文档库 最新最全的文档下载
当前位置:文档库 › 吸收过程练习题1(DOC)

吸收过程练习题1(DOC)

吸收过程练习题1(DOC)
吸收过程练习题1(DOC)

吸收过程练习题1

一、填空(96小题,共189.0分)

(2分)[1]

在0.1 MPa和20 ℃下,1000 g水中可溶解1.69 gCO

,则该溶液摩尔分数

2

为,摩尔比(比摩尔分数)为。

(2分)[2]

牛顿粘性定律、傅立叶定律和费克定律三者之间具有明显的类似性。这三种过程之间存在类似性,正是由于动量、热量和质量三者都是凭借运动来进行传递的。分子扩散过程应遵循定律,即分子扩散速度

与成正比。

(2分)[3] 在一定的操作压强和温度下,循环使用吸收剂中的吸收质浓度

的和吸收剂用量的都有利于提高吸收过程的推动力;但是,带来的问题往往是使吸收剂的增加了。

(2分)[4]

在填料塔中,乱堆的填料具有的优点,但缺点是。

(5分)[5]

在同一物系中,气体的亨利常数E和溶解度常数H的数值大小只取决于 ,而相平衡常数m还与有关。当温度升高时E值 ,H

值 ,m值。

(2分)[6]

填料吸收塔正常操作时,若液气比增大,则吸收液的出塔浓度 ,吸收的推动力。

(2分)[7]

如下图的气液平衡曲线示意图中,A(x A ,y A),B(x B ,y B),C(x C ,y C)分别代表三种物系的实际浓度,则由此可判断三种情况下传质的方向分别为:

A、 ;

B、 ;

C、。

(2分)[8]

某合成氨厂脱硫用质量分数为0.01的稀氨水,其摩尔分数

为,摩尔比(比摩尔分数)为。

(2分)[9]

常压(101.3 kPa)下,20 ℃的空气被水蒸气所饱和,已知该条件下水蒸气饱和蒸气压为2330 Pa, 则该湿空气的摩尔分数为,摩尔比(比摩尔分数)为。

(3分)[10]

物质以扩散的方式由一相到另一个相的转移为传质过程。传质过程可以在两相流体之间进行,也可以在流体与固体两相之间进行。属于前者的单元操作

如 ; ; 等;属于后者的单元操作

如 ; ; 等。

(2分)[11]

由于均相混合物的组成可以用多种方法来表达,所以亨利定律的数学表达式也有:、、和等几种形式。

(2分)[12]

气相分子扩散系数随温度升高而,随压强升高而 ;液相分子扩散系数随粘度增加而。

(1分)[13]

涡流扩散系数除与流体的性质有关外,主要受的影响。

(2分)[14]

传质速率方程的表达形式,以及传质系数的数值和单位,均因传质推动力所采用的表示方法而异。常用的传质系数及其单位有:

[K G]= ; [K Y] = ;

[K L]= ; [K X] = 。

(2分)[15]

传质设备中应用最为广泛的为填料塔和浮阀塔。前者气液两相间的物质传递主要是在上进行;后者气液两相间的物质传递主要是在上进行。

(2分)[16]

传质过程常用的塔设备有填料塔和板式塔两种。按两相流体的接触方式可分为连续接触设备(或称微分接触设备)和分级接触设备,填料塔属

于设备,而板式塔属于设备。

(2分)[17]

两相流体传质设备按两相接触时的状态可分为膜状接触设备、鼓泡接触设备和喷射接触设备。传质设备中常用的填料塔属于设备,而浮阀塔属于设备。

(2分)[18]

单分子单方向扩散速率方程与等分子反向扩散速率方程适用于不同的场合,如吸收过程属于过程,而双组分精馏属

于过程。

(2分)[19]

相际传质过程主要依靠物质的扩散作用,而物质的扩散主要有两种基本方式:

和。

(2分)[20]

相际传质过程主要依靠物质的扩散作用,而物质的扩散主要有两种基本方式:物质借分子运动由一处向另一处转移而进行物质扩散的方式,即

为 ;物质因流体的旋涡运动或流体质点的相对位移而进行物质扩散的方式即为。

(2分)[21]

气相总传质系数与膜系数之间的关系为=+,该式表示单位相界面的传质总阻力等于和之和。当其中项的值远大于项时,则表明该过程为气膜控制。

(2分)[22]

在填料吸收塔正常操作状态下,气体充满整个填料层的自由空间连续流动,气体为相;而液体经喷洒器沿填料壁面呈膜状流动,液体为相。但塔的操作状态超过泛点之后,气体与液体将会发生相的转变。

(1分)[23]

若使含氨摩尔分数为0.10氨的空气-氨混合气与含氨摩尔分数为0.05的稀氨水接触,(此时的相平衡方程为:y=1.1 x),则将发生的物质传递过程称

为过程。

(2分)[24]

若使含氨摩尔分数为0.10的空气-氨混合气与含氨摩尔分数为0.05的稀氨水在塔内进行逆流接触,(此时的相平衡方程为:y=1.2 x),则混合气出口含氨的摩尔分数最低为 ,溶液出口含氨的摩尔分数最高为。

(2分)[25]

亨利定律可表达为p A*=Ex A 或p A*=c A ,其中亨利常数E随温度的升高

而 ,而溶解度常数H则随温度的升高而。

(2分)[26]

如图所示,用某吸收剂在吸收塔中逆流吸收某混合气中的一个组分。若混合气的进口浓度Y1增加,而惰性组分的摩尔流率F B、吸收剂的摩尔流率F C 、吸收剂入口浓度X2以及操作温度和压强都不变,则混合气出口浓度Y2将 ,溶液的出口浓度X1将。

(2分)[27]

吸收操作中,温度不变,压强增大,可使相平衡常数 ;传质推动

力。

(2分)[28]

填料吸收塔操作中,当液气比越大,液泛速度就越 ;液体的粘度越大,液泛速度就越 ;填料因子越小,液泛速度就越。

(2分)[29]

在连续接触的填料塔内,进行定常等温吸收操作,填料层高度的计算,可由物料衡算式和吸收速率方程联列导出计算式, 填料层总高度等

于和之乘积。

(2分)[30]

在连续接触的填料塔内,进行定常等温吸收操作,填料层高度可由传质单元高度和传质单元数之乘积进行计算,其中传质单元数计算较为麻烦。当平衡曲线不是直线时,难以用积分公式直接求解,只能借助于各种的方法求值 ;只有当平衡关系遵守亨利定律时,可直接求得解析解,称之

为法。

(2分)[31]

填料吸收塔的操作状态超过泛点之后,将发生相的转变,气体由相转化为相;液体由相转化为相。

(2分)[32]

根据气液相平衡关系可判明过程进行的方向和限度。当气相中吸收质的分压p

A

高于液相浓度x

A 相应的平衡分压p

A

*,即p

A

>p

A

*时, 相中吸收质能够

向相转移,即能够进行过程;反之,即p

A *>p

A

, 相中吸收质

向相转移,即进行过程;当p

A =p

A

* 时,则过程达到极限。

(2分)[33]

液相传质总系数与膜系数之间的关系为=+,该式表示单位相界面的传质总阻力等于与之和。当其中项的值远大于项时,则表明相际传质过程受液膜控制。

(2分)[34]

操作线和操作方程表示吸收塔中任何一个截面上气相和液相进行接触时

的浓度关系,而平衡曲线和平衡关系式则表示气相和液相之间的浓度关系。

(1分)[35]

