文档库 最新最全的文档下载
当前位置:文档库 › 100M以太网口回波损耗测试

100M以太网口回波损耗测试

100M以太网口回波损耗测试
100M以太网口回波损耗测试

100M以太网口回波损耗测试

【摘要】

在以太网的物理层接口性能中,回波损耗是一项重要的指标;通过测量回波损耗,可以很清楚的单板设计的阻抗和双绞线的特性阻抗之间的关系,单板被测网口的回波越小,说明单板的输入阻抗特性与双绞线阻抗匹配的越好;

【关键词】

回波损耗、网络分析仪、802.3

一、回波损耗测试规范要求

测量100M以太网口的回波损耗是否满足以太网标准802.3中要求。

UTP标称阻抗100Ω,在2.0~80.0MHz范围内阻抗回输损耗应满足下列要求:

2~30MHz:>16dB

30~60MHz:>16~20lg(f/30)dB f:频率,以MHz计

60~80MHz:>10dB

二、测试回波损耗的基本概念及重要意义

1、回波损耗基本概念

回波损耗(RL,简称回损),顾名思义,指的是一种损耗。实际上,它测量的是传输信号被反射到发射端的比例。

我们都知道,在使用非屏蔽双绞线时,数据电缆有(或本应该有)100欧姆的阻抗。

但是在一个指定的频率上,阻抗值很少能正好等于100欧姆,下面的图形说明了回波损耗的产生过程。

回波损耗的基本定义:

RL=20log∣(Zin-100)/(Zin+100)∣

2、测试回波损耗的重要意义

在以太网的物理层接口性能中,回波损耗是一项重要的指标;通过测量回波损耗,可以很清楚的单板设计的阻抗和双绞线的特性阻抗之间的关系,单板被测网口的回波越小,说明单板的输入阻抗特性与双绞线阻抗匹配的越好;

以太网标准802.3中要求,在测试以太网口物理层指标中,要测试输入端口的回波损耗;

以往,我们在使用非屏蔽双绞线传输数据时,其中一个线对用来传输数据,另一个线对用来接收数据,因此回损并不构成很大的问题。但是在现在的传输方案,如千兆

位以太网中,回损则有可能造成很大的影响。因为千兆位以太网采用的是双向传输,即4个线对同步传输和接收数据。对任一个线对来说,信号的传输端同时也是来自另一端信号的接收端。

传统的以太网也同样会遇到回损问题,但由于它采用的是不同的线对进行数据传送和接收,因此对于较大回损问题有较强的免疫力。在传统以太网的数据传输过程中,部分信号被返回到传输端,但该传输端并不会作为接收端来接收这些反射的信号,因此,噪音几乎不会对传输产生很大的影响。回损问题并不仅仅只存在于千兆位以太网。而是某些系统对严重的回损性能的抵抗能力更低罢了。

三、测试方法

按照回波损耗的产生的原理,测试时可以用一种仪器给被测端口发信号,同时接收发射回来的信号,并实时的计算回损,网络分析仪就可以完成这样的工作。

网络分析仪的S11测试,就可以测试以太网接收端口的回波损耗;

本次测试使用高速实验室配置的安立公司(Anritsu)的矢量网络分析仪MS4624D。

通过一个自制以太网测试夹具。

由于以太网信号为差分形式,理论上需要仪器发出差分平衡信号。业界通常的做法是使用平衡-不平衡变压器,将矢量网络分析仪输出的单分信号转换为差分信号。由于高速实验室目前尚未配置平衡-不平衡变压器,我们采取的方法是使用标准的二端口测量,将测得的二端口S参数(S11、S12、S21、S22)经过仪器的线性矢量合成运算得到平衡S参数Sd1d1。(MS4624D有四个测量端口,具有对平衡器件的测量功能)另外,考虑到只需要测量到100MHz,频率不算很高,因此估计夹具的影响不会太大,所以忽略了夹具的影响(通过对夹具的测量也发现夹具本身产生的反射很小),使用标准的OLST校准方法。

