利于盾机推进时减少摩阻力,盾体前后半径一般相差在3~5cm左右。

4)盾体长度为8m左右,因此即使在设计有铰接装置的情况下,在转弯时要使盾体能顺利完成转弯施工,常常需要进行一定的超挖施工。

5)掘进时刀盘切削土体连带的扩孔效应。

综合以上1)~5),可知管片外侧与土体之间的间隙一般约在11cm左右,这种间隙的存在是必然的,由此产生的地层损失可通过同步注浆等施工措施得到弥补,但如果得不到及时填充、或者填充不饱满等,管片周围地层产生将产生沉降。(3)改变推进方向:盾构在曲线推进、蛇形纠偏、抬头、栽头过程中,实际开挖断面不是圆而是椭圆,盾构的壳板与围岩之间不均匀摩擦,引起地层损失,出现地面沉降。盾构轴线与隧道轴线偏角越大,则对土体扰动和超挖程度而引起的地层损失也越大。

(4)其他因素:在盾构处于停顿状态或管片拼装过程中由于液压阀止锁作用不好,导致盾构后退,以致盾尾密封装置不佳,导致土砂从盾尾流入隧道内造成砂土或水渗漏,加大了地层损失。或者由于螺旋输送器密封及止水性能不佳、土舱内土体改良不善,致使前方土层中的地下水从螺旋输送器大量涌出,造成地层损失。

2.2 隧道周围地层受到扰动或剪切破坏后的再固结。

比如同步注浆对地层的挤压等。

2.3局部地段存在软弱围岩,使得盾构隧道成型后在车辆荷载等的作用下有可能产生不均匀沉降。

3某盾构法隧道施工地层沉降概况

某盾构隧道埋深 8.8 m~ 13.6m,掘进地层以全风化、强风化、中风化地层为主,隧道上覆地层为杂填土、粉质粘土、砂层,地下水位1.5米左右。隧道管片内径5.4m,外径6m,管片宽度1.2m,采用通缝拼装,管片注浆采用注浆孔及时注浆方式,本段采用土压平衡盾构机进行施工。

施工期间地面沉降点如下布置:横向监测断面间距20~30m,特殊地段据实际情况调整。同一断面内在隧顶中心、两隧道中间及隧道侧边以外5~6m布点,此段共主要布设32个测点,测点编号S6040~S6072。施工期间除一点的沉降值达31.5mm,其余绝大部分测点沉降值均在7mm以内,周边建筑物、城市道路等基本未受影响,施工过程中在平均每天8~10米的掘进速度情况下均处于安全状态,产生了良好的社会效益。

4 盾构隧道施工地表沉降量测结果分析

4.1 盾构施工过程中地面沉降的变化规律

(1)就引起的地层变形特征来说,盾构法与其它暗挖法的区别不是很大,且纵向、横向沉降曲线与PECK公式计算的理论沉降曲线比较接近。如图4.1-1、

盾构施工近距离下穿地铁线路沉降控制技术

盾构施工近距离下穿地铁线路沉降控制技术 发表时间:2019-04-28T10:00:34.173Z 来源:《基层建设》2019年第6期作者:史天增[导读] 摘要:地铁工程的大量建设,让城市中盾构施工变得越来越多,如何控制盾构施工下穿地铁线路的沉降是施工中的一个重难点,对于保证地铁施工的高质量和安全性具有重要意义。 中铁十一局集团城市轨道工程有限公司摘要:地铁工程的大量建设,让城市中盾构施工变得越来越多,如何控制盾构施工下穿地铁线路的沉降是施工中的一个重难点,对于保证地铁施工的高质量和安全性具有重要意义。本文从盾构施工下穿地铁线路的五个阶段出发,结合工程实例,对不同阶段采取了有针对性的控制措施,保障了地铁施工的安全。 关键词:盾构施工;下穿地铁线路;沉降控制 一、工程概况 某市地铁区间为单洞单线区间,区间起点为机场北站,终点为吊出井,起点里程为YDK41+437.900,终点里程为YDK42+343.576(ZDK42+335.972),区间长度905.676m(左线898.072m),线路埋深在19m~27m之间,最小线间距12.05m。区间线路自机场北站先后以24‰、28‰及4‰坡度向下直至吊出井。机~吊区间右线在机场北站大里程端(对应里程:DK41+437.9)始发掘进,始发直线掘进211m后在里程DK41+659.8(对应环号:142环)处先后下穿既有运营的11号线右线、11号线入场线、11号线出场线及11号线左线。 盾构施工近距离下穿地铁线路是施工难点,特别是结合地下不良地质条件的影响,使得土体易受施工影响发生沉降,施工控制难度加大。 二、盾构施工下穿地铁线路沉降控制措施分析 盾构施工造成的土体沉降主要是因为施工过程对于土体的扰动和水土流失造成的。其可以分成五个阶段,第一阶段,盾构施工还未达到断面,地下水位降低导致沉降;第二阶段,盾构通过该断面前,因控制不足,导致前方土塑性变形引起沉降;第三阶段,盾构通过断面,由于刀盘与盾体之间存在15mm间隙及超挖、纠偏、盾构外侧与土体之间接触导致沉降;第四阶段,盾构通过该断面后产生的弹塑性变形,因衬砌处理不当导致的沉降;第五阶段,盾构通过断面后,发生的后续沉降。针对沉降五阶段分别采取不同控制措施: 1.前期沉降控制措施 为保证盾构顺利掘进上软下硬地层,在出入线与正线之间用A600@150垂用高压旋喷桩对隧道上软下硬段进行预加固处理。加固区域和深度见下图所示。 图1 盾构通过区域加固示意图盾构机下穿11 号线隧道前,在11号线隧道出入线洞内对11号线隧道下方土体进行注浆加固。注浆范围: (1)隧道深度范围内,加固范围为:既有地铁11号线隧道底部至强风化花岗岩岩面,若强风化花岗岩岩面位于机~吊区间隧道拱顶以下,则加固至机~吊区间隧道顶。 (2)在地面上使用WSS斜孔注浆对下穿11号线正线影响区进行使用WSS注浆进行预加固处理。 2.开挖面沉降控制措施 盾构掘进开挖面沉降主要通过土压控制、出土量、掘进参数调整进行控制。为了保证开挖面的稳定,保持开挖面土压平衡、对土仓压力进行实时监测,对土压设定进行试验。根据开挖面土压平衡、控制出土量。对总推力、推进速度、刀盘扭矩、千斤顶压力进行监测并分析其随地层条件变化的规律。 3.盾构通过时沉降控制措施 本工程选用海瑞克盾构机,刀盘设计直径为6980mm,前盾直径为6950mm,刀盘较盾体直径大30mm,为减少该阶段沉降,应尽量缩短盾体通过时间,因此需保证盾构能连续掘进,防止盾构机发生不必要的停机。而当盾构机应特殊原因在下穿地铁期间时,通过盾构机盾体上的径向孔向盾体周边注入厚浆土,以填充盾体周边的孔隙,减小盾体通过阶段的沉降。 4.盾尾空隙沉降控制措施 (1)同步注浆 盾尾与管片脱离后,管片与土体间会出现14cm建筑孔隙,掘进过程中盾尾同步注浆管在建筑孔隙中注入同步浆液填充,以防止盾尾与管片脱离后土体坍塌,造成地面沉降过大。 ①注浆量 同步注浆量理论上是充填盾尾建筑空隙,但同时要考虑盾构推进过程中的纠偏、浆液渗透(与地质情况有关)及注浆材料固结收缩等因素。注浆量按下式进行计算: Q=V?λ 式中: Q——注入量(m3) λ——注浆率(取1.2~1.5,曲线地段及沙性地层段取较大值,其它地段根据实际情况选定) V——盾尾建筑空隙(m3)