在吸收过程中,一相的实际浓度与另一相实际浓度所要求的平衡浓度之差,即为气液相之间传质过程的 ,它表示了吸收塔内的某一截面上,实际物系点偏离平衡浓度的程度。

(2分)[36]

某混合气体中含有体积分数为0.20的CO

2

,其余为空气。在101.3 kPa及30 ℃

下,用清水吸收其中CO

2时,已知30 ℃时CO

2

水溶液的亨利常数E为1.884×105

kPa,则液相中CO

2

的最大浓度为。

(2分)[37]

吸收是利用气相混合物中各组分的不同,选择适宜

的对混合气中的组分进行选择性吸收的单元操作。在同一物系中,在一定的压力和温度下进行操作时,加大吸收推动力的最有效措施是加大。

吸收操作线在Y-X坐标图上为一直线,该直线通

过和两点,斜率

为。

(2分)[38]

在一定压力和温度下,对于浓度相同的溶液,则易溶气体溶液上方的分压 ,难溶气体溶液上方的分压。吸收过程进行的条件是被吸收组分在气相中的分压液相中该组分浓度相应的平衡分压。

(2分)[39]

当亨利定律的数学表达式为p

A *=Ex

A

时,亨利常数E的单位是 , 亨利常

数E的数值越大,则表示A组分的溶解度越 ,越于被吸收。(2分)[40]

含体积分数为0.01环氧乙烷的气体混合物与环氧乙烷浓度为0.020 kmol·m-3

的溶液在101.3 kPa的压强下接触,已知p

A *=7.69 c

A

,以气相分压差表示的总传

质推动力为 kPa;以液相组成差表示的总传质推动力

为 kmol·m-3。此时环氧乙烷将由相向相转移。

(2分)[41]

已知某物系的气液相平衡关系为Y*=mX当总压强, 温度时,可使平衡常数m值变小,则于吸收操作。

(2分)[42]

吸收塔某截面上的气液两相A的摩尔分数分别为y=0.05,x=0.01,操作条件下,气液平衡关系为y*=2x,则该截面的气相传质总推动力为 ,液相传质总推动力为。

(2分)[43]

在填料塔中进行逆流接触的吸收操作时,若液气比增大,其它操作条件不变,则溶液出口浓度将 ,气体出口浓度,吸收率。

(1分)[44]

以吸收法分离气体混合物的依据,是利用不同组分在溶剂中的差异。(2分)[45]

吸收操作按吸收质与吸收剂的作用原理,可分为吸收和吸收;按混合气体中可被吸收剂吸收的组分数,可分为吸收

和吸收;按吸收过程的热效应可分为

吸收和吸收。

(2分)[46]

对于填料吸收塔,若操作条件一定,只是将填料层增高一些,则塔的传质单元高度H

OG

将 ,传质单元数将。

(2分)[47]

亨利定律中亨利常数的大小反映了混合气体中吸收质被吸收剂吸收

的程度。亨利常数值越大,则表明吸收质被吸收。

(2分)[48]

某气体用水吸收时,在一定浓度范围内,其在Y-X图上标绘的操作线和平衡线均为直线,则平衡线的斜率即为值,操作线的斜率即

为值。

(2分)[49]

传热过程的推动力是冷热流体之间的 ,气体吸收过程的推动力则是气相

与液相实际浓度相应的之差。

(2分)[50]

某混合气体在标准状况下有V m3,其中溶质A为n

A

mol,其余为惰性组分B,则组分A的摩尔分数为 , 摩尔比(比摩尔分数)

为。

(2分)[51]

亨利定律可以表达为p

A *=c

A

,p

A

*=Ex

A

或 y

A

*=mx

A

,若该体系的总压强为p,

溶液的密度为,溶液A的摩尔质量为M

A ,溶剂的摩尔质量为M

C

,则溶解度常数

H、亨利常数E和相平衡常数m之间存在如下换算关

系:E= ·,E= m。对于稀溶液,x

A

值较小,溶液密度可

近似等于溶剂密度 ,则E与H换算关系可简化为E= 。

(2分)[52]

根据双膜模型的基本假设,气液两相的扩散阻力集中在两层虚拟的静止膜层内,

若用水吸收NH

3

或HCl,传质阻力几乎全集中于 ,通常称为控制;

若用水吸收O

2或N

2

,传质阻力几乎全集中于 ,通常称为控制。

(2分)[53]

若亨利定律的数学表达式为p

A

*=,式中H称为。H 值越大,表明气体溶于液体中的溶解度越。

(2分)[54]

一个填料吸收塔逆流操作时,若循环使用的吸收剂中吸收质含量降低,其它操作条件保持不变,则出口气体中吸收质的含量将 ,吸收率将。(2分)[55]

对于难溶气体的吸收过程,其传质阻力主要集中在 ,则吸收速率

受控制;而对于易溶气体的吸收过程,其传质阻力主要集中

在 ,则吸收速率受控制。

(2分)[56]

根据双膜模型,易溶气体在吸收时过程为控制,难溶气体在吸收时过程为控制;而对于溶解度适中的气体,吸收过程的总阻力将

是和之和。

(2分)[57]

为强化在板式塔中进行的气、液传质过程,一般希望出现的气、液接触状态

和。

二、判断题(4小题,共8.0分)

1、(2分) 流动的流体中所发生的扩散过程即为对流扩散过程。()

2、(2分) 气体的扩散系数与压强成反比,与温度T1.5成正比,为了获得较大的吸收速率,吸收操作通常应在高温和减压的条件下进行。()

3、(2分) 根据费克定律,分子扩散速度N A= -D A×,因而在吸收操作中,凡分子扩散系数D大的体系,吸收过程进行得较快;反之,则较慢。()

4、(2分) 传质过程中,单向扩散指的就是分子扩散,因而,传质膜系数k就等于扩散系数D 。()

参考答案

一、填空(96小题,共189.0分)

(2分)[1]

答案6.91×10-4; 6.91×10-4

(2分)[2]

答案分子; 费克;浓度梯度

(2分)[3]

答案降低;增加; 再生费用。

(2分)[4]

答案使液体均匀分布;有向塔壁偏流的现象

(5分)[5]

答案温度;总压强;增大;减小;增大

(2分)[6]

答案降低;增大

(2分)[7]

答案吸收过程;达到平衡;解吸过程。

(2分)[8]

答案1.06×10-2;1.07×10-2

(2分)[9]

答案2.30×10-2;2.35×10-2

(3分)[10]

答案吸收;精馏;萃取;干燥;吸附;浸取(固-液萃取)(2分)[11]

答案p*=Ex ; p*= ; y*=mx ; Y*=mX (2分)[12]

答案增大;减小;减小

答案流体流动状况

(2分)[14]

答案kmol·m-2·s-1·Pa-1; kmol·m-2·s-1·()-1或m·s-1; kmol·m-2·s-1; kmol·m-2·s-1。

(2分)[15]

答案填料表面;气泡表面

(2分)[16]

答案连续接触;分级接触

(2分)[17]

答案膜状接触设备;鼓泡接触设备

(2分)[18]

答案单分子单方向扩散;等分子反向扩散

(2分)[19]

答案分子扩散;涡流扩散

(2分)[20]

答案分子扩散;涡流扩散

(2分)[21]

答案气膜阻力;液膜阻力;;

(2分)[22]

答案连续;分散

答案吸收

(2分)[24]

答案0.06;0.08

(2分)[25]

答案升高;降低

(2分)[26]

答案增加;增加

(2分)[27]

答案减小;增大

(2分)[28]

答案小;小;大

(2分)[29]