四、测试步骤以及测试结果

1、校准:使用安立的标准校准件进行OLST二端口标准。

2、连接好仪器与被测单板,单板上电。

3、测试夹具的回波损耗:评估夹具的影响。夹具的回波损耗测试结果如下:

测量1、2对时夹具的回波损耗:

测量3、6对时夹具的回波损耗:

可见两种情况下夹具的回波损耗接近0dB,近乎全反射,可见影响很小。

4、2609A百兆以太网回波损耗测试结果及分析

2端口(未加防雷器)1、2对差分信号:

2端口(未加防雷器)3、6对差分信号:

7端口(未加防雷器)1、2对差分信号:

7端口(未加防雷器)3、6对差分信号:

9端口(加防雷器)1、2对差分信号:

9端口(加防雷器)3、6对差分信号:

上面分别测量了各个以太网接收端口处的回波损耗,图中显示了回波损耗的曲线以及在30MHz、50MHz、60MHz、80MHz时的回波损耗值。2、7端口没有加防雷器,9端口加了

防雷器,因而9端口的回波损耗稍大于其它两个端口。对照标准,可见该型交换机的回波损耗都符合802.3标准。

在微机上运行终端仿真程序介绍

在微机上运行终端仿真程序(如Windows 3.X的Terminal或Windows 9X的超级终端等),设置终端通信参数为:波特率为9600bit/s、8位数据位、1位停止位、无校验和无流控,并选择终端类型为VT100, 1.2.1 进入以太网端口视图 要对以太网端口进行配置,首先要进入以太网端口视图。 请在系统视图下进行下列配置。 表1-1 进入以太网端口视图 1.2.2 打开/关闭以太网端口 当端口的相关参数及协议配置好之后,可以使用以下命令打开端口;如 果想使某端口不再转发数据,可以使用以下命令关闭端口。 请在以太网端口视图下进行下列配置。 表1-2 打开或关闭以太网端口 缺省情况下,端口为打开状态。 1.1.7 interface 【命令】 interface { interface_type interface_num | interface_name }

【视图】 系统视图 【参数】 interface_type:端口类型,取值为Ethernet。interface_num:端口号, 采用槽位编号/端口编号的格式。对于S2008-EI以太网交换机,槽号为0, 端口号取值范围为1~8;槽号取1或2分别表示前面板上两个扩展模块 提供的以太网端口,端口号只能取1。对于S2016-EI、S2403I以太网交 换机,槽号取值范围为0、1,槽号取0表示交换机提供的百兆以太网端 口,端口号取值范围为1~16(S2016-EI)或1~24(S2403I);槽号 取1表示交换机扩展模板提供的以太网端口,端口号只能取1。 interface_name:端口名,表示方法为interface_name= interface_type interface_num。 【描述】 interface命令用来进入以太网端口视图。用户要配置以太网端口的相关 参数,必须先使用该命令进入以太网端口视图。 【举例】 # 进入Ethernet0/1以太网端口视图。 [Quidway] interface ethernet0/1 1.1.8 loopback 【命令】 loopback { external | internal } 【视图】 以太网端口视图 【参数】 external:外环测试。 internal:内环测试。 【描述】 loopback命令用来设置以太网端口进行环回测试,以检验以太网端口工 作是否正常,环回测试执行一定时间后将自动结束。 缺省情况下,以太网端口不进行环回测试。 【举例】 # 对以太网端口Ethernet0/1进行内环测试。 [Quidway-Ethernet0/1] loopback internal 1.1.9 mdi 【命令】 mdi { across | auto | normal }