武汉地铁2号线盾构施工对地表沉降影响分析

武汉地铁2号线盾构施工对地表沉降影响分析 【摘要】对武汉地铁2号线盾构掘进施工过程中地表沉降监测数据统计,并根据Peck理论进行拟合对比分析,得到盾构施工引起纵横断面地表沉降的特点:纵向上,盾构机切口前30m以内和后50m以内为影响区域,其中又以切口后50m为显著影响区,盾构通过该区域产生的沉降占总沉降量的80%~90%,盾构对某断面上影响范围在沿盾构中心轴线向左右两侧延伸10~18m;对武汉粉质黏土夹粉土粉砂层,盾构掘进引起的地表沉降数据累计变化控制指标宜为-40mm,盾构机切口通过监测断面6~20m范围内单次平均变化速率控制值宜为-15mm/d。 【关键词】地铁;盾构施工;地表沉降;Peck公式 武汉汉口地区工程地质、水文地质非常复杂,既有深厚软土,又有粉土、粉砂、互层及承压水的影响。在此种地质条件下进行地铁盾构施工,对变形控制有更加严格的要求。本文结合Peck理论对武汉地区盾构施工引起地表沉降变化情况进行初步分析,以期得到适用于武汉特殊地质情况下盾构施工对地表扰动的沉降控制标准。 1、工程概况 武汉地铁2号线一期工程某区间位于汉口,线路周边各种建筑物密集、地下管线密布,场地地貌为长江北岸冲积I级阶地。盾构起讫里程为:CK4右+743.906~CK5右+758.399,右线长1 014.493m,左线长1 017.576m,总长2 032.069m。区间设一个联络通道,与泵房合建,里程为:CK5(右)+220.000;设有2个平面曲线,最小曲线半径700m,线间距12~15m。线路最大纵坡坡度14‰,最小坡度2‰,区间结构平均覆土厚度约11m。 该区间隧道为外径6m、内径5.4m、管片拼装衬砌的单洞圆形隧道,管片环宽1.5m,管片采用C50,P12混凝土。 区间左线掘进采用新购法国维尔特EPB盾构机,开挖直径6 280mm,护盾直径6 262mm,主机长9.5m,整机长约77m,盾构及后配套总重450t(主机约300t),最小转弯半径250m,最大坡度35‰,整机使用寿命10km。 2、水文地质条件 盾构区间地层物理力学指标如表1所示。盾构隧道掘进地层主要在③4,③5层。地层静止水位埋深3.8m左右,且与长江、汉江有较密切的水系联系,整个盾构施工全部在地下水位以下。 3、地表沉降监测方法 3.1监测点布置 隧道纵向上沿中心轴线每隔20m布设一个监测断面;横向上,每个断面沿轴线中心点向两边每隔3m布设一个监测点,共5个。为减小路面结构对观测效果的影响,所有沉降监测点均埋设于原状土层内,由套管保护至地面。监测点埋深约1.5m,到原状土为止。

土压平衡盾构与泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的结构原理 傅德明 上海市土木工程学会 1 土压平衡盾构的结构原理 土压平衡盾构的基本原理 土压平衡盾构属封闭式盾构。盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。当土体充满土舱时,其被动土压与掘削面上的土、水压基本相同,故掘削面实现平衡(即稳定)。示意图如图所示。由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。由装在螺旋输送机排土口 处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。 1.1.1 稳定掘削面的机理及种类 土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。通常可分为粘性土和砂质土两类,这里分别进行叙述。 1.1.1.1 粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2 砂质土层掘削面的稳定机理 就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。 1.1.1.3 土压盾构的种类 按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。 表1 土压盾构的种类 图1 土压盾构基本形状