答案传质单元高度;传质单元数

(2分)[30]

答案数值积分; 对数平均推动力(或吸收因数法)(2分)[31]

答案连续;分散;分散;连续

(2分)[32]

答案气;液;吸收;液;气;解吸

(2分)[33]

答案气膜阻力;液膜阻力;;

(2分)[34]

答案实际操作;平衡

(1分)[35]

答案推动力

(2分)[36]

答案1.08×10-4

(2分)[37]

答案溶解度;吸收剂;液气比();塔底(X1,Y1);塔顶(X2,Y2);液气比() (2分)[38]

答案小;大;大于

(2分)[39]

答案Pa;小;难

(2分)[40]

答案0.86;0.11;气;液

(2分)[41]

答案增高;降低;有利

(2分)[42]

答案0.03;0.015

(2分)[43]

答案降低;降低;提高

(1分)[44]

答案溶解度

(2分)[45]

答案物理;化学;单组分;多组分;等温;非等温

(2分)[46]

答案不变;增加

(2分)[47]

答案难易;越难

(2分)[48]

答案相平衡常数m;液气比() (2分)[49]

答案温度差;实际浓度;平衡浓度(2分)[50]

答案;

(2分)[51]

答案;p;

(2分)[52]

答案气膜;气膜;液膜;液膜

(2分)[53]

答案溶解度常数;大。

(2分)[54]

答案降低;提高

(2分)[55]

答案液膜;液膜;气膜;气膜

(2分)[56]

答案气膜;液膜;气膜阻力;液膜阻力(2分)[57]

答案泡沫接触状态;喷射接触状态

二、判断题(4小题,共8.0分)

1、(2分)

答案错

2、(2分)

答案错

(2分)[3]

答案错

(2分)[4]

答案错

基础化学实验思考题答案

基础化学实验思考题答案 实验二酸碱标准液的配制和浓度比较一.注意事项: 1.配完溶液应立即贴上标签注明试剂名称,配置日期,配制者姓名并留一空位以备填入此溶液的准确浓度。 2. 体积读数要读至小数点后两位。 3.滴定速度:不要成流水线。 4.近终点时,半滴操作和洗瓶冲洗。 5.固体氢氧化钠的称量,不能使用称量纸。因为它在空气中会快速吸收水分,导致称量不准确。再有氢氧化钠有强烈的腐蚀性,吸水后溶液渗过滤纸会腐蚀天平。 二、思考题 1.滴定管、移液管在装入标准液前为何需要用滴定剂和要移取的溶液润洗几次滴定中使用的锥形瓶或烧杯是否需要干燥是否也要用标准液润洗为什么? 答:为了让滴定管内的溶液的浓度与原来配制的溶液的浓度相同,以防加入的标准液被稀释。不需要。不要用标准液润洗,因为倾入烧杯或锥形瓶中的基准物的物质的量是固定的,润洗则会增加基准物的量,影响到实验结果。 2. HCl和NaOH溶液能直接配制准确浓度吗为什么? 答:不能,因为氢氧化钠易吸收空气中的CO2 和水分,而浓盐酸易挥发,应此不能直接配制其准确浓度。只能先配制近似浓度的溶液,然后用基准物质标定其准确浓度。 3.为什么用HCl滴定NaOH时采用甲基橙用为指标剂,而用NaOH滴定HCl溶液时使用酚酞(或其它适当的指标剂)? 答:首先因为甲基橙跟酚酞的变色范围都在该反应的突跃范围内。其次,因为人的眼睛观察浅色变到深色比较容易。用HCl滴定NaOH时采用甲基橙用为指标剂可以观察到溶液由黄色变橙色,用NaOH滴定HCl溶液时使用酚酞可以观察到

溶液由无色变红色。 其他: 4.配制HCl溶液及NaOH溶液所用水的体积是否需要准确量取为什么? 答:不需要,因为HCL易挥发,NaOH容易吸收空气中的水分和CO2,不能直接配制准确浓度的HCL和NaOH标准溶液,只能先配制近似浓度的溶液,然后用基准物标定,所以没有必要准确量取配制时水的体积。 5.用HCL标准溶液滴定NaOH标准溶液时是否可用酚酞作指示剂? 答:可以,因为酚酞指示剂的变色范围在,部分处在HCl与NaOH溶液的滴定突跃()之内。 6.再每次滴定完成后,为什么要将标准溶液加至滴定管零点或近零点,然后进行第二次滴定? 答:因为滴定管的误差是分段校正的,每一段的校正误差不同,故每一次都从零点或近零点开始滴定可以保证每一次都有相同的校正误差。 7.在HCL溶液与NaOH溶液浓度比较的滴定中,以甲基橙和酚酞作指示剂,所得溶液体积比是否一致,为什么? 答:不一致。因为甲基橙跟酚酞的变色范围不同,所以滴定终点时的PH不同,所以溶液的体积比不会一致。甲基橙的变色范围在酸性区间而酚酞的变色范围在碱性区间故以酚酞为指示剂的一组VNaOH/VHCL相对较大。 8. 配制NaOH溶液时,应选用何种天平称取试剂为什么? 答:托盘天平,因为只须配制近似浓度的溶液,所以不需准确称量。 9. 滴定至临近终点时加入半滴的操作是怎样进行的? 答:加入半滴的操作是:将酸式滴定管的旋塞稍稍转动或碱式滴定管的乳胶管稍微松动,使半滴溶液悬于管口,将锥形瓶内壁与管口接触,使液滴流出,并用洗瓶以纯水冲下。

二氧化碳填料吸收与解吸实验.

二氧化碳填料吸收与解吸实验装置说明书 天津大学化工基础实验中心 2013.06

一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习对实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 图一 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。当有

一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数, 112---???Pa s m kmol ;

实验思考题参考答案

实验思考题参考答案 实验Fe(OH)3胶体的制备、破坏、分离 1.常压过滤时滤纸为什么要撕去一角?答:使滤纸紧贴玻璃漏斗,有利于排出滤纸与玻璃漏斗之间气泡,形成液柱。 2.抽滤时剪好的滤纸润湿后略大于布氏漏斗的内径、或剪的不圆周边凸出部分贴在布氏漏斗内壁上,对抽滤有何影响?为什么?答:会造成漏虑。滤纸大于布氏漏斗内径会造成滤纸折叠,不能紧贴布氏漏斗。 3.抽滤时,转移溶液之前为什么要先稍微抽气,而不能在转移溶液以后才开始 抽气?答:使滤纸紧贴布氏漏斗,以免造成漏虑。 4. 沉淀物未能铺满布氏漏斗底部、滤饼出现裂缝、沉淀层疏松不实,对抽干效果有什么影响?为什么?如何使沉淀抽得更干爽?答:固液分离效果不好;漏气使压差变小;用药勺铺平、压实沉淀物再抽滤。 由胆矾精制五水硫酸铜 1.结晶与重结晶分离提纯物质的根据是什么?如果被提纯物质是NaCl 而不是CuSO4·5H2O,实验操作上有何区别? 答:根据物质溶解度随温度变化不同。NaCl 的溶解度随温度变化很小不能用重结晶的办法提纯,要用化学方法除杂提纯。 2.结晶与重结晶有何联系和区别?实验操作上有何不同?为什么? 答:均是利用溶解度随温度变化提纯物质;结晶浓缩度较高(过饱和溶液),重结晶浓缩度较低(饱和溶液),且可以进行多次重结晶。结晶一般浓缩到过饱和溶液,有晶膜或晶体析出,冷却结晶;重结晶是在近沸状态下形成饱和溶液,冷却结晶,不允许浓缩。