Ethernet信号测试方法

Ethernet信号测试方法 一、Ethernet物理层测试 1、简介 在PC和数据通信等领域中,以太网的应用非常广泛。以太网的技术从1990年10Base-T标准推出以来,发展非常迅速,目前普及的是基于双绞线介质的10兆/百兆/千兆以太网,同时10G以太网的技术也逐渐开始应用。 为了保证不同以太网设备间的互通性,就需要按照规范要求进行响应得一致性测试。测试所依据的标准主要是IEEE802.3和ANSI X3.263- 1995中的相应章节。根据不同的信号速率和上升时间,要求的示波器和探头的带宽也不一样。对于10Base-T/100Base-Tx/1000Base-T的测试需要1GHz带宽。对于10G以太网的测试,由于其标准非常多,如10GBase-CX、10GBase-T、10GBase-S等,有的是电接口,有的是光接口,不同接口的信号速率也不一样。10GBase-CX、XAUI、10GBase-T的测试至少需要8G带宽的实时示波器,10GBase-S等光接口的测试,根据不同速率则需要相应带宽的采样示波器。 要进行一致性测试,首先要保证的是测量的重复性,由于以太网信号的摆幅不大,如1000Base-T的信号幅度只有670~820mv,XAUI信号最小摆幅只有200mv,如果测量仪器噪声比较大,就会造成比较大的测量误差。

2、10M/100M/1000M以太网测试方法 对于10M/100M/1000M以太网的信号测试,可以选择Agilent 9000系列示波器,也可以选择90000系列示波器。 要进行Ethernet信号的测试,只有示波器是不够的,为了方便地进行以太网信号的分析,还需要有测试夹具和测试软件。测试夹具的目的是把以太网信号引出,提供一个标准的测试接口以方便测试,测试夹具的型号是N5395B。下图是夹具的图示。 在N5395B测试夹具上划分了不同的区域,可以分别进行10Base-T/100Base-Tx/1000Base-T的测量。另外还有专门区域可以连接网络分析仪进行回波损耗的测量。夹具附带的短电缆可以连接夹具和被测件,附带的小板用于回波损耗的测量时进行网络仪校准。 IEEE802.3规定了很多以太网信号的参数,对于10Base-T/100Base-Tx/1000Base-T的电气参数,可以分别参考IEEE802.3规范的14、25和40节。如果不借助相应的软件,要完全手动进行这些参数的测量是一件非常烦琐和耗时耗力的工作,为了便于用户完成以太网信号的测量,Agilent在8000/90000系列的Infiniium系列示波器上都提供了以太网的一致性测试软件N5392A。 下图是N5392A 以太网一致性测试软件提供的测试项目。

车载以太网测试方案

Zhao Chuanmeng2019.12.05 AE/Keysight

?Automotive Ethernet introduction ?Automotive Ethernet Test Challenges ?Automotive Ethernet Test Solution Reference:IEEE802.3bw-2015, IEEE802.3bp-2016, OABR TC1/TC8/TC12

Data Source: WHO, US EPA

A D V A N TA G E S ?Safer world with 90% fewer car accidents ?More productive life from less traffic congestion and driving time ?Better energy efficient transportation and environmental benefits ?More efficient car-sharing and car-utility ?Better urban land utilization ?More innovations, investments and newer business models ?And, more

E T H E R N E T I S T H E B A C K B O N E CAN/CAN FD/LIN CAN/CAN FD/LIN CPU CAN/CAN FD/LIN

H O W U S E W I L L E V O LV E 1TPCE = 1 Twisted Pair [c] 100Mb/s Ethernet RTPGE = Reduced Twisted Pair