土压平衡盾构施工工艺作业指导书

土压平衡盾构施工工艺 作业指导书 3.6.1 工艺概述土压平衡盾构施工中,由刀盘切下的弃土进入土仓,形成土压,土压超过预先 设定值时,土 仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。 3.6.2 作业内容一、启动皮带机、刀盘、螺旋输送机等机电设备,根据测量系统面板上显示的盾 构目前滚动 状态选择盾构旋向按钮,一般选择能够纠正盾构滚动的方向;开启螺旋输送机的出渣口仓门并开 始推进。二、根据测量系统屏幕上指示的盾构姿态,调整各组推进油缸的压力至适当的值,并逐渐增 大推进系统的整体推进速度。三、在盾构的掘进过程中,值班工程师及设备主管人员随时注意巡检盾构的各种设备状态, 如泵站噪声情况,油脂及泡沫系统原料是否充足,轨道是否畅通,注浆是否正常等。操作室内主司机应时刻监视螺旋输送机出口的出渣情况,根据测量系统屏幕上显示的值调整盾构的姿态。发现问题立即采取相应的措施。 四、掘进完成后停止掘进按以下顺序停止掘进:停止推进系统、逐步降低螺旋输送机的转速至零、停止螺旋输送机、关闭螺旋输送机出渣口仓门、停止皮带机、停止刀盘转动。 3.6.3 质量标准及验收方 法 1、盾构本体滚动角不大于3度。 2、盾构轴线偏离隧道轴线不大于50mm。 3、盾构推进过程中壁后注浆不小于设计方量,设计方量根据地质情况、地表监测情况调整。 4、根据横向偏差和转动偏差,应采取措施调整盾构姿态,防止过量纠偏。 5、盾构停止掘进时应采取适当措施稳定开挖面,防止坍塌。 6、必须对盾构姿态和管片姿态进行人工复合测量。 3.6.4 工艺流程图以两趟列车完成一个 掘进循环为例。 - 221 -

盾构下穿建筑物沉降分析与控制技术研究-本科毕业论文

盾构下穿建筑物沉降分析与控制技术研究-本科毕业论文

中国矿业大学(北京) 本科生毕业设计(论文) 中文题目:盾构下穿建筑物沉降分析与控制技术研究 英文题目:Research on Subsidence Analysis and the Relevant Encountering Measures for TBM undergoing the Buildings 姓名:学号: 学院: 专业:班级: 指导教师:职称: 完成日期: 2012 年 05 月 31 日

中国矿业大学(北京)本科生毕业论文任务书 学院专业 班级学生姓名 任务下达日期:2012年1月18日 完成日期:2012年5月31日 题目:盾构下穿建筑物沉降分析与控制技术研究 专题题目: 主要内容和要求: 1、盾构工法的发展和应用: ①盾构工法发展概况。 ②盾构工法在中国的应用。 2、盾构施工沉降问题的提出: ①阐述对盾构施工沉降的认识。 ②国内外盾构施工沉降分析及控制技术研究现状。 3、对盾构下穿建筑物沉降问题的认识: ①简述盾构下穿建筑物的安全风险。 ②对盾构下穿建筑物沉降规律进行分析与归纳。 4、盾构施工引起建筑物沉降控制技术分析: ①分析盾构施工引起建筑物沉降的主要影响因素。

②阐述控制建筑物沉降的方法及其适用条件和优缺点。 ③工程实例分析与研究。 5、结论和展望: ①谈谈自己对盾构下穿建筑物的理解,通过研究人们对盾构下穿建筑物沉降的分析、控制和处理方法得出自己的结论以及对今后发展趋势的展望。 ②对完善盾构下穿建筑物沉降控制方法以保证施工安全,提出自己一家之言。

院长签字:指导教师签字:

盾构法施工引起地面沉降原因分析及防治措施

盾构法施工引起地面沉降原因分析及 防治措施

盾构法施工引起地面沉降原因分析及控制方法进入21世纪,世界经济的迅猛发展使城市化建设得到了大幅度的提速。当前,人口不断地向城市聚集,使城市人口和建筑的密集度快速上升,造成能被利用的地面空间越来越少,因此,当今城市现代化建设的重要课题之一便是开发地下空间,为人类创造价值。但各种用途的管线被布置在地下,这便产生了在地下工程施工背景下的一种最佳方法——盾构法。盾构法施工虽然优点颇多,可是也存在诸多问题。本文就盾构法施工过程中引起的地面沉降问题展开讨论,分析产生的原因及寻找控制方法。 一,地面沉降产生原因 1、地层隆沉的发展过程 盾构推进引起的地面沉降包括五个阶段:最初的沉降、开挖面前方的沉降、盾构机经过时沉降、盾尾空隙的沉降以及最终固 结沉降,如图l所示。 第一阶段:最初的沉降。该压缩、固结沉降是因为地基有效上覆土层厚度增加而产生的沉降,也是盾构机向前掘进时因为地下水水位降低造成的。指从盾构开挖面距地面沉降观测点还有一

定距离(约3~12m)的时候开始,直至开挖面到达观测点这段时间内所产生的沉降。第二阶段:开挖面前方的沉降(或隆起)。这种地基塑性变形是由土体应力释放、开挖面的反向土压力、或机身周围的摩擦力等作用而产生的。它是从开挖面距观测点约几米时开始至观测点处于开挖面正上方这段时间所产生的沉降(或隆起)。第三阶段:盾构机经过时沉降。该沉降是在土体的扰动下,从盾构机的开挖面到达测点的正下方开始到盾构机尾部经过沉降观测点该段时期产生的沉降(或隆起)。第四阶段:盾尾空隙沉降。该沉降产生于盾尾经过沉降观测点正下方之后。土的密实度下降,应力释放是其土力学上的表现。第五阶段:固结沉降,它是一种由地基扰动所产生的残余变形沉降。经前人研究发现,第一阶段沉降占总沉降的0~4.5%,第二阶段沉降占总沉降的0~44%,第三阶段沉降占总沉降的15~20%,第四阶段沉降占总沉降的20~30%,第5阶段沉降占总沉降的5~30%。 2、地表沉降的因素影响分析 该因素影响分析的平台是当前使用较为广泛的大型三维有限元分析软件ANSYS,盾构开挖面掘进引起的地表沉降的客观因素包括盾构直径、土体刚度、隧道埋深、施工状况等设计条件;而其主观因素包含施工管理、盾构机的选用形式、盾尾注浆、辅助施工方法等。下面对盾尾同步注浆、覆土厚度、管片宽度、掌子面顶进压力、土体弹性模量和盾构直径六个方面的因素进行分析。