3.水浴浓缩速度较慢,开始时可以搅拌加速蒸发,但临近结晶时能否这样做? 答:搅拌为了加快水分蒸发;对于利用晶膜形成控制浓缩程度,在邻近结晶时不能搅拌。否则无法形成晶膜。 4.如果室温较低,你准备采用什么措施使热过滤能顺利进行?答:预热漏斗、 分批过滤、保温未过滤溶液。 5.浓缩和重结晶过程为何要加入少量H2SO4?答:防止防止Fe3+水解。 粗盐提纯 1.为什么说重结晶法不能提纯得到符合药用要求的氯化钠?为什么蒸发浓缩时 氯化钠溶液不能蒸干? 答:NaCl 的溶解度随温度变化很小不能用重结晶的办法提纯,药用氯化钠不仅要达到纯度要求,还要符合药用要求。不能浓缩至干NaCl 溶液,是为了除去KCl。 2.用化学法除去SO42-、Mg2+ 、Ca2+的先后顺序是否可以倒置过来?为什么? 答:不能,除杂要求为除去杂质引入的离子必须在后续的除杂过程中除去,先除去Mg2+ 、Ca2+后除SO42-,无法除去Ba2+。 3.用什么方法可以除去粗盐中不溶性杂质和可溶性杂质?依据是什么? 答:不溶性杂质用过滤方法;可溶性杂质用化学方法除杂。依据:溶度积。 醋酸解离度和电离常数测定 1.不同浓度的HAc 溶液的溶解度α是否相同?为什么?用测定数据说明弱电解质解离度随浓度变化的关系。 答:不同,因K a,θ AH 。c↑,α↓。 c 2.测定不同浓度的HAc 溶液的pH 值时,为什么按由稀到浓的顺序?答:平衡块,减小由于润洗不到位而带来的误差。

吸收分光光度法

第十章 原子吸收分光光度法 ξ10-1 基本原理 一、概述:1955年发展起来的一种新方法,30多年来发展较快,已成为分析化学中重要的方法。和分光光度法比较,能做微量(ppm ,ppb ,10 -6,10 –9g )测定70多种金属元素,(3号~84号,镧系元素),还可做常量,所以从常量到ppb 级。 优点:灵敏度高,干扰少,分析不同元素时选用不同元素的灯,提高了分析的选择性,基体和待测元素间影响较少,鉴于这种情况,试样只需简单处理,可直接进行分析,避免复杂的分离和富集手续,低含量的分析中,能达到1~3%的准确度。这是比色及光度法所不能完成的。 缺点:1.换灯,不方便 2.各元素分析条件不同,不利于同时测多种元素。 3.不能分析固体及共振线在真空紫外区的 4.分析复杂样品时,干扰还是比较严重。 为解释清楚分析不同元素时选用不同元素的灯,下面谈一下基本原理。 基本原理:给一束特定的入射光I 0(υ),投射至被测元素的基态原子蒸气,原子蒸气对它有吸收,未被吸收的部分透过。N 越大,对光的吸收量越大,其I (υ)越小,于是根据样品中被测元素的浓度N ,I 0(υ),I (υ)三者间存在着一定的关系,并把它与被测元素已知浓度的标准溶液对光的吸收作比较,就求得试样中被测元素的含量。 分析流程:既然原子吸收分析是建立在基态原子对光的吸收的基础上,所以分析流程由光源、原子化系统、分光系统、检测系统等组成。 特径的入射光I 0(υ):特径谱线——共振线各元素的不同而显其特径性。 产生:①原子核外电子基态E 0, 从基态→激发态的能量 激发态E j λυc h h E E E j ==-=?0 ②电子从基态→第一个激发态(最低能量的),所产生的吸收谱线称共振吸收线。 从第一激发态→基态所产生辐射谱线称共振发射线。 以上统称共振线。 ③共振线:对应于共振能级和基态间跃迁的谱线,所需能量最低,称为最灵敏线。(这是分析所需要的)也是该元素的特径谱线。 因为:各元素的原子结构和外层电子排布不同,不同元素的原子从基态→第一激发态(或返回时)时,吸收(或发射)的能量不同。因此各元素的共振线不同而各有其特径。 例:镁 2852 o A ,铜 3247 o A 二、定量分析公式 1.朗伯定律:b K I I A ?==υυν)() (0lg K υ:原子蒸气对频率为υ的光线的吸收系数,与吸收介质性质和入射光频率有关 b K e I I ??=υυυ)(0)( 说明:①透过光的强度I (υ)随入射光的频率而改变,其变化规律 电磁辐射,原子对其吸收也不同,故I υ ,K υ 与入射光υ变化有关 υ0处有最大吸收,有最小透过。 ②当燃烧器的缝长一定时,b 一定,K (υ)是随入射光的频率而变化。其变化规律: a. a. 原子吸收线有一定的宽度——吸收线轮廓 b. b. 吸收系数有一极大值——υ0称中心 频率:υ0→K 0峰值吸收系数 c. c. 峰值吸收系数一半处,曲线宽度——吸收线半宽度,Δυ0。0.01~0.1o A

(完整版)分析化学实验思考题答案

分析化学实验思考题答案

实验二滴定分析基本操作练习 1.HCl和NaOH标准溶液能否用直接配制法配制?为什么? 由于NaOH固体易吸收空气中的CO2和水分,浓HCl的浓度不确定,固配制HCl和NaOH 标准溶液时不能用直接法。 2.配制酸碱标准溶液时,为什么用量筒量取HCl,用台秤称取NaOH(S)、而不用吸量管和分析天平? 因吸量管用于标准量取需不同体积的量器,分析天平是用于准确称取一定量的精密衡量仪器。而HCl的浓度不定, NaOH易吸收CO2和水分,所以只需要用量筒量取,用台秤称取NaOH即可。 3.标准溶液装入滴定管之前,为什么要用该溶液润洗滴定管2~3次?而锥形瓶是否也需用该溶液润洗或烘干,为什么? 为了避免装入后的标准溶液被稀释,所以应用该标准溶液润洗滴管2~3次。而锥形瓶中有水也不会影响被测物质量的变化,所以锥形瓶不需先用标准溶液润洗或烘干。 4.滴定至临近终点时加入半滴的操作是怎样进行的? 加入半滴的操作是:将酸式滴定管的旋塞稍稍转动或碱式滴定管的乳胶管稍微松动,使半滴溶液悬于管口,将锥形瓶内壁与管口接触,使液滴流出,并用洗瓶以纯水冲下。 实验三 NaOH和HCl标准溶液的标定 1.如何计算称取基准物邻苯二甲酸氢钾或Na2CO3的质量范围?称得太多或太少对标定有何影响? 在滴定分析中,为了减少滴定管的读数误差,一般消耗标准溶液的体积应在20—25ml 之间,称取基准物的大约质量应由下式求得: 如果基准物质称得太多,所配制的标准溶液较浓,则由一滴或半滴过量所造成的误差就较大。称取基准物质的量也不能太少,因为每一份基准物质都要经过二次称量,如果每次有±0.1mg的误差,则每份就可能有±0.2mg的误差。因此,称取基准物质的量不应少于0.2000g,这样才能使称量的相对误差大于1‰。 2.溶解基准物质时加入20~30ml水,是用量筒量取,还是用移液管移取?为什么?因为这时所加的水只是溶解基准物质,而不会影响基准物质的量。因此加入的水不需要非常准确。所以可以用量筒量取。 3.如果基准物未烘干,将使标准溶液浓度的标定结果偏高还是偏低? 如果基准物质未烘干,将使标准溶液浓度的标定结果偏高。 4.用NaOH标准溶液标定HCl溶液浓度时,以酚酞作指示剂,用NaOH滴定HCl,若NaOH 溶液因贮存不当吸收了CO2,问对测定结果有何影响? 用NaOH标准溶液标定HCl溶液浓度时,以酚酞作为指示剂,用NaOH滴定HCl,若NaOH 溶液因贮存不当吸收了CO2,而形成Na2CO3,使NaOH溶液浓度降低,在滴定过程中虽然其中的Na2CO3按一定量的关系与HCl定量反应,但终点酚酞变色时还有一部分NaHCO3末反应,所以使测定结果偏高。 实验四铵盐中氮含量的测定(甲醛法)

