文档库 最新最全的文档下载
当前位置:文档库 › 聚丙烯填充改性研究进展

聚丙烯填充改性研究进展

聚丙烯填充改性研究进展
聚丙烯填充改性研究进展

聚丙烯材料改性研究

聚丙烯材料改性研究 摘要:利用共混的方法,针对聚丙烯制品在实际应用中出现韧性差,易燃烧的缺点,重点研究了增塑剂POE 不同的量对聚丙烯抗冲击强度的影响,以及氢氧化镁对聚丙烯燃烧性能的影响。本次试验采用了高混机对所用原料进行共混,再将共混的原料放入双螺杆挤出机中挤出造粒,然后将制成的粒料利用注射机制作我们所需的的标准样条,最后对标准样条测试抗冲击强度和氧指数。结果显示,POE 增塑剂的量越多,则对聚丙烯的韧性改善更好,氢氧化镁由于加的量比较少,对聚丙烯的阻燃作用不明显。 关键词:聚丙烯;改性;造粒;增塑;阻燃 1前言 聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotactic polypropylene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotactic polypropylene)三种。甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。 采用相容剂技术和反应性共混技术对PP 进行共混改性是当前PP 共混改性发展的主要特点。它能在保证共混材料具有一定的拉伸强度和弯曲强度的前提下大幅度提高PP 耐冲击性。相容剂在共混体系中可以改善两相界面黏结状况,有利于实现微观多相体系的稳定,而宏观上是均匀的结构状态。反应型相容剂除具有一般相容剂的功效外,在共混过程中还能在两相之间产生分子链接,显著提高共混材料性能。 PP/弹性体二元共混体系虽有很好的韧性效果,但往往降低了材料的强度和刚度,耐热性能也有所降低。在二元共混体系中加入有增容作用或协同效应的物质,形成多元共混体系,则其综合性能可得到进一步提高。为了提高增韧PP 的硬度、热变形温度及尺寸稳定性,可使用经偶联剂活化处理的填料或增强材料进行补强。例如采用弹性体/无机刚性粒子/PP 三元复合增韧体系实现PP 的增韧增强,提高材料的综合性能,并且具有较低的成本。 溴系阻燃剂效率高、用量少,对材料的性能影响小,并且溴系阻燃剂价格适中。与其它类型的阻燃剂相比,溴系阻燃剂效能/价格比更具有优越性,我国供出口电子电气类产品中70%~80%都用此类阻燃剂。但是,近年来欧盟一些国家认为溴系阻燃剂燃烧时会产生有毒致癌的多溴代苯并恶瑛(PBDD)和多溴代二苯并呋喃(PBDF)。欧盟出台了禁令,在欧盟国家销售的所有电子电气设备,不能含有多溴联苯及多溴二苯醚。阻燃剂的种类众多,其用量和性能都各自不同,需要在不同的情况下选用不同的阻燃剂。现如今,聚丙烯的阻燃剂正向着高效、低烟、绿色、环保和低成本的方向发展。所以本次实验采用比较绿色的阻燃剂氢氧化镁。 本次实验采用POE 对聚丙烯增韧;氢氧化镁对聚丙烯进行阻燃改性,由于加入氢氧化镁的量太多,挤出机挤出较困难,所以同时加入少量三氧化二锑(Sb 2O 3)来减少氢氧化镁用量, 降低加工难度。 2.实验 2.1配方设计

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用 1、聚丙烯在合成树脂生产中占据重要地位,发展极为迅速 聚丙烯是五大通用合成树脂中的一个重要品种,在国内外的发展均十分迅速。在全球塑料用五大合成树脂中,聚丙烯的产量占有1/4左右的份额,预计2006年世界五大通用合成树脂的总产能将达到1亿9千万吨,其中聚丙烯4878万吨,占总产能的25.6%[1]。而我国2004年聚丙烯树脂产量为474.88万吨,进口291.4万吨,出口1.53万吨,其表观消费量为764.7万吨,占当年全国五大通用树脂表观消费量总和2954万吨的25.9%。预计到2010年我国聚丙烯树脂的表观消费量将增加至1080万吨,较2004年增长40%以上。表1列出近期投产和正在建设的聚丙烯装置的地点和产能。 表1 近期投产和在建聚丙烯装置

在已宣布的新增产能中,中石化253万吨/年,中石油135万吨/年,而且大多数项目的产能都在30万吨以上,达到世界级规模。这些装置全部投产后,中石化的聚丙烯产能将超过巴赛尔公司,跃居全球榜首,中石油也将列位前五名之列,届时中国将成为生产聚丙烯树脂全球产能最大的国家。 另据报道,我国聚丙烯树脂的产量1995年仅为107.35万吨,到2005年达到522.95万吨,平均年递增38.7%,同期表观消费量也从212.92万吨增至823万吨,平均年递增28.7%,成为全球聚丙烯消费增长最快的国家[2]。 1 聚丙烯基本知识 1.1 树脂与塑料的定义和分类 树脂(Resin):高分子材料亦称高分子聚合物,分为天然高分子材料和合成高分子材料。在合成高分子材料中按塑料、橡胶、纤维三大用途分为合成树脂、合成橡胶和合成纤维三大类,其中用于塑料的合成树脂所占的比例最大,约占合成材料总量的2/3以上。 塑料(Plastics):以合成树脂为主要成分,添加有适量的填料、助剂、颜料,而且在加工过程中能流动成型的材料。 热塑性塑料(ThermoPlastics):能在特定温度范围内反复软化和冷却硬化的塑料。 热固性塑料(Thermosetting Plastics):在第一次成型之后,成为不熔、不溶性物料的塑料。