土压平衡盾构施工技术难点及处理措施

土压平衡盾构施工技术难点及处理措施 【摘要】土压平衡盾构以其高效、安全、环保等优点,已被广泛应用于地铁施工中,虽然技术成熟,但施工中一些常见的问题,施工方依然应当采取预防及处理措施,从而确保地铁工程的施工质量。本文根据实际工作经验,对施工中几个常见的难题探讨了其预防及处理措施。 【关键词】土压平衡盾构;盾构法隧道;事故预防;处理 一、盾构刀盘结泥饼问题 盾构机穿越粘土地层时,如掘进参数不当,则刀盘和土仓会产生很高的温度,这样粘土在高温、高压作用下易压实固结成泥饼,特别是刀盘的中心部位。当泥饼产生,最终会导致盾构无法掘进。 施工中采取的主要技术措施为:1)施工前分析隧道范围内的地层情况,在到达此地层前把刀盘上的部分滚刀换成齿刀,增大刀盘的开口率。3)合理增加刀盘前方泡沫的注入量,增大碴土的流动性,减小碴土的黏附性,降低泥饼产生的几率。5)必要时螺旋输送机内也要加入泡沫,以增加渣土的流动性,利于渣土的排出。6)如果刀盘产生泥饼,可空转刀盘,使泥饼在离心力的作用下脱落,施工过程中确保开挖面稳定。7)如上述方法均未能奏效,则可采用人工进仓处理的方式清除泥饼,人工进仓处理前如掌子面地层软弱,则需进行预加固。 二、桩基侵入盾构隧道 城市地铁线路规划设计应避开重要建(构)筑物、避开建筑物的桩基,但城市中心区内房屋建筑较为密集,要求线路选线时避开所有的建筑物是不现实的,因此难免会有一些建筑物桩基侵入隧道,由于许多桩基为钢筋混凝土结构,盾构机无法通过,需要对桩基进行拆除。针对侵入盾构隧道的桩基,采取的措施为:1)具有承载力的桩基,采取桩基托换方法。2)大竖井暗挖拆除桩基方法。3)小竖井开挖分区拆除桩基方法。4)人工挖孔+暗挖横通道拆除桩基方法。 深圳市地铁龙岗线西延段3153标盾构区间下穿燕南人行天桥,开工前该桥地表以上部分已经拆除,但桩基并没有拆除。调查资料显示共有8根直径为1.2m 的人工挖孔桩侵入右线隧道,盾构机无法安全、顺利通过。为了使侵入隧道的桩基不对盾构施工造成影响,采用比原桩基直径大的人工挖孔桩自地表而下来破除侵入隧道范围内的桩基。燕南人行天桥与盾构区间隧道位置关系如图所示。侵入隧道桩基与隧道纵面位置关系如图1和图2所示。 图1 燕南人行天桥与盾构区间隧道位置关系图 图2 侵入隧道桩基与隧道纵面位置关系图

土压平衡盾构施工工艺

16土压平衡盾构施工工艺 16.1总则 16.1.1适用范围 本标准适用于采用土压平衡式盾构机修建隧道结构的施工。 16.1.2编制参考标准及规范 16.1.2.1地下铁道工程施工及验收规范(GB 50299-1999)。 16.1.2.2地下铁道设计规范(GB 50157-2013)。 16.1.2.3铁路隧道设计规范(TB10003-2016)。 16.1.2.4盾构掘进隧道工程施工验收规范。 16.1.2.5公路隧道施工技术规范(JTJ042-94)。 16.1.2.6公路工程质量检验评定标准(JTGF80/1-2004)。 16.2术语 16.2.1土压平衡式盾构 土压平衡盾构也称泥土加压式盾构,它的基本构成见图16.2.1。在盾构切削刀盘和支承环之间有一密封舱,称为“土压平衡舱”,在平衡舱后隔板的中间装有一台长筒形螺旋输送器,进土口设在密封舱内的中心或下部。用刀盘切削下来的土充填整个

16.2.2 端头加固 为确保盾构始发和到达时施工安全,确保地层稳定,防止端头地层发生坍塌或涌漏水等意外情况,根据各始发和到达端头工程地质、水文地质、地面建筑物及管线状况和端头结构等综合分析,确定对洞门端头地层加固形式。 16.2.3 盾构后座 盾构刚开始掘进时,其推力要靠工作井井壁来承担。因此,在盾构与井壁之间需要设传力设施,此设施称为后座。 16.2.4 添加材 采用土压平衡盾构掘进时,为改善土体的流动性防止其粘附在盾构机上而注入的一些外加剂。添加材的功能是:辅助掘削面的稳定(提高泥土的塑流性和止水性);减少掘削刀具的磨耗;防止土仓内的泥土压密粘附;减少输送机的扭矩和泵的负荷。 16.3 施工准备 16.3.1 技术准备 16.3.1.1 根据隧道外径、埋深、地质、地下管线、构筑物、地面环境、开挖面稳定及地表隆陷值等的控制要求,经过经济、技术比较后选用盾构设备。盾构选型流程如图16.3.1.1所示。 16.3.1.2 认真熟悉工程设计文件、图纸,对工程地质、水文地质、地下管线、暗

盾构近距离下穿既有隧道沉降控制技术

盾构近距离下穿既有隧道沉降控制技术 盾构近距离下穿既有隧道沉降控制技术 摘要:深圳地铁3号线购物公园站~福田站区间盾构施工需下穿已运行的1号线隧道,其中两隧道最小净距为1.23米。通过对工程现场条件综合分析及力学模型研究和计算,综合各方论证结果,确定施工方案并进行盾构施工关键技术研究,为下穿施工中提供全面的技术参数,施工完成后,既有运行线内各项控制指标得到了有效控制,未对已运行线结构及道床、轨道产生不利影响。 关键词:盾构隧道;实时监测;控制指标;参数;沉降 中图分类号:U456.3文献标识码:A 文章编号: 1前言 1.1工程背景 深圳地铁3号线购物公园站~福田站区间右线下穿隧道与正在 运营的深圳地铁1号线隧道之间的最小净距为1.46 m,左线最小净距为1.23 m。区间下穿隧道主要位于全风化花岗岩层和强风化花岗岩层,隧道覆土厚度约为18m,线路坡度为-5‰,采用通用型管片,管片外径6.0m,内径5.4m,管片厚度300mm,管片宽度1.5m,分块数为6块(一块封顶块、两块邻接块、三块标准块)。 1.2难点及风险分析 1、技术难点 新建地铁与下穿的既有运行线最小净距1.23米,盾构掘进对既有运行线影响较大,根据深圳市地铁公司《城市轨道交通安全保护区施工管理办法(暂行)》规定,运营线路轨道竖向变形±4mm,两轨道横向高差<4mm,水平及水平三角坑高低差<4mm/10m,轨距+6mm~-2mm;控制指标严格,对盾构掘进控制要求高。 2、工程安全方面存在的风险 正在运营的地铁1号线因沉降过大影响营运,甚至造成停运的风