化工原理氧解吸实验报告

化工原理氧解吸实验报告 This model paper was revised by the Standardization Office on December 10, 2020

北京化工大学 化原实验报告学院:化学工程学院 姓名:娄铮 学号: 45 班级:环工1302 同组人员:郑豪,刘定坤,邵鑫 课程名称:化工原理实验 实验名称:氧解吸实验 实验日期: 2014-4-15 实验名称:氧解吸实验 报告摘要:本实验首先利用气体分别通过干填料层、湿填料层,测流体流动引起的填料层压降与空塔气速的关系,利用双对数坐标画出关 系。其次做传质实验求取传质单元高度,利用

K x a =G A /(V p △x m )]) ()(ln[) ()x -x (112221e22m e e e x x x x x x ----= ?X G A =L (x 2-x 1)求出 HOL= Ω a K L X 一、实验目的及任务: 1) 熟悉填料塔的构造与操作。 2) 观察填料塔流体力学状况,测定压降与气速的关系曲线。 3) 掌握液相体积总传质系数Kx a 的测定方法并分析影响因素。 学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、基本原理: 本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数K x a ,并进行关联,得到K x a=AL a V b 关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。 1、 填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为~2的直线(图中aa ’)。当有喷淋量时,在低气速下(c 点以前)压降正比于气速的~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c 点),持液量开始

大学化学试验思考题答案

实验一络合滴定法测定水的硬度 一、思考题及参考答案: +,而在络合滴定中应保持酸度不变,H故需加因为EDTA与金属离子络合反应放出1、入缓冲溶液稳定溶液的pH值。若溶液酸度太高,由于酸效应,EDTA的络合能力降低,若溶液酸度太低,金属离子可能会发生水解或形成羟基络合物,故要控制好溶液的酸度。 2、铬黑T在水溶液中有如下: 2-3--(pKa=6.3 In pKa=11.55)HIn ? HIn ?322紫红兰橙 从此估计,指示剂在pH<6.3时呈紫红色,pH>11.55时,呈橙红色。而铬黑T与金属离子形成的络合物显红色,故在上述两种情况下,铬黑T指示剂本身接近红色,终点变色不敏锐,不能使用。根据实验结果,最适宜的酸度为pH 9~10.5,终点颜色由红色变为蓝色,变色很敏锐。 3+3+2+2+2+有干扰。、、CuNi、3、Al、FeCo2+2+2+,加入三乙醇胺掩蔽Ni掩蔽Cu、、CoS在碱性条件下,加入Na或KCN23+3+。、AlFe实验二原子吸收法测定水的硬度 一、思考题参考答案: 1.如何选择最佳的实验条件? 答:通过实验得到最佳实验条件。 (1)分析线:根据对试样分析灵敏度的要求和干扰情况,选择合适的分析线。试液浓度低时,选最灵敏线;试液浓度高时,可选次灵敏线。 (2)空心阴极灯工作电流的选择:绘制标准溶液的吸光度—灯电流曲线,选出最佳灯电流。(3)燃助比的选择:固定其他实验条件和助燃气流量,改变乙炔流量,绘制吸光度—燃气流量曲线,选出燃助比。 (4)燃烧器高度的选择:用标准溶液绘制吸光度—燃烧器高度曲线,选出燃烧器最佳高度。(5)狭缝宽度的选择:在最佳燃助比及燃烧器高度的条件下,用标准溶液绘制吸光度—狭缝宽度曲线,选出最佳狭缝宽度。 2.为何要用待测元素的空心阴极灯作光源? 答:因为空心阴极灯能够发射出待测元素的特征光谱,而且为了保证峰值吸收的测量,能发射出比吸收线宽度更窄、强度大而稳定、背景小的线光谱。 3+含量测定Fe 硫酸亚铁铵的制备及实验三 四、思考题及参考答案 1、本实验在制备FeSO的过程中为什么强调溶液必须保证强酸性?4答:如果溶液的酸性减弱,则亚铁盐(或铁盐)的水解度将会增大,在制备2+(NH)S0·FeSO·6HO的过程中,为了使Fe不被氧化和水解,溶液需要保持足够的酸22444度。 2 、在产品检验时,配制溶液为什么要用不含氧的去离子水?除氧方法是怎样的? 2+3+,影响产品Fe使用不含氧的去离子水配溶液,是为了防止水中溶解的氧将Fe氧化为供参考.质量。水中除去氧的方法是:在烧杯中将去离子水加热煮沸10分钟,用表面皿盖好杯口,冷却后使用。 3、在计算硫酸亚铁和硫酸亚铁铵的理论产量时,各以什么物质用量为标准?为什么? 答:计算FeSO的理论产量时,以Fe屑的参加反应量为标准。4计算(NH)SO·FeSO·6HO的理论产量时,应以(NH)SO的用量为标准。42442244决定计算标准的原则是,以反应物中不足量者为依据。(详见讲解与示范中的3)。

物理化学实验思考题答案(精心整理)

物理化学实验思考题答案(精心整理) 实验1 1.不能,因为溶液随着温度的上升溶剂会减少,溶液浓度下降,蒸气压随之改变。 2.温度越高,液体蒸发越快,蒸气压变化大,导致误差愈大。 实验3 实验5 T----X图 1蒸馏器中收集气相冷凝液的袋状部的大小对结果有何影响 答:若冷凝管下方的凹形贮槽体积过大,则会贮存过多的气相冷凝液,其贮量超过了热相平衡原理所对应的气相量,其组成不再对应平衡的气相组成,因此必然对相图的绘制产生影响。 2若蒸馏时仪器保温条件欠佳,在气相到达平衡气体收集小槽之前,沸点较高的组分会发生部分冷凝,则T—x图将怎么变化 答:若有冷凝,则气相部分中沸点较高的组分含量偏低,相对来说沸点较低的组分含量偏高了,则T不变,x的组成向左或向右移(视具体情况而定) 3在双液系的气-液平衡相图实验中,所用的蒸馏器尚有那些缺点如何改进 答:蒸馏器收集气相、液相的球大小没有设计好,应根据实验所用溶液量来设计球的规格;温度计与电热丝靠的太近,可以把装液相的球设计小一点,使温度计稍微短一点也能浸到液体中,增大与电热丝的距离;橡胶管与环境交换热量太快,可以在橡胶管外面包一圈泡沫,减少热量的散发。 4本实验的误差主要来源有哪些 答:组成测量:(1)工作曲线;(2)过热现象、分馏效应;(3)取样量。