聚丙烯抗冲改性的研究进展

聚丙烯抗冲改性的研究进展 [摘要] 综述了近年来有关反应器内抗冲改性聚丙烯研究的最新进展, 介绍了反应器内抗冲改性聚丙烯的生产工艺及多区循环流反应器在丙烯多段聚合中的应用; 介绍了反应器内抗冲改性聚丙烯的形态、结构与性能的关系; 介绍了 反应器内抗冲改性聚丙烯的研究方法及增韧机理。 [关键词] 聚丙烯; 抗冲改性; 共聚物; 结构与性能. 聚丙烯( PP)质轻、价廉, 具有良好的加工性能,应用范围广。PP的很多应用领域要求它具有较好的韧性。均聚PP在低温时变脆, 抗冲改性PP是通过在均聚PP中加入橡胶相制备的。以提高PP抗冲强度为目的的改性大多采用物理共混方法, 将PP和两种或两种以上的其它聚合物以机械共混方法进行混合, 可以得到一种宏观上均匀的聚合物共混物,在一定程度上提高共混物的性能。一方面, 以这种混合方式得到的PP与改性成分达不到真正均匀分布的状态, 故不能显提高共混物的冲击强度; 另一方面, 由于增加了共混工艺, 提高了生产抗冲改性PP的成本。因此, 研究人员想在聚合过程中完成共混工艺, 在反应器内直接合成抗冲改性的PP, 这样不仅可以简化工艺、降低生产成本, 而且还可以使PP和改性成分的混合程度达到亚微观状态, 从而有效地改善PP的抗冲性能。 本文对反应器内抗冲改性PP的生产工艺、形态结构、研究方法、增韧机理等方面的最新进展进行了综述。 1 应器内抗冲改性PP的生产工艺 反应器内抗冲改性PP的生产建立在第四代球形M gC l2 负载Z ieg ler- N atta 催化剂的基础上[ 1 ] 。第四代球形M gC l2 负载Z ieg ler- N a tta 催化剂具有以下特点[ 2] : ( 1)比表面积大; ( 2)孔隙率高, 孔径分布均匀; ( 3)活性中心在催化剂上分布均匀; ( 4)催化剂既具有一定的强度, 又能被聚合物增长时产生 的压力将内部结构破碎成较小颗粒, 并均匀地分布在膨胀着的聚合物内部; ( 5)单体可以自由地扩散到催化剂内部而发生聚合。由于聚合过程中的复制效应, 均聚过程中生成的丙烯均聚物复制了催化剂的某些特点, 如呈规则的球形、具有较高的孔隙率、活性中心在聚合物粒子内部分布均匀等。 反应器内抗冲改性PP 的生产一般采用两步法: 第一步先合成丙烯均聚物, 形成高立构规整度的聚合物, 为最终产品提供足够强的刚性, 这一步一般采用液相本体聚合或气相聚合工艺; 第二步合成乙丙共聚物(橡胶相), 为最终产品提供韧性, 共聚阶段一般采用气相共聚工艺; 最终产品的机械性 能实际上是刚性和韧性的平衡。气相共聚是反应器内抗冲改性PP 合成的关键步骤, 特殊的催化剂结构形态使本体聚合阶段获得的PP粒子具有较高的流动性和多孔性, 完全可以满足气相共聚的要求。合适的气相共聚工艺可以自由地调控共聚物的含量、组成及分子结构。气相共聚也保证了共聚物能均匀地分散在已形成的PP均聚物基体中, 这样既可以得到较高的橡胶相含量, 又不致使橡胶相过

聚丙烯改性

专业:08高分子1班学号:08206020135 姓名:金从伟 聚丙烯改性 引言:聚丙烯因其具有良好的加工性能和物理、力学、化学性能而获得广泛应 用。是目前增长速度最快的通用型热塑性塑料。聚丙烯的主要应用领域为学向拉丝制品,膜片制品及包装容器制品。但近年来将普通聚丙烯经过填充、增强、共混改性再作为原料制作汽车,电器.仪表等工业配套零部件也已成为其主要的应用领域。 关键词:聚丙烯;改性 1.物理改性 物理改性由于工艺过程简单,生产周期短。所制得材料性能优良。近年来已成为高分子材料一个新的研究热点。常用的改性方法主要有共混改性、填充改性、增强改性等。 1.1 共混改性 共混改性是将聚丙烯与橡胶或其它热塑性树脂的弹性体共混制备共混物。最古老和最简单的方法是机械掺合法。共混改性可明显改进低温脆性、冲击强度和耐寒性等。如聚丙烯与乙丙橡胶顺丁橡胶、聚异丁烯等共混,可提高冲击强度3~7倍,提高耐寒性8~ l0倍。聚丙烯除了二元共混体外,还采用了三元共混体系。如玻璃纤维增强聚丙烯和橡胶共混,不但改善了冲击韧性和耐寒性,同时刚性和抗蟠变性能也得到保证,其制品的力学性能可与ABs相媲美。 1.2填充改性 为了开拓聚丙烯在工程塑料应用领域中的用途,需要提高聚丙烯的刚性和耐热性,可以添加填充材料,如滑石粉、碳酸钙硫酸钡、云母、石膏、石棉、术粉、炭黑、硅藻粉和高岭土等。填充性主要是提高聚丙烯的刚性、耐热性和尺寸稳定性,并可降低成本 1.3增强改性 用玻璃纤维和碳纤维作为增强材料,其最大特点是基体树脂聚丙烯的化学稳定性强,可提高抗张、抗弯曲和冲击强度,降低成型收缩率。经增强后的聚丙烯,其性能与尼龙、聚甲醛、聚碳酸脂等工程塑料相当。玻璃纤维增强聚丙烯既保持了聚丙烯成本低的特点,且在玻璃纤维增强热塑性塑料 中,其比重最小,困而在重量和秽_格上占有优势,且具有流动性大、成型条件幅脚宽、耐水性和耐化学侵蚀性好的特点。所以,聚丙烯中添加玻璃纤维后,其耐热刚性、尺寸稳定性、耐蠕变性和机械强度等都有很大的提高,可作为工程塑料而广泛应用。同时,其要食品卫生方面无害,尤其是电性质良好 1.4添加助剂改性 为使聚丙烯性能适合各方面的需要,添加抗氧剂和紫外线吸收剂可提高聚丙烯的耐气展性}添加阻燃剂可降低聚丙烯的易燃性;添加成核剂可增强聚丙烯的透明性和光泽性。并可缔短成型周期等}添加其它助剂如抗氧剂、润滑剂、热稳定剂、发泡剂、着色剂等,可以改善聚丙烯的耐老化性、加工稳定性,抗静电性能等。 2. 化学改性