MSTP以太网专线测试指标

MSTP以太网专线的测试方案和参数设置 MSTP以太网专线是利用传统的SDH网络承载,在用户端采用MSTP设备为用户提供以太网接口的专线业务。这种业务的特点是:用户接口使用方便;能够灵活提供2M~100M的带宽;在骨干传输网上带宽独享,可以保证传送质量。 MSTP以太网专线的主要性能测试指标 MSTP以太网专线的性能测试指标主要是:传输时延、丢帧率、吞吐量。 传输时延:是指测试仪表收到帧的时间与发出这一帧的时间之差。假设仪表发出某一帧的时间为Ta,收到这一帧的时间为Tb,则时间Delay=Tb-Ta。传输时延包括MSTP设备处理时延、SDH设备处理时延和信号传输时延。 在城域网内(短距离)应用时,MSTP以太网专线的传输时延主要是设备时延。一般MSTP设备处理时延在1ms以内,每台SDH设备引入的处理时延在0.5ms 以内。在长途网内(长距离)应用时,MSTP以太网专线的传输时延主要是信号传输时延,一般按照5ms/千公里计算。 MSTP设备的处理时延与以太帧的长度是正相关的关系。以太帧越长,MSTP 设备的处理时延越大。 丢帧率:是指测试仪表发出帧数与收到帧数之差除以仪表发出帧数,再乘以100%。公式表示如下:(仪表发出帧数-收到帧数)/仪表发出帧数*100%。不同帧长下的丢帧率会有所变化,随着帧长的增加,丢帧率会增加。 指标要求:以太帧长度为64字节时,测试15分钟,丢帧率应为0。 吞吐量:是指在没有丢帧的情况下,整个通道的最大数据速率,一般用bit/s 或者帧/秒表示。以帧长度64字节为准,根据用户的业务带宽需求,设置相应的VC通道个数。对照表如下:

业务带宽与通道配置对应关系

汽车CAN_LIN总线测试流程和测试工具解析

汽车CAN/LIN总线测试流程和测试工具解析 汽车CAN/LIN总线系统测试的关键是测试流程、测试标准和测试工具,掌握专业的总线分析和测试工具的使用技术,开发测试软件并将它们应用到测试过程是对中国汽车厂家和汽车工程师的重大挑战,本文介绍CAN/LIN总线设计、仿真、分析和测试工具。 恒润提供CAN/LIN总线测试方案和在这些工具平台之上的测试软件开发咨询服务,帮助客户进行CAN/LIN总线方面的测试。这些工具包括用于CAN/LIN网络系统和电控单元仿真和测试的工具CANoe;记录、评价CAN总线信号电平的工具CANscope;CAN总线干扰生成工具CANstress;CAN总线数据记录器CANlog。 汽车总线测试流程 概括的讲,汽车总线的测试流程主要包括四个阶段: 1. 制订测试计划。制订测试计划是测试开始前必须的工作,包括了测试需要达到的目标,使用的资源、遵从的标准以及工具等方方面面,是测试顺利实施的指导性文件。主要内容有:目标;总体测试策略;测试的完整性需求;具体规则(如何时停止测试);资源需求;职责(如测试用例设计,执行,检查);测试用例库;测试标准;工具(CANoe, CANscope, CANstress, CANlog);测试软/硬件配置;系统集成计划。 2. 测试用例。测试用例的设计是一项复杂的工作,既需要直觉又需要专门技术。 3. 测试向量。包括测试向量和分解每一个测试用例。 4. 测试过程。经过授权的专业人员系统地执行测试。 测试步骤如下:1).单元测试(White Box, Glass Box, check code correctness;2).集成测试(Bottom Up, Top Down, Big Bang, Sandwich;3).功能测(Black Box,perspecification,component。 测试工具主要包括软件测试环境和和辅助的硬件测试工具两部分。 软件测试环境 在汽车总线网络开发和测试过程中,主要应用的软件测试环境是CANoe。CANoe (CAN Open Environment)是德国VECTOR公司开发的功能强大的开发工具。它能支持总线开发的整个过程-从最初的设计、仿真到最终的分析测试和产品的售后服务。CANoe实现了网络设计、仿真和测试的无缝集成,其开发、测试流程如图1所示。