温度测量:(1)加热速度;(2)温度计校正。 5.试推导沸点校正公式: 实验12蔗糖水解速率常数的测定 1蔗糖的转化速率常数k 与哪些因素有关 答:温度、催化剂浓度。 2在测量蔗糖转化速率常数的,选用长的旋光管好还是短的旋光管好 答:选用较长的旋光管好。根据公式〔α〕=α×1000/Lc ,在其它条件不变情况下,L 越长,α越大,则α的相对测量误差越小。 3如何根据蔗糖、葡萄糖和果糟的比旋光度计算α0和α∞ 答:α0=〔α蔗糖〕D t ℃L[蔗糖]0/100 α∞=〔α葡萄糖〕D t ℃L[葡萄糖]∞/100+〔α果糖〕D t ℃L[果糖]∞/100 式中:[α蔗糖]D t ℃,[α葡萄糖]D t ℃,[α果糖]D t ℃ 分别表示用钠黄光作光源在t ℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm 表示)为旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。 设t =20℃ L=2 dm [蔗糖]0=10g/100mL 则: α0=×2×10/100=° α∞=×2×10/100×()=-° 4、试分析本实验误差来源怎样减少实验误差 答:温度、光源波长须恒定、蔗糖溶液要现用现配。 1、实验中,为什么用蒸馏水来校正旋光仪的零点在蔗糖转化反应过程中,所测的旋光度αt 是否需要零 点校正为什么 答:(1)因水是溶剂且为非旋光性物质。 (2)不需,因作lg(αt-α∞)~t 图,不作零点校正,对计算反应速度常数无影响。 2、蔗糖溶液为什么可粗略配制 答:因该反应为(准)一级反应,而一级反应的速率常数、半衰期与起始浓度无关,只需测得dC/dt 即可。 实验17电导的测定及应用 1、本实验为何要测水的电导率 () ℃果糖℃葡萄糖〕α〕〔α蔗糖t D t D 0[100]L[21+=

氧吸收解吸系数测定实验报告

氧吸收/解吸系数测定实验报告 一、实验目的 1、了解传质系数的测定方法; 2、测定氧解吸塔内空塔气速与液体流量对传质系数的影响; 3、掌握气液吸收过程液膜传质系数的实验测定方法; 4、关联圆盘塔液膜传质系数与液流速率之间的关系; 4、掌握VOC 吸收过程传质系数的测定方法。 二、实验原理 1) 吸收速率 吸收是气、液相际传质过程,所以吸收速率可用气相内、液相内或两相间传质速率表示。在连续吸收操作中,这三种传质速率表达式计算结果相同。对于低浓度气体混合物单组分物理吸收过程,计算公式如下。 气相内传质的吸收速率: )(i y A y y F k N -= 液相内传质的吸收速率: )(x x F k N i x A -= 气、液相相际传质的吸收速率: )()(**x x F K y y F K N x y A -=-= 式中:y ,y i ——气相主体和气相界面处的溶质摩尔分数; x ,x i ——液相主体和液相界面处的溶质摩尔分数; x *,y *——与x 和y 呈平衡的液相和气相摩尔分数; k x ,K x ——以液相摩尔分数差为推动力的液相分传质系数和总传质系数; k y ,K y ——以气相摩尔分数差为推动力的气相分传质系数和总传质系数; F ——传质面积,m 2。 对于难溶气体的吸收过程,称为液膜控制,常用液相摩尔分数差和液相传质系数表达吸收速率式。 对于易溶气体的吸收过程,称为气膜控制,常用气相摩尔分数差和气相传质系数表达吸收速率式。 本实验为一解吸过程,将空气和富氧水接触,因富氧水中氧浓度高于同空气处于平衡的水中氧浓度,富氧水中的氧向空气中扩散。解吸是吸收的逆过程,传质方向与吸收相反,其 原理和计算方法与吸收类似。但是传质速率方程中的气相推动力要从吸收时的(y -y * )改为 解吸时的(y *-y ),液相推动力要从吸收时的(x *-x )改为解吸时的(x -x * )。 2) 吸收系数和传质单元高度 吸收系数和传质单元高度是反映吸收过程传质动力学特性的参数,是吸收塔设计计算的必需数据。其数值大小主要受物系的性质、操作条件和传质设备结构形式及参数三方面的影响。由于影响因素复杂,至今尚无通用的计算方法,一般都是通过实验测定。 本实验计算填料解吸塔的体积传质系数K x a (kmol/(m 3 ·h))的公式如下:

原子吸收分光光度法与紫外-可见分光光度法

1.试比较有哪些异同点? 答: 相同点: 二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式: A=kc,仪器结构具有相似性. 不同点: 原子吸收光谱法紫外――可见分光光度法 (1)原子吸收分子吸收 (2)线性光源连续光源 (3)吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4)需要原子化装置(吸收xx不同)无 (5)背景常有影响,光源应调制 (6)定量分析定性分析、定量分析 (7)干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答: 相同点: 属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:

原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光)发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc If=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素、多元素 (8)应用可用作定性分析定量分析 (9)激发方式光源有原子化装置 (10)色散系统棱镜或光栅可不需要色散装置 (但有滤光装置) (11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中 按照电磁辐射的本质,光谱又可分为分子光谱和原子光谱。分子光谱是由于分子中电子能级变化而产生的。原子光谱可分为发射光谱、原子吸收光谱、原子荧光光谱和X-射线以及X-射线荧光光谱。前三种涉及原子外层电子跃迁,后两种涉及内层电子的跃迁。目前一般认为原子光谱仅包括前三种。原子发射光谱分析是基于光谱的发射现象;原子吸收光谱分析是基于对发射光谱的吸收现象;原子荧光光谱分析是基于被光致激发的原子的再发射现象。

大学化学实验思考题答案

大学化学实验思考题答 案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验一 络合滴定法测定水的硬度 一、 思考题及参考答案: 1、 因为EDTA 与金属离子络合反应放出H + ,而在络合滴定中应保持酸度不变, 故需加入缓冲溶液稳定溶液的pH 值。若溶液酸度太高,由于酸效应,EDTA 的络合能力降低,若溶液酸度太低,金属离子可能会发生水解或形成羟基络合物,故要控制好溶液的酸度。 2、 铬黑T 在水溶液中有如下 : H 2In - HIn 2- In 3- (pKa 2= pKa 3=) 紫红 兰 橙 从此估计,指示剂在pH<时呈紫红色,pH>时,呈橙红色。而铬黑T 与金属离子形成的络合物显红色,故在上述两种情况下,铬黑T 指示剂本身接近红色,终点变色不敏锐,不能使用。根据实验结果,最适宜的酸度为pH 9~,终点颜色由红色变为蓝色,变色很敏锐。 3、 Al 3+ 、Fe 3+ 、Cu 2+ 、Co 2+ 、Ni 2+ 有干扰。 在碱性条件下,加入Na 2S 或KCN 掩蔽Cu 2+、Co 2+、Ni 2+,加入三乙醇胺掩蔽Al 3+、Fe 3+。 实验二 原子吸收法测定水的硬度 一、 思考题参考答案: 1. 如何选择最佳的实验条件 答:通过实验得到最佳实验条件。