聚丙烯

聚丙烯-PP-Polypropylene原料介绍 发布日期:2013-05-18 20:02 点击次数:662次 聚丙烯-PP-Polypropylene原料介绍 聚丙烯,英文名称:Polypropylene(PP),日文名称:ポリプロピレン,分子式:(C3H6)n。CAS 登录号:9003-07-0,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotaetic polyprolene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯 (syndiotatic polypropylene)三种。 介绍 甲基排列在分子主链的同一侧称等规聚丙烯, 聚丙烯树脂若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。 共聚物型的PP材料有较低的热变形温度(100℃)、低透明度、低光泽度、低刚性,但是有更强的抗冲击强度,PP的冲击强度随着乙烯含量的增加而增大。PP的维卡软化温度为150℃。由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。PP不存在环境应力开裂问题。 PP的熔体质量流动速率(MFR)通常在1~100。低MFR的PP材料抗冲击特性较好但延展强度较低。对于相同MFR的材料,共聚型的抗冲强度比均聚型的要高。由于结晶,PP的收缩率相当高,一般为1.6~2.0%。 性质描述 中文名:聚丙烯[1] 聚丙烯结构图3D模型 中文别名:丙纶;聚丙烯纤维;丙纶短纤维;聚丙烯短纤维;丙纶短纤;丙纶fdy;丙纶长丝fdy;烟用聚丙烯过滤丝束油剂[2] 英文名: Polypropylene 缩写:PP

聚丙烯改性技术的研究进展

聚丙烯改性技术的研究进展 五大通用塑料中,聚丙烯(PP)发展历史虽短,却是发展最快的一种。与其他通用塑料相比,PP具有较好的综合性能,例如:相对密度小,有较好的耐热性,维卡软化点高于HDPE和ABS,加工性能优良;机械性能如屈服强度、拉伸强度及弹性模量均较高,刚性和耐磨都较优异;具有较小的介电率,电绝缘性良好,耐应力龟裂及耐化学药品性能较佳等。但由于PP成型收缩率大、脆性高、缺口冲击强度低,特别是在低温时尤为严重,这大大限制了PP的推广和应用。为此,从上世纪70年代中期,国内外就对PP改性进行了大量的研究,特别是在提高PP的缺口冲击强度和低温韧性方面,目前已成为国内外研究的重点和热点。 1 橡胶增韧PP 橡胶或热塑性弹性体以弹性微粒状分散结构增韧塑料,已被证实是增韧效果较为明显的一种方法。由于PP具有较大的晶粒,故在加工时球晶界面容易出现裂纹,导致其脆性。通过掺人各种含有柔性高分子链的橡胶或弹性体,可大幅度提高PP的冲击强度,改善低温韧性。传统的PP增韧剂有三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、苯乙烯与丁二烯类热塑性弹性体(SBS)、顺丁橡胶(BR)、丁苯橡胶(SBR)等,其中以EPDM或EPR取效果最好。 1.1 PP/乙丙橡胶共混体系 PP与乙丙橡胶都含有丙基,溶度参数相近,根据相似相容原理,它们之间应具有较好的相容性。由于乙丙橡胶具有高弹性和良好的低温性能,因此与PP 共混可改善PP的冲击性能和低温脆性。 李蕴能等研究了乙丙橡胶心P共混物的性能,得出结论:在相同橡胶含量下,增韧共聚PP的效果远优于增韧均聚PP,且增韧效果与橡胶的种类有关。通常情况下,EPR的增韧效果优于EPDM。通过实验发现,当橡胶含量为30%时,增韧效果最好;不同结晶度的EPR对PP的增韧效果也不一样,结晶度越低,其增韧效果越好。 刘晓辉等对不同PP心Pr)M共混物的力学性能进行了研究。结果表明:(1)随着体系中EPDM加入量的增多,材料的冲击强度明显上升,当EPDM含量为30%左右时,冲击强度出现极值;(2)冲击强度的提高和变化与EPDM在PP中的形态和分布有关;(3)EPDM的加入对共混晶体结构有影响,但晶体结构上的差

开发高性能聚丙烯改性材料

(总第154期> 2004年10月30日 开发高性能聚丙烯改性材料 提升湛江电饭煲地质量档次 湛江市包装材料企业有限公司 涂志刚 市科技专家咨询委员会专家 众所周知,在小家电行业,湛江地电饭煲全国有名,早在八十年代半球地广告就遍布全国大中城市.据统计目前湛江生产地电饭煲市场占有率为30%左右,而且大量出口到东南亚.电饭煲产业地发展也带动了相关配件行业地发展,其中包括电饭煲上用到地大量塑料制件,因此在湛江催生了塑料注塑成型加工行业,通过注塑成型,生产电饭煲上地塑料制件,如外壳、内盖、中环、蒸笼、底座等.电饭煲上用到地塑料材料主要是聚丙烯改性材料,最初,这些改性材料主要从珠三角地区购买,近年来在湛江本地逐步有一些私人小企业开始生产,由于价格低廉,但是技术水平与广州附近地企业相比有较,很快地占有了大部分市场 大差距,产品质量较差,因此最终会使电饭煲地质量受到一定程度地影响,这将成为电饭煲产业链拓展地薄弱环节.由此可见在湛江开发高性能地聚丙烯改性材料,对促进电饭煲产业群地发展具有十分重要地意义.b5E2RGbCAP