回波损耗的定义与标准中参数规定的理解

在电线电缆2003-2中<对称数字通信电缆结构回波损耗影响因素分析>中提到:当高频信号在电缆及通信设备中传输时,遇到波阻抗不均匀点时,就会对信号形成反射,这种反射不但导致信号的传输损耗增大,并且会使传输信号畸变,对传输性能影响很大。这种由信号反射引起的衰减被称为回波损耗。那么这样理解回波损耗应该是衰减的一部分,那为什么标准中规定回波损耗要大于某个值呢,而且我们努力的都是如何提高回波损耗. 所以我想问回波损耗的定义和性质到底是什么?是理解为反射波引起的损耗,还是反射波的损耗呢?似乎怎么理解的都有,希望大家积极讨论,理清概念. 回波损耗(RETURN LOSS) 回波损耗是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方,所以施工的质量是减少回波损耗的关键。回波损耗将引入信号的波动,返回的信号将被双工的千兆网误认为是收到的信号而产生混乱。 对于通讯信号分为有用和有害信号,对于有用信号,是衰减得越少越好,比如测试中常见的衰减参数,那是数值越小越好. 但是对于有害信号,比如回波,串音,就需要衰减得越大越好.

如果结构和阻抗稳定合理,则回波会很小,即使有也由于线缆阻抗在长度上比较平滑,不容易叠加而很快被衰减.所以好的线,对回波的衰减大. 比较好理解的是串音,比如NEXT,全称是:近端串音衰减(或近端串音损耗),这个数值也是越大越好. 它是这样测试的:用网络分析仪测量,一个输入信号加在主干扰线对上,同时在近端的被干扰线对输出端测量串音信号. 测得值当然是越小越好,越小就说明串音被线缆结构(比如屏蔽)衰减得越多. 对于NEXT,有人说是近端串音,口头说说可以,但是容易造成误解,因为串音当然是越小越好,怎么要求测量数值越大约好呢,其实后面少了两个字:衰减. 串音衰减定义:用以表示能量从主串回路串入被串回路时的衰减程度。即串音的衰减. 可以理解为串音这种干扰信号的衰减程度,也就是串音衰减越大串音衰减的越多.但回波损耗的定义为由信号反射引起的衰减被称为回波损耗。也就是回波造成的损耗.他们的名词结构是不一致的,这个我也考虑过.从定义到标准中的解释,都可以说回波损耗是一种干扰和衰减,可为什么还要增大这个参数的数值呢? 当高频信号在电缆及通信设备中传输时,遇到波阻抗不均匀点时,就会对信号形成反射,这种反射不但导致信号的传输损耗增大,并且会使传输信号畸变,对传输性能影响很大。这种由信号反射引起的衰减被称为回波损耗。 我也来说说我对回路损失的理解吧!

以太网端口配置命令

一以太网端口配置命令 1.1.1 display interface 【命令】 display interface[ interface_type | interface_type interface_num | interface_name ] 【视图】 所有视图 【参数】 interface_type:端口类型。 interface_num:端口号。 interface_name:端口名,表示方法为interface_name=interface_type interface_num。 参数的具体说明请参见interface命令中的参数说明。 【描述】 display interface命令用来显示端口的配置信息。 在显示端口信息时,如果不指定端口类型和端口号,则显示交换机上所 有的端口信息;如果仅指定端口类型,则显示该类型端口的所有端口信 息;如果同时指定端口类型和端口号,则显示指定的端口信息。 【举例】 # 显示以太网端口Ethernet0/1的配置信息。 display interface ethernet0/1 Ethernet0/1 current state : UP IP Sending Frames' Format is PKTFMT_ETHNT_2, Hardware address is 00e0-fc00-0010 Description : aaa The Maximum Transmit Unit is 1500 Media type is twisted pair, loopback not set Port hardware type is 100_BASE_TX 100Mbps-speed mode, full-duplex mode Link speed type is autonegotiation, link duplex type is autonegotiation Flow-control is not supported The Maximum Frame Length is 1536 Broadcast MAX-ratio: 100% PVID: 1 Mdi type: auto Port link-type: access Tagged VLAN ID : none Untagged VLAN ID : 1 Last 5 minutes input: 0 packets/sec 0 bytes/sec Last 5 minutes output: 0 packets/sec 0 bytes/sec input(total): 0 packets, 0 bytes 0 broadcasts, 0 multicasts input(normal): - packets, - bytes