险,社会责任重大;下穿区域全强风化地层中存在球状风化体的风险;盾构机选型及后配套设备故障导致停机引起的安全风险。 2施工模型研究及方案确定 2.1施工模型研究 1、施工力学行为数值分析―力学模型 1)正交段最小净距仅为1.2m,上洞埋深为10.6m; 2)综合判定围岩级别为Ⅴ级,夹土体围岩按加固考虑; 3)主要模拟新建隧道开挖对既有1号线运营线隧道的影响; 4)采用FLAC3D进行力学分析。 图1力学模型示意图 2、施工力学行为数值分析―计算结果 1)地表沉降为7.7mm,既有隧道(1号线)最大沉降3.9mm,附加拉应力达到1.25MPa。 2)上下两洞之间地层的最大主应力值将达到0.25MPa,下洞(3号线)最大轴力为616kN,最大弯矩为28kN?m,均位于两侧边墙部位。 目标地表与既有1号线隧道随施工的下沉情况如图2和图3所示。 图2目标面地表随施工沉降情况图3既有隧道(1号线)随施工下沉情况 2.2控制指标 根据深圳市地铁集团《城市轨道交通安全保护区施工管理办法(暂行)》的规定,参照多次专家论证会的论证意见,新建盾构隧道施工对既有1号运行线影响的控制指标按三级预警制度进行管理,即,预警值、报警值、控制值三级。预警值取控制值的50%,报警值取控制值的80%,结构变形控制指标如下: 表1结构变形控制指标(单位:mm)

加泥式土压平衡盾构施工技术

加泥式土压平衡盾构施工技术 内容提要:本文详细介绍了土压平衡盾构机组成、工作原理,并结合深圳地铁盾构隧道的施工,重点对盾构隧道的主要施工过程和关键工艺技术进行总结和分析。 关键词:土压平衡盾构施工技术 一、盾构施工法概述及盾构机的选型 1.1盾构施工法概述 盾构施工法于19世纪初在英国开始使用,经过反复摸索,在近30~40年间取得了飞速发展,现在,该施工法已同矿山法一起成为城市隧道施工的两大主要施工方法。20世纪90年代该项技术被引进我国,主要集中应用盾构技术来进行上、下水道、电力通讯隧道、人防工事、地铁隧道等施工。目前在上海、广州、深圳、南京等城市已经开始采用盾构法来施工地铁隧道,盾构法在国内逐渐开始发展普及。 盾构施工法与矿山法相比具有的特点是地层掘进、出土运输、衬砌拼装、接缝防水和盾尾间隙注浆充填等主要作业都在盾构保护下进行,因而是工艺技术要求高、综合性强的一类施工方法。其主要施工程序为: 1、建造盾构工作井 2、盾构机安装就位 3、出洞口土体加固处理 4、初推段盾构掘进施工 5、隧道正常连续掘进施工 6、盾构接收井洞口的土体加固处理 7、盾构进入接收井解体吊出 盾构施工与矿山法施工具有以下优点: 1、地面作业少,隐蔽性好,因噪音、振动引起的环境影响小; 2、自动化程度高、劳动强度低、施工速度快; 3、因隧道衬砌属工厂预制,质量有保证; 4、穿越地面建筑群和地下管线密集的区域时,周围可不受施工影响; 5、穿越河底或海底时,隧道施工不影响航道,也完全不受气候影响; 6、对于地质复杂、含水量大、围岩软弱的地层可确保施工安全; 7、在费用和技术难度上不受覆土深度影响。 盾构法施工也存在一些缺点:

简析土压平衡盾构掘进施工工艺

简析土压平衡盾构掘进施工工艺 发表时间:2017-12-30T16:11:46.590Z 来源:《建筑学研究前沿》2017年第21期作者:谢妃三 [导读] 本文主要对土压平衡盾构的掘进施工的工作原理、特点及具体的施工工艺进行了具体分析。 广州市盾建地下工程有限公司 510000 摘要:土压平衡盾构以其高效、安全、环保等优点,已被广泛应用于地铁施工中。土压平衡盾构机的施工过程是一个各系统组合、运行与协调的过程,按照各施工过程的顺序和特点,可将其分解为掘进系统、衬砌系统、衬砌背后注浆系统、维修系统、动力系统等,本文主要对土压平衡盾构的掘进施工的工作原理、特点及具体的施工工艺进行了具体分析。 关键词:土压平衡;盾构;掘进;施工工艺 1.土压平衡盾构掘进施工原理 盾构在粉质粘土、粉质砂土和砂质粉土等粘性土层中掘进施工时,由刀盘旋转切削下来的土体进入密封土仓后,可对开挖面地层形成被动土压力,与开挖面上的主动土压力相抗衡。使开挖面的土层处于稳定状态。当盾构推进时,启动螺旋输送器排土,使排土量等于开挖量,即可使开挖面地层始终处于稳定。排土量一般通过调节螺旋输送器转速和出土口装置予以控制。当地层含砂量超过某一限度时,因土的摩阻力大、渗透系数高、地下水丰富等原因,泥土塑流性将明显变差,密封仓内的土体可因固结作用而被压密,导致渣土难于排出,甚至形成泥饼而无法推进,而且单靠切削土提供的被动土压力,常不足以抵抗开挖面的水土压力。出现这种状况时,可向密封仓内注入水、泡沫、膨润土等,同时进行搅拌,以期适当改善仓内土体的塑流性,顺利排土。 2.土压平衡盾构掘进施工特点 2.1初始掘进技术特点 2.1.1一般后续设备临时设置于地面。在地铁工程中,多利用车站作为始发工作井,后续设备可在车站内设置。 2.1.2大部分来自后续设备的油管、电缆、配管等,随着盾构掘进延伸,部分管线必须接长。 2.1.3由于通常在始发工作井内拼装临时管片,故向隧道内运送施工材料的通道狭窄。 2.1.4由于初始掘进处于试掘进状态,且施工运输组织与正常掘进不同,因此施工速度受到制约。 2.2正常掘进技术特点 2.2.1后续设备设置在隧道内,仅部分管路和电缆需要延长,作业效率高。 2.2.2始发井内的临时管片、临时支撑、后背支撑等被拆除,始发井下空间变得宽阔,施工材料与弃土运输容易。 2.3到达掘进技术特点 2.3.1盾构停止掘进后,准确测量盾构机坐标位置与姿态,确认与隧道设计中心线的偏差值。 2.3.2根据测量结果制订到达掘进方案。 2.3.3继续掘进时,及时测量盾构机坐标位置与姿态,并依据到达掘进方案进行及时进行方向修正。 2.3.4掘进至到达洞口加固段时,确认洞口土体加固效果,必要时进行注浆加固。 2.3.5进入到达洞口加固段后,逐渐降低土压(泥水压)设定值至0MPa,降低掘进速度,适时停止加泥、加泡沫(土压式盾构)、停止送泥与排泥(泥水式盾构)、停止注浆,并加强工作井周围地层变形观测,超过预定值时,必须采取有效措施后,才可继续掘进。 3.实例探析某地铁隧道中的土压平衡盾构掘进施工工艺 3.1工程概况 某城市地铁线路区间长度1189.413米,区间中部设一处联络通道。其中该区间工程在里程K41+613.000处下穿城市的站前北街公路桥,桥基位于区间隧道右线北侧仅1.55m,距离较近。此公路桥主要通行机动车辆,车流量主要集中在正常上下班时间。 盾构穿越站前北街公路桥段地层自地面往下依次为杂填土层、粉质填土层、粉土层、粉质粘土层、细中砂层、粉质粘土层,本盾构区间线路主要穿越粉质粘土层和细中砂。 3.2总体施工思路 3.2.1穿桥前对盾构机及配套设备进行检修,保证盾构机在下穿公路桥时所有设备运行正常。 3.2.2对所有施工人员进行专项技术交底,由专人对整个掘进过程进行24小时严密监控,发现异常立即汇报,确保盾构安全、顺利通过。 3.2.3穿桥之前对隧道轴线进行复测,确保盾构沿着设计轴线推进。调整盾构姿态至最佳,避免盾构穿桥时频繁纠偏。 3.2.4盾构掘进时严格控制推力、掘进速度、注浆量及出碴量,根据地面监测情况及时合理调整掘进参数,减小土体变形对桥梁基础桩的影响。 3.3盾构掘进 3.3.1掘进参数设置 ①合理设置土压力值 盾构推进时,控制螺旋输送机出土量与掘进速度的关系,根据盾构上方的覆土厚度及地面沉降监测信息的反馈,及时调整土压,科学合理地设置土压力值及相宜的推进参数,以减少对土体的扰动。 ②刀盘转速设定 降低刀盘转速,刀盘转速设定在0.9~1.2r/min,减少刀盘对土体的扰动,防止地表沉降。 ③掘进速度设定 穿越隧道时掘进速度控制在20~30mm/min,防止掘进速度快引起的刀盘扭矩增大。 3.3.2掘进过程中姿态的控制 盾构机在掘进过程中运动轨迹为蛇行运动,该轨迹应始终围绕着隧道轴线波动,在实际控制时,可根据显示屏上自动测量系统测得值

海瑞克土压平衡式盾构机分析

海瑞克土压平衡式盾构机分析 盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN?m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 1.盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后

盾构施工地面沉降的控制技术

盾构施工地面沉降的控制技术 现在对环境控制的要求越来越高,对盾构穿过城市中心重要建筑时的影响要求极为严格 (如上海,广州的多座地铁隧道的建设.一般要求施工时地面沉降控制在+10mm~-30mm 之内) 。盾构施工不可避免地干扰原土层的平衡状态,虽从理论上可实现无沉降施工,但限于目 前工艺和施工手段、操作质量,几乎无法做到地面无沉降或隆起。目前,国内外许多学者从事这一方面的研究,内容包括盾构施工引起的地表沉降、地层沉降以及盾构施工对邻近建筑物(桩基及已建隧道等)的影响等。研究的方法主要有经验公式法、离心模型试验和有限元法等。 第一节盾构施工引起的沉降理论和基本规律 1、盾构施工引起的沉降理论 盾构施工必然扰动地层土体,引发地层损失、隧道周围受扰动或受剪切破坏的重塑土的再固结,这是构成地面沉降的根本原因.在软土地层中用盾构法施工隧道,因地层损失和土体扰动, 必然引起地表变形.表现在盾构机掘进的前方和顶部会产生微量的隆起,盾构机部分通过地表 开始下沉, 盾尾脱离后地表下沉加快,并形成一定宽度的沉降槽地带,下沉的速率随时间而逐渐 衰减,且与盾构经过的地质,施工工况和地表荷载等有密切的关系,并表现出相当大的差异性。 土体的扰动或扰动土多是针对原状土而言,大体是指由于外界机械作用造成的土的应力 释放,体积、含水量或孔隙水压力的变化,特别是土体结构或组构的破坏和变化(如填土路基 等)[2]。 图5-1-1 盾构施工对土体的扰动 盾构前进过程中需要克服盾构外壳与周围土体的摩擦力F1、切口切入土层阻力F2、盾构机和配套车架设备产生的摩擦力F3、管片与盾尾间的摩擦力F4、开挖面的主动土压力F5,当 千斤顶推力T≥F1+F2+F3+F4+F5 时,盾构前方土体经历加载阶段,产生如图5-1-1 所示的 挤压扰动区①,开挖面受挤压作用引起土体压缩并使土体前移和隆起,盾构机工作正常时为此状况;当T<F1+F2+F3+F4+F5 时,盾构机处于静止状态,该状态对应于千斤顶漏油失 控,土体严重超控,盾构机前方土体则要经历卸载阶段,产生土体向内临空面移动,地表出现下沉.为减少开挖面土体的扰动,应尽量保持密封舱内压力Pi 稍大于主动侧压力Ph 和水压 力Pw 之和,开挖面正前方区域内土体由于刀盘的挤压搅削作用,将受到强烈的扰动而发生破 坏,含水量降低,其力学参数将发生很大的变化。 盾构推进过程中盾壳与周围土体之间产生摩擦阻力,该力作用的结果则在盾壳周围土体 中产生剪切扰动区②,该区的特点是范围较其它区小。 在剪切扰动区②以外,由于盾尾建筑间隙的存在,土体向间隙内移动,引起土体松动、 塌落而导致地表下沉,盾构上方土体由于自重和地面超载(当有地面超载时)往下移动而形成卸