一聚丙烯

聚丙烯改性

聚丙烯纤维的表面改性 学院:同济大学浙江学院 姓名:董瀚 学号:090736 摘要:结合聚丙烯( PP) 纤维分子结构特点、表面特性以及在水泥基材料应用中存在的问题, 研究了等离子处理方法对聚丙烯纤维表面的改性技术。 关键词:聚丙烯纤维; 表面改性;等离子处理 Research Progress in Surface Modification Technology of PP Fiber ABSTRACT:In this article, we discussed the molecule structure and surface characteristics of PP fiber and the problems whenthey were used in cement matrix material. The surface modification technology of PP fiber was also researched with corona treatment with coupling agent. KEYWORDS:polypropylene fiber; surface modification;corona treatment 1 前言 近年来, 聚丙烯( PP) 纤维在抗裂要求较高的混凝土工程中得到迅速的推广应用, 其出色的阻裂效果已得到试验及工程的证实。但同时也存在一些致命缺点: 表面光滑; 表面能低; 分子链上不含任何活性基团, 而且表面疏水, 以致于纤维在水泥基材料中不易分散; 与水泥基材的物理化学粘接性能较差等,严重制约了其在水泥基材料中的应用。因此对纤维表面进行适当的改性, 提高其在水泥基材料基体中的分散性和界面结合力是聚丙烯纤维扩大应用的关键所在。本文主要介绍等离子处理方法(塑性开裂性能的缺陷)。 2 PP 纤维的结构和性能 聚丙烯是一种结构规整的结晶型聚合物, 为乳白色, 无味, 无毒, 质轻, 是聚烯烃的一种, 密度为0190~ 0. 91g/ cm3, 不溶于水, 熔点为165 ℃ , 燃点为590 ℃; 耐热性能良好; 聚丙烯几乎不吸水, 耐蚀性能良好, 与大多数化学品, 如酸、碱和有机溶剂接触不发生作用; 物理机械性能良好, 抗拉强度330 ~414MPa, 极限伸长率200% ~ 700% , 弹性模量为3.92~ 4. 90GPa; 耐光性能差【1】。 聚丙烯纤维是聚丙烯切片经纺丝、拉伸工艺制成的纤维级产品, 其抗拉强度、极限伸长率以及弹性模量随制作工艺不同而变化较大【2】。聚丙烯纤维虽然具有很好的力学性能, 耐化学侵蚀, 但也存在一些致命缺点, 分子不带有极性基团、表面呈化学惰性和憎水性、在水泥基材料的应用中存在与基材的粘结性和抗蠕变性能较差的缺点。 众所周知, 水泥基材料耐久性的重要地位并不亚于强度和其它性能, 而耐久性不足最终都归结为材料开裂。在水泥基材料中掺入高弹性模量的钢纤维, 其作用主要是阻止硬化材料破坏时的裂缝扩展, 使硬化材料在开裂后仍能保持一定的抗拉强度。与钢纤维相比, 聚丙烯纤维的掺入能有效的抑制早期( 塑性期和硬化初期) 水泥基材料由于离析、泌水、收缩等因素形成的原生裂隙的发生和发展, 减少原生裂隙的数量和尺寸。因此, 聚丙烯纤维和钢纤维的阻裂效应是不同的, 它们分别改善了不同时期水泥基材料的性能。在一些对水泥基材料裂缝要求严格的工程中, 掺用聚丙烯纤维则有可能获得更为满意的效果, 因钢纤维在材料开裂后方能发挥阻裂效应,有些场合并无实际意义, 而水泥基材料在早期易发生塑性开裂性能的缺陷, 却可通过掺入聚丙烯纤维得到解决和改善。

玻纤改性聚丙烯简述

玻纤增强聚丙烯 PP作为通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是PP存在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺点。因此,对其进行改性,以使其能够适应产品的需求。每一种改性PP 在家用电器领域和车用领域都有着大量应用。 ABS是最先用在家用电器上的塑料材料之一,由于ABS树脂价恪昂贵,逐步开发出的PP 改性材料,具有成本低、重量轻、性能好等优点;玻纤增强PP可以部分取代ABS、PBT树脂在家用电器产品和汽车领域上的应用。 玻纤增强改性PP 1.一般说来,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想提高PP的强度性能,必须用玻璃纤维进行增强。通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。拉伸强度可以达到65MPa~90MPa,弯曲强度可以达到70MPa~120MPa,弯曲模量可以达到 3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美。 2. 玻纤增强PP更耐热。一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。它可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇,其成本要比ABS增强产品低很多。也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。 3.玻纤增强改性的PP尺寸稳定性得到改善,受热变形减小,收缩率减小。 4.玻纤增强改性的PP一般硬度得到提高,吸水性能下降。 改性PP在家电行业中有非常好的应用前景。一方面,中国已经成为世界家用电器生产中心,而且拥有一批极有影响力的生产企业,这些企业能够主动选择材料;另一方面,行业竞争也促使企业应用性价比更合理的材料。从未来家电技术发展情况看,家用电器的人性化将更加突出,产品品种更加齐全,传统家电将向小型化、大型化两极方向发展 玻纤增强PP在汽车用料中的应用也不断拓展,新产品的不断涌现,对PP改性也提出了更高的要求,改性PP将有以下主要发展趋势:

聚丙烯的改性方法及应用

聚丙烯的改性方法及应用 聚丙烯具有比重小、刚性好、强度高、耐挠曲,以及有高于100℃的耐热温度和良好的耐化学腐蚀性等优点。通过改性,其耐低温性﹑耐冲击性和耐老化性等有所提高,广泛应用于家电、汽车等领域。 根据产品的要求和用途,聚丙烯可以用共混、填充、增强、添加助剂,以及共聚、共混、交联等方法加以改性。例如可以添加碳酸钙、滑石粉、矿物质等以提高硬度、耐热性、尺寸稳定性,添加玻璃纤维、石棉纤维、云母、玻璃微珠等以提高拉伸强度、改善低温抗冲击性、耐蠕变性,添加橡胶、弹性体、和其它柔性聚合物等以提高冲击性能、透明性,添加各种特殊助剂可赋予聚丙烯诸如耐候性、抗静电性、阻燃性、导电性、可电镀性、成核性、抗铜害性等等。 改性聚丙烯在家电领域的应用 易涂装改聚丙烯材料:直接通过共混改性,引入极性官能团,使其与聚丙烯树脂形成共结晶,规避析出,避免弱界面层的形成,从而整体提升表面张力。 满足无人看守电器要求阻燃改性聚丙烯材料:满足国际电工委员会(IEC)提出的长期无人看管电器用改性PP材料要求:IEC60335标准要求750℃灼热丝接触被测材料或制品30秒内不起火或者燃烧时间≤5秒(即GWIT≥750℃)和漏电起痕指数(CTI)≥250V。 感温变色聚丙烯材料:在聚丙烯材料中通过加入感温变色颜料实现颜色转变,感温变色颜料是由电子转移型有机化合物进行制备,在特定温度下因电子转移使该有机物的分子结构发生变化从而使颜色发生转变,从而在直观上辨别温度。 防蟑螂、防鼠咬材料:通过针对对蟑螂和老鼠的味觉和嗅觉的刺激从而达到防治其对电器的危害。主要应用于电磁炉等电器。 抗染色聚丙烯材料:内胆材料直接与果汁、食物残渣、食品调料等接触后受到污染引起材料表面颜色的变化,当颜色变化到一定程度后就会显脏,甚至作为污染源污染下一批食物,降低产品的使用品质。使用抗染色聚丙烯材料可以解决这些问题。聚赛龙抗染色聚丙烯材料具有污染、抗染色、高流动性、刚韧平衡等特点,主要应用于喷臂管、滤网等洗碗机部件。 抗菌聚丙烯材料:家用电器如:洗衣机、空调、空气净化器、净水机、冰箱等家电,使用一段时间后滋生大量致病菌、霉菌等,对消费者的健康造成直接的威胁。抗菌聚丙烯材料对沾污在塑料上的细菌、霉菌、醇母菌、藻类甚至病毒等起抑制或杀灭作用,通过抑制微生物的繁殖来保持自身清洁。聚赛龙家电用抗菌塑料具有高强度、高韧性、抑制细菌霉菌生长等特点。 改性聚丙烯在汽车领域的应用 长玻纤增强聚丙烯材料:聚赛龙LFT-PP减重效果明显,性能也非常好,在120℃时的高温

聚丙烯的共混改性

聚丙烯的共混改性 材料一班历晨 1205101018 摘要:聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规,无规和间 规聚丙烯三种。 甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含 量约为95%,其余为无规或间规聚丙烯。 关键字:聚丙烯共混改性、聚丙烯改性研究、改性制品八大应用 聚丙烯共混改性 PP/EVA共混体系 : 物理共混改性的方法分别制备出乙烯—醋酸乙烯含量为0~20wt%的聚丙烯(PP)/乙烯—醋酸乙烯(EVA)共混切片,以PP为皮层、PP/EVA共混物为芯层,采用熔融纺丝工艺制备出皮芯复合中空纤维。文中通过研究原材料的组成、EVA含量、复合比例、纺丝温度和挤出速率/卷绕速率匹配对熔融纺丝稳定性的影响,确定了最佳熔融纺丝工艺,同时对复合纤维的力学性能进行了测试。采用差示扫描量热分析仪(DSC)、声速仪、宽角X-射线衍射仪(WXRD)和扫描电子显微镜(SEM)等分析与检测手段对PP/EVA共混物及共混纤维进行相关性能测试,并经过浸泡,研究皮芯复合中空纤维对有机小分子物质的吸附性能。结果表明:1、当EVA含量为0~20wt%时,可以顺利的进行共混造粒。PP/EVA共混物的熔融指数随着EVA质量百分含量的增加而明显降低;随着温度的升高,共混物熔融指数在230℃后急剧升高,流动性明显改善;PP/EVA共混体系为热力学不相容体系。2、具有可纺性的PP/EVA共混物,经严格控制纺丝条件,可以纺制成一定直径且粗细均匀的皮芯复合中空纤维。最佳纺丝工艺条件为:EVA含量10wt%,皮芯复合比6/4,纺丝温度230℃,挤出速率39.69g/min,卷绕速率500m/min。3、随EVA含量的增加和拉伸倍数的增大,纤维的纤度和断裂强度单调减小。当EVA含量为10wt%,实际拉伸倍数为3.7时,纤维的纤度为9dtex,断裂强度和断裂伸长分别为3.0cN/dtex、39%。4、皮芯复合中空纤维通过纤维内部EVA中的极性基团吸附有机小分子物质,吸附量主要取决于纤维中EVA的含量。5、乙烯—醋酸乙烯与有机小分子物质的溶解度参数差异决定吸附量,两者的溶解度参数差异越小,吸附量越大,因此皮芯复合中空纤维对丙烯酸甲酯的吸附性能很好,对苯乙烯吸附性较好,对乙酸乙酯和柏树精油的吸附性相对较差。 6、拉伸倍数在0~4倍时,随着拉伸倍数的增加,纤维对有机小分子物质的吸附量降低;随着温度 的升高,纤维对有机小分子物质的吸附量在50℃时出现最大值. PP/TPEE共混体系:聚丙烯(PP)纤维是由等规聚丙烯经纺丝加工制得的纤维,具有质轻、强力高、 弹性好、化学稳定性好、制造成本低、再循环加工简便等特点,被广泛用于无纺布、卫生用品、绳 索等。但由于聚丙烯纤维大分子内不含任何极性基团,结构规整,结晶度高,疏水性强,分子内不 含能与染料发生作用的染座,所以丙纶的染色性能较差,严重影响了其在服用纺织品上的应用。因 此,对聚丙烯进行可染改性,是广大研究工作者一直关注的热点。其中在聚丙烯基体中通过加入含 染座的改性剂进行共混改性,是聚丙烯纤维可染改性的主要方法。但改性剂的添加,会对聚丙烯的 纺丝性能和纤维力学性能带来较大的影响,因此,选择适宜的改性添加剂及如何改善聚丙烯与改性 添加剂的相容性,是共混改性的难点。本文采用共混改性的方法,选用与PP溶解度参数较接近的聚 对苯二甲酸丁二醇酯(PBT)与聚四亚甲基醚二醇(PTMG)的嵌段共聚物(TPEE)作为改性添加剂,分别 以乙烯-辛烯共聚物接枝甲基丙烯酸缩水甘油酯(POE-g-GMA)、聚丙烯接枝甲基丙烯酸缩水甘油酯 (PP-g-GMA)、乙烯-醋酸乙烯共聚物(EVA)为相容剂,在双螺杆挤出机中按一定共混比例制得共混样 品;利用扫描电镜(SEM)、旋转流变仪、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)、热重分析仪(TG)