Ethernet测试和操作介绍

以太网技术特征 常用称谓 connectors 码率 连接 标准

Page 3 10/100/1000BASE-T 连接器引脚排列 TD/RD: Transmit Data/Receive Data BI_D x : Bi-directional Pair x Computer RJ45 / 8P8C connector 规范要求的测试内容 10BASE-T 测试项目描述 参考规范

规范要求的测试内容 100BASE-TX rise/fall time symmetry 测试项目描述参考规范 规范要求的测试内容 1000BASE-T

10BASE-T 测试码型 First signal in auto-negotiation to test link connectivity. Sent every 16ms until a response is received. Sent at the end of data packet to indicate end of transmission. Pulse width is 300 or 350ns depending on whether the last bit was ‘0’or ‘1’. Differential Manchester encoded signal with pre-emphasis. All ‘1’s Manchester encoded signal, essentially a 5 MHz signal. Used in harmonic test to ensure all harmonics are 27 dB down from the fundamental. 100BASE-TX 测试码型Random Data 数据加扰保持链路上的DC平衡以及足够多的边沿进行

以太网的环路检测技术

龙源期刊网 https://www.wendangku.net/doc/6b16389909.html, 以太网的环路检测技术 作者:吴少勇甘玉玺张翰之 来源:《中兴通讯技术》2012年第01期 摘要:以太网在局域网中取得了巨大的成功,但是在城域网应用领域中仍需要解决网络环路的相关问题。根据不同的以太网应用领域,文章分析了几种环路检测的解决方案,包括生成树协议(STP)、以太网环路保护切换协议(ERPS)、环回检测和成环点定位技术。其中,成环点定位技术新颖实用,非常适合各种以太网局域网和城域网,对于以太网的运行和维护都有很大的意义。目前,全球的标准组织均正在积极对以太网环路检测技术进行标准化,随着标准的不断成熟,以太网的环路检测技术将逐步降低以太网的环路风险,提高以太网的可靠性,便于网络的管理。 关键词:以太网;环路;检测;可靠性 1以太网和网络环路 在城域网和局域网中广泛采用的是以太网组网技术,网络中90%以上的接人数量也都由 以太网承载。以太网的突出优势是可以封装任何协议数据、易于使用、成本低、灵活性好、兼容性强、标准化成熟,对于用户而言可以做到即插即用,网络的管理和维护都非常简单。然而,以太网本质上是一种局域网技术,对可靠性要求不高的微型局域网是非常适用的,但当网络规模扩大时,以太网本身存在的一些局限性会给网络带来致命的故障,其中网络环路就很容易导致以太网区域内的所有网络的瘫痪。 根据以太网的原理,当以太网交换机节点收到一个广播帧或未知单播帧时,会向其他所有端口泛洪该帧。在局域网中,以太网的这种转发方式非常简单实用,交换机节点通过泛洪的方式,很容易将广播帧或未知单播帧转发给目的主机。但是当网络中有环路存在时,广播帧会在环路中的各个交换机节点上依次进行泛洪和转发,最终回到源交换机节点,而源交换机节点收到该广播帧后,并不会丢弃,而是继续按照广播帧的转发方式进行泛洪,因此广播帧会永无休止地在环路的各个交换机节点上进行转发,最终流量越来越大,耗尽带宽。以太网交换机节点还会将广播帧向环路之外的端口泛洪,发送给局域网中的主机,随着泛洪流量的增大,主机将难以承受收到的泛洪流量,从而导致整个局域网及其主机瘫痪,造成严重的网络故障,这种场景也称为“网络风暴”。 在无环路的网络中,新连接的一条链路如果导致了环路,则称这条链路为成环点。在局域网中,通常网络中以太网交换机节点数量较少,网络结构简单,不易形成环路,即使新增加链路形成环路,也很容易定位出成环点,造成网络故障范围较小,维护难度不大。但是当网络范围扩大时,特别是在城域网中,通常有数十台以太网交换机,承载着成千上万的用户,网络拓扑非常复杂,一旦新增加链路形成环路,则很难定位到成环点,而且故障的影响范围都是非常大的。因此随着以太网应用范围越来越大,各种以太网的环路探测技术应运而生。