(1) 分析线:根据对试样分析灵敏度的要求和干扰情况,选择合适的分 析线。试液浓度低时,选最灵敏线;试液浓度高时,可选次灵敏线。 (2) 空心阴极灯工作电流的选择:绘制标准溶液的吸光度—灯电流曲 线,选出最佳灯电流。 (3) 燃助比的选择:固定其他实验条件和助燃气流量,改变乙炔流量, 绘制吸光度—燃气流量曲线,选出燃助比。 (4) 燃烧器高度的选择:用标准溶液绘制吸光度—燃烧器高度曲线,选 出燃烧器最佳高度。 (5) 狭缝宽度的选择:在最佳燃助比及燃烧器高度的条件下,用标准溶 液绘制吸光度—狭缝宽度曲线,选出最佳狭缝宽度。 2. 为何要用待测元素的空心阴极灯作光源 答:因为空心阴极灯能够发射出待测元素的特征光谱,而且为了保证峰值吸 收的测量,能发射出比吸收线宽度更窄、强度大而稳定、背景小的线光谱。 实验三 硫酸亚铁铵的制备及Fe 3+含量测定 四、 思考题及参考答案 1、 本实验在制备FeSO 4的过程中为什么强调溶液必须保证强酸性 答:如果溶液的酸性减弱,则亚铁盐(或铁盐)的水解度将会增大,在制备(NH 4)2S04·FeSO 4·6H 2O 的过程中,为了使Fe 2+不被氧化和水解,溶液需要保持足够的酸度。 2 、在产品检验时,配制溶液为什么要用不含氧的去离子水除氧方法是怎样的

二氧化碳吸收与解吸实验

二氧化碳吸收与解吸实验 一、实验目的 1.了解填料吸收塔的结构、性能和特点,练习并掌握填料塔操作方法;通过实验测定数据的处理分析,加深对填料塔流体力学性能基本理论的理解,加深对填料塔传质性能理论的理解。 2.掌握填料吸收塔传质能力和传质效率的测定方法,练习实验数据的处理分析。 二、实验内容 1. 测定填料层压强降与操作气速的关系,确定在一定液体喷淋量下的液泛气速。 2. 固定液相流量和入塔混合气二氧化碳的浓度,在液泛速度下,取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和体积吸收总系数)。 3. 进行纯水吸收二氧化碳、空气解吸水中二氧化碳的操作练习,同时测定填料塔液侧传质膜系数和总传质系数。 三、实验原理: 气体通过填料层的压强降:压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气、液流量均有关,不同液体喷淋量下填料层的压强降P ?与气速u 的关系如图一所示: 1 2 3 L 3L 2L 1 L 0 = >>0 图一 填料层的P ?~u 关系 当液体喷淋量00=L 时,干填料的P ?~u 的关系是直线,如图中的直线0。 ΔP , k P a

当有一定的喷淋量时,P ?~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将P ?~u 关系分为三个区段:既恒持液量区、载液区及液泛区。 传质性能:吸收系数是决定吸收过程速率高低的重要参数,实验测定可获取吸收系数。对于相同的物系及一定的设备(填料类型与尺寸),吸收系数随着操作条件及气液接触状况的不同而变化。 1.二氧化碳吸收-解吸实验 根据双膜模型的基本假设,气侧和液侧的吸收质A 的传质速率方程可分别表达为 气膜 )(Ai A g A p p A k G -= (1) 液膜 )(A Ai l A C C A k G -= (2) 式中:A G —A 组分的传质速率,1-?s kmoI ; A —两相接触面积,m 2 ; A P —气侧A 组分的平均分压,Pa ; Ai P —相界面上A 组分的平均分压,Pa ; A C —液侧A 组分的平均浓度,3-?m kmol Ai C —相界面上A 组分的浓度3-?m kmol g k —以分压表达推动力的气侧传质膜系数,112---???Pa s m kmol ; l k —以物质的量浓度表达推动力的液侧传质膜系数,1-?s m 。 以气相分压或以液相浓度表示传质过程推动力的相际传质速率方程又可分别表达为: )(*-=A A G A p p A K G (3) )(A A L A C C A K G -=* (4) 式中:*A p —液相中A 组分的实际浓度所要求的气相平衡分压,Pa ; * A C —气相中A 组分的实际分压所要求的液相平衡浓度,3-?m kmol ; G K —以气相分压表示推动力的总传质系数或简称为气相传质总系数,112---???Pa s m kmol ;

生化实验思考题参考答案[1].

生化实验讲义思考题参考答案 实验一淀粉的提取和水解 1、实验材料的选择依据是什么? 答:生化实验的材料选择原则是含量高、来源丰富、制备工艺简单、成本低。从科研工作的角度选材,还应当注意具体的情况,如植物的季节性、地理位置和生长环境等,动物材料要注意其年龄、性别、营养状况、遗传素质和生理状态等,微生物材料要注意菌种的代数和培养基成分的差异等。 2、材料的破碎方法有哪些? 答:(1) 机械的方法:包括研磨法、组织捣碎法; (2) 物理法:包括冻融法、超声波处理法、压榨法、冷然交替法等; (3) 化学与生物化学方法:包括溶胀法、酶解法、有机溶剂处理法等。 实验二总糖与还原糖的测定 1、碱性铜试剂法测定还原糖是直接滴定还是间接滴定?两种滴定方法各有何优缺点? 答: 我们采用的是碱性铜试剂法中的间接法测定还原糖的含量。间接法的优点是操作简便、反应条件温和,缺点是在生成单质碘和转移反应产物的过程中容易引入误差;直接法的优点是反应原理直观易懂,缺点是操作较复杂,条件剧烈,不易控制。 实验五粗脂肪的定量测定─索氏提取法 (1)本实验制备得到的是粗脂肪,若要制备单一组分的脂类成分,可用什么方法进一步处理? 答:硅胶柱层析,高效液相色谱,气相色谱等。 (2)本实验样品制备时烘干为什么要避免过热? 答:防止脂质被氧化。 实验六蛋白质等电点测定 1、在等电点时蛋白质溶解度为什么最低? 请结合你的实验结果和蛋白质的胶体性质加以说明。

蛋白质是两性电解质,在等电点时分子所带净电荷为零,分子间因碰撞而聚沉倾向增加,溶液的粘度、渗透压减到最低,溶解度最低。结果中pH约为4.9时,溶液最浑浊,达到等电点。 答: 2、在分离蛋白质的时候,等电点有何实际应用价值? 答: 在等电点时,蛋白质分子与分子间因碰撞而引起聚沉的倾向增加,所以处于等电点的蛋白质最容易沉淀。在分离蛋白质的时候,可以根据待分离的蛋白质的等电点,有目的地调节溶液的pH使该蛋白质沉淀下来,从而与其他处于溶液状态的杂质蛋白质分离。 实验七氨基酸的分离鉴定-纸层析法 1、如何用纸层析对氨基酸进行定性和定量的测定? 答: 将标准的已知氨基酸与待测的未知氨基酸在同一张层析纸上进行纸层析,显色后根据斑点的Rf值,就可以对氨基酸进行初步的定性,因为同一个物质在同一条件下有相同的Rf 值;将点样的未知氨基酸溶液和标准氨基酸溶液的体积恒定,根据显色后的氨基酸斑点的面积与点样的氨基酸质量成正比的原理,通过计算斑点的面积可以对氨基酸溶液进行定量测定。 3、纸层析、柱层析、薄层层析、高效液相层析各有什么特点? 答:

分析实验实验报告思考题答案

分析实验实验报告思考题 答案 This manuscript was revised on November 28, 2020

实验一、NaOH和HCl标准溶液的配制及比较滴定 和NaOH标准溶液能否用直接配制法配制为什么 答:由于NaOH固体易吸收空气中的CO2和水分,浓HCl的浓度不确定,固配制HCl和NaOH标准溶液时不能用直接法。 2.配制酸碱标准溶液时,为什么用量筒量取HCl,用台秤称取NaOH(S)、而不用吸量管和分析天平 答:因吸量管用于标准量取需不同体积的量器,分析天平是用于准确称取一定量的精密衡量仪器。而HCl的浓度不定, NaOH易吸收CO2和水分,所以只需要用量筒量取,用台秤称取NaOH即可。 3.标准溶液装入滴定管之前,为什么要用该溶液润洗滴定管2~3次而锥形瓶是否也需用该溶液润洗或烘干,为什么 答:为了避免装入后的标准溶液被稀释,所以应用该标准溶液润洗滴管2~3次。而锥形瓶中有水也不会影响被测物质量的变化,所以锥形瓶不需先用标准溶液润洗或烘干。 4.滴定至临近终点时加入半滴的操作是怎样进行的 答:加入半滴的操作是:将酸式滴定管的旋塞稍稍转动或碱式滴定管的乳胶管稍微松动,使半滴溶液悬于管口,将锥形瓶内壁与管口接触,使液滴流出,并用洗瓶以纯水冲下。 实验二、NaOH溶液的配制及食用白醋总酸度的测定 1.如何计算称取基准物邻苯二甲酸氢钾或Na2CO3的质量范围称得太多或太少对标定有何影响 答:在滴定分析中,为了减少滴定管的读数误差,一般消耗标准溶液的体积应在20—25ml之间,称取基准物的大约质量应由下式求得: 如果基准物质称得太多,所配制的标准溶液较浓,则由一滴或半滴过量所造成的误差就较大。称取基准物质的量也不能太少,因为每一份基准物质都要经过二次称量,如果每次有±的误差,则每份就可能有±的误差。因此,称取基准物质的量不应少于,这样才能使称量的相对误差大于1‰。 2.溶解基准物质时加入20~30ml水,是用量筒量取,还是用移液管移取为什么 答:因为这时所加的水只是溶解基准物质,而不会影响基准物质的量。因此加入的水不需要非常准确。所以可以用量筒量取。 3.如果基准物未烘干,将使标准溶液浓度的标定结果偏高还是偏低 答:如果基准物质未烘干,将使标准溶液浓度的标定结果偏高。 4.用NaOH标准溶液标定HCl溶液浓度时,以酚酞作指示剂,用NaOH滴定HCl,若NaOH 溶液因贮存不当吸收了CO2,问对测定结果有何影响 答:用NaOH标准溶液标定HCl溶液浓度时,以酚酞作为指示剂,用NaOH滴定HCl,若NaOH溶液因贮存不当吸收了CO2,而形成Na2CO3,使NaOH溶液浓度降低,在滴定过程中虽然其中的Na2CO3按一定量的关系与HCl定量反应,但终点酚酞变色时还有一部分NaHCO3末反应,所以使测定结果偏高。 5.如果NaOH溶液吸收了空气中的CO2,对食用白醋总酸度的测定有何影响、为什么、 答:NaOH吸收了空气中的CO2,使标准溶液中的氢氧化钠浓度变小,用来滴定未知醋酸的浓度,会使测得的浓度偏大 6.本实验中为什么选用酚酞做指示剂其选择原则是什么根据选择原则选用其他指示剂可以吗如果可以请举例说明。

大学物理化学实验思考题答案总结

蔗糖水解速率常数的测定 1.蔗糖水解反应速率常数和哪些因素有关? 答:主要和温度、反应物浓度和作为催化剂的H+浓度有关。 2.在测量蔗糖转化速率常数时,选用长的旋光管好?还是短的旋光管好? 答:选用长的旋光管好。旋光度和旋光管长度呈正比。对于旋光能力较弱或者较稀的溶液,为了提高准确度,降低读数的相对误差,应选用较长的旋光管。根据公式(a)=a*1000/LC,在其他条件不变的情况下,L越长,a越大,则a的相对测量误差越小。 3.如何根据蔗糖、葡萄糖、果糖的比旋光度数据计算? 答:α0=〔α蔗糖〕Dt℃L[蔗糖]0/100 α∞=〔α葡萄糖〕Dt℃L[葡萄糖]∞/100+〔α果糖〕Dt℃L[果糖]∞/100 式中:[α蔗糖]Dt℃,[α葡萄糖]Dt℃,[α果糖]Dt℃分别表示用钠黄光作光源在t℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm表示)为旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。 设t=20℃L=2 dm [蔗糖]0=10g/100mL 则: α0=66.6×2×10/100=13.32° α∞=×2×10/100×(52.2-91.9)=-3.94° 4.试估计本实验的误差,怎样减少误差? 答:本实验的误差主要是蔗糖反应在整个实验过程中不恒温。在混合蔗糖溶液和盐酸时,尤其在测定旋光度时,温度已不再是测量温度,可以改用带有恒温实施的旋光仪,保证实验在恒温下进行,在本实验条件下,测定时要力求动作迅速熟练。其他误差主要是用旋光仪测定时的读数误差,调节明暗度判断终点的误差,移取反应物时的体积误差,计时误差等等,这些都由主观因素决定,可通过认真预习实验,实验过程中严格进行操作来避免。 乙酸乙酯皂化反应速率常数测定 电导的测定及其应用 1、本实验为何要测水的电导率? 答:因为普通蒸馏水中常溶有CO2和氨等杂质而存在一定电导,故实验所测的电导值是欲测电解质和水的电导的总和。作电导实验时需纯度较高的水,称为电导水。水的电导率相对弱电解质的电导率来说是不能够忽略的。所以要测水的电导率。 2、实验中为何通常用镀铂黑电极?铂黑电极使用时应注意什么?为什么?

化工原理氧解吸实验报告

北京化工大学 化原实验报告 学院:化学工程学院 姓名:娄铮 学号: 2013011345 班级:环工1302 同组人员:郑豪,刘定坤,邵鑫 课程名称:化工原理实验 实验名称:氧解吸实验 实验日期: 2014-4-15

实验名称: 氧 解 吸 实 验 报告摘要:本实验首先利用气体分别通过干填料层、湿填料层,测流体流动引起的填料层压 降与空塔气速的关系,利用双对数坐标画出关系。其次做传质实验求取传质单元高度,利用 K x a =G A /( V p △x m )]) ()(ln[) ()x -x (112221e22m e e e x x x x x x ----=?X G A =L (x 2-x 1)求出 H OL = Ω a K L X 一、实验目的及任务: 1) 熟悉填料塔的构造与操作。 2) 观察填料塔流体力学状况,测定压降与气速的关系曲线。 3) 掌握液相体积总传质系数K x a 的测定方法并分析影响因素。 学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、基本原理: 本装置先用吸收柱使水吸收纯氧形成富氧水后,送入解吸塔顶再用空气进行解吸,实验需要测定不同液量和气量下的解吸液相体积总传质系数K x a ,并进行关联,得到K x a =AL a V b 关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。 1、 填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。填料层压降—空塔气速关系示意图如下,在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa ’)。当有喷淋量时,在低气速下(c 点以前)压降正比于气速的1.8~2次幂,但大于相同气速下干填料的压降(图中bc 段)。随气速的增加,出现载点(图中c 点),持液量开始增大,压降—气速线向上弯,斜率变陡(图中cd 段)。到液泛点(图中d 点)后,在几乎不变的气速下,压降急剧上升。 2、传质实验 在填料塔中,两相传质主要在填料有效湿表面上进行,需要计算完成一定吸收任务所需的填料高度,其计算方法有传质系数、传质单元法和等板高度法。 本实验是对富氧水进行解吸,如图下所示。由于富氧水浓度很低,可以认为气液两相平衡关系服从亨利定律,及平衡线位置线,操作线也是直线,因此可以用对数平均浓 l g △p

相关文档
相关文档 最新文档