聚丙烯及其改性材料简介

目录 一聚丙烯 (2) 1.1 聚丙烯的性能 (2) (1)优点 (2) (2)缺点 (2) 1.2 聚丙烯链的立体结构 (2) 1.3 聚丙烯的晶体结构 (3) 二聚丙烯改性 (3) 三聚丙烯填充与增强改性新材料 (4) 3.1 聚丙烯填充改性性能特点及发展趋势 (4) 3.2 常用填充材料 (5) 1、碳酸钙 (5) 2、滑石粉 (5) 3、高岭土 (5) 3.3 聚丙烯的增强改性 (5) 3.4 聚丙烯填充与增强改性新材料 (6) 1、碳酸钙与滑石粉填充改性聚丙烯 (6) 2、玻璃微珠改性聚丙烯新材料 (6) 3、云母填充改性PP (6) 4、玻璃纤维增强聚丙烯新材料 (7)

一聚丙烯 1.1 聚丙烯的性能 (1)优点 1)聚丙烯密度为0.90~0.91g/cm3,是通用塑料中最轻的一种; 2)具有优良的耐热性,长期使用温度可高达100~120℃,无载荷时使用温度可达150℃,是通用塑料中唯一能在水中煮沸,并能经受135℃的消毒温度的品种; 3)聚丙烯是一种非极性塑料,具有优良的化学稳定性,并且结晶度越高,化学稳定性越好,室温下只有强氧化性酸(如发烟硫酸、硝酸)对它有腐蚀作用。吸水性很小,吸水率不到0.01%; 4)力学强度、刚性和耐应力开裂都超过高密度聚乙烯,而且有突出的延伸性和抗弯曲疲劳性能; 5)电绝缘性能优良,特别是高频绝缘性好,击穿电压强度也高,加上吸水率低,可用于120℃的无线电、电视的耐热绝缘材料; 6)综合性能优异,易加工、生产成本低。 (2)缺点 1)聚丙烯的耐低温性能不如聚乙烯,脆化温度约为-30~-10℃,低温甚至室温下的抗冲击性能不佳,低温易脆; 2)在成型和使用中易受光、热、氧的作用而老化; 3)熔点较低、热变形温度低、抗蠕变性差、尺寸稳定性不好。 1.2 聚丙烯链的立体结构 丙烯用齐格勒-纳塔催化剂聚合后,所得聚合物的X射线构型有等规、间规和无规三种。在PP生产过程中,尽管采用不同的催化剂和不同的操作条件,但工业PP产品主要是等规PP(含有少量的无规物和间规物)。

聚丙烯填充改性研究进展

文章编号:1008-7524(2004)01-0005-05 聚丙烯填充改性研究进展! 傅和青,汤风,黄洪,陈焕钦 (华南理工大学化工学院化工研究所,广东广州510640) 摘要:介绍了聚丙烯填充材料的种类特点,综述聚丙烯的填充改性的研究,指出了聚丙烯填充改性的发展趋势。 关键词:聚丙烯;填充改性;填料 中图分类号:T@325.1文献标识码:A 0引言 聚丙烯(PP)熔点高,综合性能优良,是当今最具发展前途的热塑性高分子材料之一,与其它通用热塑性塑料相比,它具有价格低、比重小、屈服强度、拉伸强度、表面强度等机械性能均较优异,有突出的耐应力开裂性和耐磨性,化学稳定性好、成型加工容易、应用范围广泛等特点,已被广泛应用于化工、电器、汽车、建筑、包装等行业,并正在向其它热塑性塑料、工程塑料乃至金属等材料的应用领域扩展,平均以15%的年增长率增长。但聚丙烯易发生热氧化和光老化,耐寒性差,低温易脆裂,收缩率大,抗蠕变性差,因而其应用受到一定的限制,为了提高其性能,需要对它进行改性,改性的方法很多,本文对聚丙烯的填充改性做了较详细综述。 1填充材料的种类及主要填充剂 聚丙烯填充改性技术发展比较晚,大约在20世纪60年代中叶,石棉纤维填充改性聚丙烯开始在欧洲市场出现。20世纪60年代末期碳酸钙、云母、木屑尤其是玻璃纤维及滑石粉等填充材料开始普遍使用。我国在20世纪70年代也开始研究聚丙烯的填充改性,并在后来对聚丙烯的填充技术进行了大量的研究。1.1填充材料种类 填充材料种类繁多,按形状分为球形、立方体形、矩形、薄片形和纤维形;按化学成分分为无机填料和有机填料,无机填料包括玻璃、碳、碳酸钙、金属氧化物、金属粉末、二氧化硅、硅酸盐、其它无机物,有机填料包括纤维素和塑料等。通常应用的填料为无机填料。 1.2常见填充材料及特点 常见的填料种类较多,但早期研究主要集中在云母和滑石粉填充改性PP上[1],以后逐渐扩充到其它填料的填充改性PP上。 !碳酸钙 有白垩、胡粉、石粉、重质型、沉降型等类型。碳酸钙价格低廉、来源丰富、无毒、无刺激性气味、白度好而折射率低、易于着色、粒度分布均匀、能增进塑料色泽、改进染色性;另外碳酸钙是球形结构且不含"-石英,所以对加工机械无磨损。 #硅酸盐类 包括滑石粉、云母、石棉和陶土。滑石粉为片状结构,粒度越细效果越好。滑石粉可提高制品的硬度、电绝缘性能。滑石粉使用时表面要处理,处理方法可采用加矿物脱活剂、润滑剂、加工助剂和偶联剂等。表面处理以后的滑石粉的加入,可 ? 5 ? !收稿日期:2003-07-28 作者简介:傅和青(1968-),男,博士。主要从事精细化工等领域的研究。