汽车以太网应用指南:查看真实信号

汽车以太网:查看真实信号应用指南

引言 随着汽车行业加快转向汽车以太网技术,全方位设计验证对保证多个ECU之间的互操作能力和可靠运行至关重要。本应用指南介绍了汽车以太网、全双工通信、隔离主信号与从信号的需求、信号分隔测试方法,以及当前定向耦合器插入方法与泰克新型信号隔离方法比较。 汽车以太网 汽车以太网概念是由OPEN联盟SIG提出来的,也叫IEEE 802.3bw (原BroadR-Reach),是为汽车联网应用设计的一种以太网物理层标准,如高级安全功能、舒适和信息娱乐功能。通过汽车以太网,多个车载系统可以经过一条非屏蔽单绞线电缆同时访问信息。对汽车制造商来说,这一技术降低了联网成本和线缆重量,同时提高了信号带宽。 为实现更高的信号带宽,汽车以太网在双绞线电缆上采用全双工通信链路,支持同时收发功能及PAM3信令。采和PAM3实现全双工通信,可能会令查看汽车以太网业务及信号完整性测试变得非常复杂。OPEN联盟为元器件、信道和互操作能力制订了汽车以太网测试规范。测试系统整合了电子控制单元(ECU)、连接器和非双绞线电缆。测试要求系统在车内苛刻的环境条件和噪声条件下工作。为此,用户必需能够在系统级表征和查看信号完整性和业务,才能执行可靠性测试。 客户需要在系统级进行信号完整性测试的应用实例有: ●TC8信号质量测试 ●ECU元器件表征和测试 ●汽车以太网电缆、连接器、电缆长度和路由表征和测试 ●电磁噪声或高斯噪声测试 ●大电流注入测试 ●生产单元测试 ●汽车系统对汽车以太网性能的影响 -DC马达开/关 -发动机开/关 ●汽车以太网系统调试 建议在设计阶段执行信号完整性测试,在系统整合前确定潜在的问题。 2

以太网物理层信号测试与分析报告

以太网物理层信号测试与分析 1 物理层信号特点 以太网对应OSI七层模型的数据链路层和物理层,对应数据链路层的部分又分为逻辑链路控制子层(LLC)和介质访问控制子层(MAC)。MAC与物理层连接的接口称作介质无关接口(MII)。物理层与实际物理介质之间的接口称作介质相关接口(MDI)。在物理层中,又可以分为物理编码子层(PCS)、物理介质连接子层(PMA)、物理介质相关子层(PMD)。根据介质传输数据率的不同,以太网电接口可分为10Base-T,100Base-Tx和1000Base-T三种,分别对应10Mbps,100Mbps和1000Mbps三种速率级别。不仅是速率的差异,同时由于采用了不同的物理层编码规则而导致对应的测试和分析方案也全然不同,各有各的章法。下面先就这三种类型以太网的物理层编码规则做一分析。 1、1 10Base-T 编码方法 10M以太网物理层信号传输使用曼彻斯特编码方法,即“0”=由“+”跳变到“-”,“1”=由“-”跳变到“+”,因为不论是”0”或是”1”,都有跳变,所以总体来说,信号是DC平衡的, 并且接收端很容易就能从信号的跳变周期中恢复时钟进而恢复出数据逻辑。 图1 曼彻斯特编码规则 1、2100Base-Tx 编码方法 100Base-TX又称为快速以太网,因为通常100Base-TX的PMD是使用CAT5线传输,按TIA/EIA-586-A定义只能达到100MHz,而当PCS层将4Bit编译成5Bit时,使100Mb/s数据流变成125Mb/s数据流,所以100Base-TX同时采用了MLT-3(三电平编码)的信道编码方法,目的是使MDI的5bit输出的速率降低了。MLT-3定义只有数据是“1”时,数据信号状态才跳变,“0”则保持状态不变,以减低信号跳变的频率,从而减低信号的频率。