土压平衡盾构机工作原理.

土压平衡盾构机流体输送控制系统工作原理 何於琏 (中铁隧道股份公司河南新乡 453000 摘 要流体输送系统用于盾构机的润滑、密封、填充以及碴土改良 , 是盾构机中的重要系统。本文介绍了流体输送系统的组成 , 并简明叙述了衬砌背后注浆控制系统、碴土改良控制系统、主轴承油脂密封润滑控制系统、盾尾密封油脂注入控制系统的工作原理。关键词流体输送 非传动介质控制系统原理 W orki n g Pri n c i ple of Control Syste m of Flui d Conveyi n g Syste m s of EPB Shi eld Machi n es HE Yu 2lian (China R ail w ay Tunnel S tock Co . , L td . , X ingxiang 453000, Henan, China Abstract:Fluid conveying syste m, which is app lied in the lubricati on, sealing, backfilling and conditi oning of EP B shield machines, is one of the i m portant syste m s of EP B shield This compositi on of the fluid conveying syste m and the working p rinci p les of contr ol syste of ment lining, gr ound conditi oning syste m, main bearing grease sealing and grease injecti on syste m. Key words:fluid conveying; non 2transit; p le

土压盾构地层沉降控制技术

土压平衡盾构施工地层沉降控制技术 卓普周 1 概述 土压平衡盾构由盾壳、刀盘及刀盘驱动装置、密闭土舱、盾构千斤顶、螺旋输送机、管片拼装机械手、自动导向系统、盾尾密封装置和人闸等组成,基本工作原理为:盾壳支承着围岩并保护着刀盘旋转,在千斤顶推力的作用下,刀盘上被切割、破碎的碴土,经过开口进入密闭土舱,当密闭舱的泥土压力与开挖面压力取得平衡的同时,端部伸入土舱下部的螺旋输送机排土,控制螺旋输送机的转速或者盾构机的推进速度,达到土舱的泥土压力与开挖面压力的动态平衡。碴土通过电瓶车拖碴车运至洞外。 国外实践表明,即使在当前盾构施工技术日趋完善的今天,在掘进过程中也难以避免地面隆陷及地层水平位移情况的发生,客观因素主要有: ①地质勘探资料与土层实际情况存在偏差,且地质情况往往复杂多变; ②由于规划不利,盾构隧道经常近距离的从大量地面建筑物基础下面通过;在一些老城区,隧道上方分布着许多建筑年代久远的对地层变形十分敏感的地下构筑物、地面建筑物; ③盾构施工是一个系统工程,施工中间环节多、影响因素多,稍有不慎,容易出现控制不到位的情况; ④掘进施工本身就是一个主动对围岩扰动的过程; ⑤现在对环境控制的要求越来越严格等。 由盾构施工引起的地层沉降过大时,可导致地表建筑物倾斜、开裂、倒塌;地下管线断裂;地面凹陷、隆起;桥面开裂等。引起的地层水平位移过大时可能引起地下桩基偏移及管线与通道错位,甚至毁坏,对周围环境产生了不利影响。因此有必要对盾构施工引起的地层变形情况进行研究,提前采取相应的预防措施,使施工安全顺利进行,周围环境少受影响。 2盾构施工引起地面沉降原因分析 通过对盾构施工过程的分析,可得盾构施工引起地面沉降的原因主要有以下3个: 2.1盾构掘进时的地层损失 掘进时地层损失的产生主要有4个方面的原因: (1)刀盘前方土体的水土压力没有得到及时有效地平衡,使盾构前方土体被迫处于不稳定状态。这种

土压平衡盾构始发工艺流程

土压平衡盾构始发工艺流程 3.4.1工艺概述盾构始发是隧道盾构法施工的一大关键环节,也是盾构法施工隧道的难点之一, 始发的成败 将对隧道施工质量、进度、安全、工期及经济效益产生决定性的影响。 3.4.2作业内容主要作业内容:包括始发端头地层加固、始发台定位安装、盾构机下井组装并调 试、反力架 定位安装、洞门围护桩破除、洞门导轨安装、洞门密封装置安装、负环管片安装等。 3.4.3质量标准及验收方法 一、附属设施 1.始发基座主要作用是用于稳妥、准确地放置盾构,并在基座上进行盾构安装与试掘进,所以基座必须有足够的强度、刚度和安装精度,并且考虑盾构安装调试作业方便。 -209-