聚丙烯(论文

前言 聚丙烯(PP)是五大通用塑料之一,具有密度小、刚性好、强度高、耐挠曲、耐化学腐蚀、绝缘性好等优等。不足之处是低温冲击性能较差、易老化、成型收缩率大。PP 用途相当广泛,可用于包括农业和三大支柱产业(汽车工业、建筑材料、机械电子) 在内的诸多领域。开拓PP在重大产业领域的市场,取代其他塑料,所凭借的因素一是PP 物美价廉、二是PP改性的进展。尽管PP 生产工艺和催化剂历经几代更新,取得了很大的成就,但要用反应器产品直接作为某些目标产品(包括注塑级、纤维级、薄膜级等) 的原料或专用料,有的还需提高它的综合性能。即对反应器后产品作一定的改性。反过来说,PP改性也扩大了自身的应用领域,通过改性,人们可以得到性能好和价廉的PP原料。 按照参加聚合的单体组成,PP可分为均聚物和共聚物两种。均聚物由单一丙烯单体聚合而成,因而具有较高的结晶度、机械强度和耐热性。PP共聚物是聚合时加入少量乙烯单体共聚而成,具有较高的冲击强度。广义上讲,相对于均聚物,共聚物可以说是一种改性产品。目前国内石化厂生产PP以均聚物为主,品种单一,提供PP均聚物的改性方法无疑是有现实意义的。

聚丙烯的改性方法 §1章PP聚合物的改性综述 1.1化学改性 聚丙烯的化学改性是指通过化学方法改变聚丙烯分子链上的原子或原子团的种类及组合方式的改性方法。经化学改性后的聚丙烯, 其分子链结构发生变化, 从而对材料的聚集态结构或织态结构产生影响, 改变材料性能, 因此, 通过化学改性可以得到具有不同应用性能的新材料。 1.1.1聚丙烯的共聚改性 以丙烯单体为主的共聚改性可在一定程度上增进均聚PP的冲击性能、透明性和加工流动性,它是提高PP 韧性, 尤其是低温韧性的最有效的手段之一。将丙烯、乙烯混合在一起聚合, 其聚合物主链中无规则地分布着丙烯和乙烯链段,乙烯则起着阻止聚合物结晶的作用, 当乙烯质量分数达到20%时结晶便很困难, 当质量分数为30%时就完全无定形, 成为无规共聚物, 其特点是结晶度低、透明性好、冲击强度增大等。采用Zieglar 催化剂或茂金属催化剂可以制备立构嵌段聚丙烯( 又称为热塑性弹性聚丙烯,Thermoplastic elastomer)。由于在分子链上同时含有等规和无规两种链段, 因此具有低的初始弹性模量,相对高的拉伸强度, 低的蠕变性能以及高的可逆形变。嵌段共聚物与等规共聚物相比, 低温性能优良, 耐冲击性好; 与等规PP 和各种热塑性高聚物的共混物相比, 刚性降低不大。 Exxon 公司[2 ]采用双茂金属催化剂在单反应器中制备了双峰分布的丙烯- 乙烯共聚物,其加工温度范围大约为26 ℃,比常用的聚丙烯共聚物的加工温度范围(约15 ℃)宽,克服了单峰茂金属聚丙烯树脂加工温度范围窄的缺点,在生产BOPP 薄膜时拉伸更均匀且不易破裂,并可以在低于传统聚丙烯的加工温度下生产性能良好的聚丙烯薄膜。浙江大学合成3种新型非桥联二茚锆茂催的存在下, 与PP在挤出机中熔融共混完成接枝反应(或者与丙烯单体共聚),然后在水的作用下,硅烷水解成硅醇,经缩合脱水而交联。该技术的关键是在接枝反应时必须严格监控,防止PP降解。 1.1.2 聚丙烯的接枝改性

高熔体强度聚丙烯的研究解析

高熔体强度聚丙烯的研究简介 1 PP概述 聚丙烯(PP),分子量一般为10~50万。1957年由意大利蒙特卡迪尼(Mont-ecati ni)公司实现工业化生产。聚丙烯为白色蜡状材料,外观与聚乙烯相近,但密度比聚乙烯小,透明度大些,软化点在165℃左右,热性能好,在通用树脂中是唯一能在水中煮沸,并能在130℃下消毒的品种,脆点-10~20℃,具有优异的介电性能。溶解性能及渗透性与PE相近。作为一种通用塑料,聚丙烯具有较好的综合性能,聚丙烯的成型收缩率较聚乙烯小,具有良好的耐应力开裂性。因而被广泛应用于制造薄膜、电绝缘体、容器、包装品等,还可用作机械零件如法兰、接头、汽车零部件、管道等,聚丙烯还可以拉丝成纤维。在近年来所举的通用塑料工程塑料化技术中,聚丙烯作为首选材料不断地引起了人们的重视。但PP也存在低温脆性、机械强度和硬度较低以及成型收缩率大、易老化、而热性差等缺点。因此在应用范围上,尤其是作为结构材料和工程塑料应用受到很大的限制。为此,从70年代中期国内外就采用化学或物理改性方法对PP进行了大量的研究开发特别是针对提高PP的缺口冲击强度和低温韧性方面进行了多种增强增韧改性研究开发。常见的改性方法有共聚改性、共混改性和添加成核剂等。 1.1 PP生产方法和种类 中国聚丙烯的工业生产始于20世纪70年代,经过30多年的发展,生产技术、工艺也趋于多样化,已经基本上形成了淤浆法、液相本体-气相法、间歇式液相本体法、气相法等多种生产工艺并举,大中小型生产规模共存的生产格局。中国的大型聚丙烯生产装置以引进技术为主,中型和小型聚丙烯生产装置以国产化技术为主。由最初的浆液工艺发展到目前广泛使用的液相本体法和气相法,液相本体法因其不使用稀释剂、流程短、能耗低,现已显示出后来居上的优势。 (1)淤浆法:在稀释剂(如己烷)中聚合,是最早工业化的方法; (2)液相本体法:在70℃和3MPa的条件下,在液体丙烯中聚合; (3)气相法:在丙烯呈气态条件下聚合。

聚丙烯及其改性材料简介

目录 一聚丙烯........................................... 错误!未定义书签。 聚丙烯的性能................................... 错误!未定义书签。 (1)优点.................................... 错误!未定义书签。 (2)缺点.................................... 错误!未定义书签。 聚丙烯链的立体结构............................. 错误!未定义书签。 聚丙烯的晶体结构............................... 错误!未定义书签。二聚丙烯改性....................................... 错误!未定义书签。三聚丙烯填充与增强改性新材料....................... 错误!未定义书签。 聚丙烯填充改性性能特点及发展趋势............... 错误!未定义书签。 常用填充材料................................... 错误!未定义书签。 1、碳酸钙.................................... 错误!未定义书签。 2、滑石粉.................................... 错误!未定义书签。 3、高岭土.................................... 错误!未定义书签。 聚丙烯的增强改性............................... 错误!未定义书签。 聚丙烯填充与增强改性新材料..................... 错误!未定义书签。 1、碳酸钙与滑石粉填充改性聚丙烯.............. 错误!未定义书签。 2、玻璃微珠改性聚丙烯新材料.................. 错误!未定义书签。 3、云母填充改性PP ........................... 错误!未定义书签。 4、玻璃纤维增强聚丙烯新材料.................. 错误!未定义书签。

聚丙烯增韧改性的研究进展

聚丙烯增韧改性的研究进展 王海平,王标兵,杨云峰,胡国胜 (中北大学高分子与生物研究所,太原030051) 摘要:从化学改性和物理改性两个方面介绍了国内外对聚丙烯进行增韧改性的研究进展。结果表明,在PP增韧改性的众多方法中,物理改性其成本低、见效快,成为应用广泛的增韧方法;PP的增韧改性研究仍有很大的潜力有待发掘;增韧改性的研究受到人们的广泛关注。 关键词:聚丙烯;增韧改性;研究进展 中图分类号:TM215.1;TQ325.14文献标志码:A文章编号:1009-9239(2009)01-0029-04 Resear c h Pr o g r ess on Tou g hen in g M odif ica t ion of Pol yp r o py lene WAN G Hai-p i n g,WANG Bi ao-bin g,Y ANG Yun-f e n g,HU Guo-she n g (I nst it ute o f M a cr om olec ules&B ioe n g inee ri n g, Nor t h Uni ver sit y o f C hi n a,Ta i y ua n030051,C hi na) Abstract:Polyp r op yl e ne is e xt e nsi ve ly us e d plas tic s.The r es e a rc h on t oughe nin g modif ic at ion of p ol yp r opyle ne was f oc use d i n t his a r ticl e.The r e s ea r c h p r ogr e ss of t oughe ni ng modif ic a tion of th e m at e r ial in t he wor ldwide was s t at e d tha t i ncl ude s c he mic al modif ic at ion a nd p hys ica l m odific a tion. Ke y wor ds:p ol yp r o py le ne;t ou g he ni n g m odif ica ti on;r e se a r c h p r o g r e ss 1前言 聚丙烯(PP)作为五大通用塑料之一,具有原料来源丰富、质轻、性价比高等特点,因此得到迅速发展,其应用也愈加广泛。但纯PP存在低温韧性差、缺口敏感性强等缺点。为了改善P P性能上的不足,国内外进行了大量的P P增韧改性研究,在多相共聚和共混改性方面取得了突破性的进展[1]。对P P 进行增韧改性,可以通过化学改性和物理改性来实现。化学改性可以得到较高质量的PP。但是化学改性往往受到许多条件的限制,需要做大量的实验。而物理改性与之相比,具有收效快,实验简单等优点。所谓P P的物理改性法,从某种意义上说也就是制备高分子合金的方法。即由两种或者两种以上的聚合物在熔融状态下混合固化。这种增韧改性既可以用几种聚合物在熔融状态时机械混合而成;也可以让几种聚合物在溶液中进行混合,再除去溶剂干燥而得,或者使一种聚合物与另一种单体或分子活泼化合物混合等方法制得高分子材料,来满足各方面的性能要求。 2化学改性 2.1共聚改性 共聚改性是采用高效催化剂在聚合阶段进行的改性。采用乙烯、苯乙烯和丙烯单体进行交替共聚,或在PP主链上进行嵌段共聚,或进行无规共聚。如在P P主链上,嵌段共聚2%~3%的乙烯单体,可制得乙丙共聚橡胶,它具有P E和PP两者的优点,可耐-30℃的低温冲击。常用的生产丙烯共聚物的方法有两种,一种是将茂金属催化剂应用于P P嵌段共聚;另一种是将改进的Ziegle r-Nat t a高效催化剂用于P P的共聚。 Exxon公司[2]采用双茂金属催化剂在单反应器中制备了双峰分布的丙烯-乙烯共聚物,其加工温度范围大约为26℃,比常用的聚丙烯共聚物的加工温度范围(约15℃)宽,克服了单峰茂金属聚丙烯树脂加工温度范围窄的缺点,在生产BO PP薄膜时拉伸更均匀且不易破裂,并可以在低于传统聚丙烯的加工温度下生产性能良好的聚丙烯薄膜。 浙江大学[3]合成了3种新型非桥联二茚锆茂催 收稿日期:2008-09-05 作者简介:王海平(1982-),男,湖南张家界人,硕士生,主要研究方向为聚丙烯的改性,(电子信箱)wa nghaipi ng44404@163.co m;杨云峰(1970-),男,山西运城人,副教授,主要从事功能高分子材料的研究工作。

相关文档
相关文档 最新文档