2.对始发台、反力架进行全面的检查与修理,反力架受力要检算,安装固定必须在定位完成后进行,反力架支柱底部必须以钢板垫实,始发台必须通过加固挡块固定于地面上,近洞门端须支撑于车站二衬墙上; 3.洞门防水装置安装时必须将连接螺栓栓接牢固,根据实际情况合理对扇形压板的位置进行调整,防止帘布橡胶板外翻影响防水效果;在进行洞门凿除、始发台加固等施工操作时,注意对帘布橡胶板的保护;确保将洞门圈周边的钢筋及混凝土清除干净,避免对盾构掘进造成影响; 二、始发掘进 1.洞口拆除后必须尽快将盾构向前推进,使盾构刀盘切入土层,尽量缩短正面土体的暴露时间,在拆除封门的同时,作好盾构掘进和管片拼装的准备工作。 2.洞门凿除前,应对洞门经改良后的土体进行质量检查,合格后方可进行洞门凿除;应制定洞门围护结构破除方案,采取适当的密封措施,保证始发安全。 3.第一环负环管片定位时,应先保证管片横断面应与路线中线垂直,待管片完成定位后,将管片与反力架之间的空隙填充密实。 4.盾构空载调试运转正常后开始盾构始发施工,在开始进行负环管片后移时,应通过控制推进油缸行程的方法控制负环管片后移,所有推进油缸行程应尽量保持一致。 5.盾构在始发基座上向前推进时,应注意对反力架的保护,根据反力架的强度制定推力限制,并尽量做到不调向,油缸均匀施加推力。 6.始发掘进过程中应严格控制盾构的姿态和推力,并加强监测,根据检测结果调整掘进参数。 7.为防止管片发生旋转,始发阶段应注意扭矩控制,一般情况下,始发阶段的盾构扭矩值不得大于正常掘进的70%,并可在盾壳与始发台接触部位焊接“防扭挡块”,在推进过程中注意及时割除。 8.在盾构始发阶段,应注意各部位油脂的使用和消耗情况。 3.4.4工艺流程图 图3.4.4-1 土压平衡盾构始发流程框图 -210-

土压平衡盾构施工地层沉降控制技术_secret

土压平衡盾构施工地层沉降控制技术 1 概述 土压平衡盾构由盾壳、刀盘及刀盘驱动装置、密闭土舱、盾构千斤顶、螺旋输送机、管片拼装机械手、自动导向系统、盾尾密封装置和人闸等组成,基本工作原理为:盾壳支承着围岩并保护着刀盘旋转,在千斤顶推力的作用下,刀盘上被切割、破碎的碴土,经过开口进入密闭土舱内,当密闭舱内的泥土压力与开挖面压力取得平衡的同时,端部伸入土舱下部的螺旋输送机排土,控制螺旋输送机的转速或者盾构机的推进速度,达到土舱内的泥土压力与开挖面压力的动态平衡。碴土通过电瓶车拖碴车运至洞外。 国内外实践表明,即使在当前盾构施工技术日趋完善的今天,在掘进过程中也难以避免地面隆陷及地层水平位移情况的发生,客观因素主要有: ①地质勘探资料与土层实际情况存在偏差,且地质情况往往复杂多变; ②由于规划不利,盾构隧道经常近距离的从大量地面建筑物基础下面通过;在一些老城区,隧道上方分布着许多建筑年代久远的对地层变形十分敏感的地下构筑物、地面建筑物; ③盾构施工是一个系统工程,施工中间环节多、影响因素多,稍有不慎,容易出现控制不到位的情况; ④掘进施工本身就是一个主动对围岩扰动的过程; ⑤现在对环境控制的要求越来越严格等。 由盾构施工引起的地层沉降过大时,可导致地表建筑物倾斜、开裂、倒塌;地下管线断裂;地面凹陷、隆起;桥面开裂等。引起的地层水平位移过大时可能引起地下桩基偏移及管线与通道错位,甚至毁坏,对周围环境产生了不利影响。因此有必要对盾构施工引起的地层变形情况进行研究,提前采取相应的预防措施,使施工安全顺利进行,周围环境少受影响。

2盾构施工引起地面沉降原因分析 通过对盾构施工过程的分析,可得盾构施工引起地面沉降的原因主要有以下3个: 2.1盾构掘进时的地层损失 掘进时地层损失的产生主要有4个方面的原因: (1)刀盘前方土体的水土压力没有得到及时有效地平衡,使盾构前方土体被迫处于不稳定状态。这种地层损失极为有害,是地面沉降产生的主要原因之一。 (2)管片外侧与土层之间的间隙没有及时有效地充填,产生地层损失,出现地面沉降。 1)管片要在盾壳内安装,而盾壳为了抵御周围地层的水土压力势必需要一定的厚度,其钢壳的刚度才能满足抵挡水土压力的要求,此厚度一般为5~8cm。 2)土层可能存在软硬不均等现象,为降低盾构机掘进时的姿态偏差的影响,在管片安装时,需在管片与盾壳之间留有一定的间隙,一般约为3cm左右。 3)单从机械技术角度而言,盾构机千斤顶的推力可以做到很大,然而管片砼的抗压强度是有限的,因此在依靠已拼管片提供反力的情况下,盾构机的推力不可能设计得很大,为了减少推进时周围地层对盾壳的摩阻力,降低千斤顶推力的设计,一般将盾体做成梭形,即由刀盘向盾尾做成前大后小的梭子状,以利于盾机推进时减少摩阻力,盾体前后半径一般相差在3~5cm左右。 4)盾体长度为8m左右,因此即使在设计有铰接装置的情况下,在转弯时要使盾体能顺利完成转弯施工,常常需要进行一定的超挖施工。 5)掘进时刀盘切削土体连带的扩孔效应。 综合以上1)~5),可知管片外侧与土体之间的间隙一般约在11cm左右,这种间隙的存在是必然的,由此产生的地层损失可通过同步注浆等施工措施得到弥补,但如果得不到及时填充、或者填充不饱满等,管片周围地层产生将产生沉降。(3)改变推进方向:盾构在曲线推进、蛇形纠偏、抬头、栽头过程中,实际开挖断面不是圆而是椭圆,盾构的壳板与围岩之间不均匀摩擦,引起地层损失,出现地面沉降。盾构轴线与隧道轴线偏角越大,则对土体扰动和超挖程度而引起的地层损失也越大。

相关文档
相关文档 最新文档