回波损耗与结构回波损耗

回波损耗作为评价电缆阻抗均匀性的指标,一直在电缆行业内广泛应用,然而很多国内电缆出口企业在与国外厂商接触中,发现国外客户更多地提出用结构回波损耗而非回波损耗来衡量电缆的好坏,如美国、澳大利亚等国。那么回波损耗和结构回波损耗有什么区别呢? 根据美国标准结ANSI/SCTE 03 2003及ASTM D 4566,结构回波损耗SRL的定义为: SRL =结构回波损耗,dB; Z in=输入阻抗(复数),Ω Z avg=平均阻抗(复数),Ω 根据标准: R i=电缆各个频率点下输入阻抗的实部; X i=电缆各个频率点下输入阻抗的虚部; R avg=电缆所有测试点实部的平均值; X avg=电缆所有测试点虚部的平均值。 根据IEC 61196或GB/T 17737标准,回波损耗RL的定义为: RL =回波损耗,dB, Z T=终端接标称阻抗时的输入端阻抗(复数),Ω Z L=校准负载。 回波损耗可以由网络分析仪直接测试得到,而结构回波损耗则需要用矢量网络分析仪测量电缆的输入阻抗,测得的数据经电脑计算后才能得到,因此结构回波损耗测量过程需要运用计算机程控技术来实现。 根据结构回波损耗的定义,我检验中心运用计算机程控技术组建了结构回波损耗测量系统。下面是同一根电缆的回波损耗和结构回波损耗的测量结果图,图中回波损耗的最差值为 21.92dB,而结构回波损耗的最差值为24.11dB,两最差值出现在同一频点。

SRL测试图 RL测试图 由定义可以看出:回波损耗反映的是电缆的输入阻抗与测量系统阻抗之间的偏差,它既体现了电缆的结构不均匀性又反映出电缆阻抗与测量系统阻抗的偏差(或匹配程度);而结构回波损耗只反映电缆的输入阻抗与电缆自身阻抗平均值的偏差,所以,结构回波损耗反映的只是电缆本身结构的不均匀性。虽然回波损耗和结构回波损耗两种指标都能反映电缆质量的好坏,但结构回波损耗只反映电缆结构的不均匀,而与电缆阻抗偏离系统阻抗无关。除非电缆特性阻抗的平均值非常接近与系统阻抗,否则结构回波损耗总是比回波损耗较好些。

车联网功能应用测试软件平台

车联网功能应用测试软件平台 本平台由车载音视频监控DVR及硬盘、网络与电力辅助设备配件、车联网功能应用测试软件平台系统组成。集成国家智能交通综合测试基地已有车联网路侧测试设备,支撑测试场景设计与实施,实现车联网测试状态实时监控与结果分析。 1.车联网功能应用测试软件平台功能 (一)用户管理 1、实名认证。软件平台需能够对注册人提供的身份信息进行实名认证; 2、短消息验证。软件平台需提供短消息验证功能,至少支持4位短信验证码; 3、密码格式检查。软件平台需对登录密码进行格式检查(须包含至少1个大写字母、至少1个小写字母、至少1个数字、至少1个特殊符号,密码长度为12~20个字符); 4、双重验证。软件平台在注册用户登录时,要求用户首先输入用户名和密码,而后需通过短消息进行双重验证,验证通过后,方可使用软件平台; 5、新建用户。新建并自主添加测试管理用户、测试用户的相关信息(用户名、密码、联系方式、身份信息、角色等); 6、列表显示。列表显示测试管理用户和测试用户的基本信息(用户名、密码、联系方式、身份信息、角色等); 7、信息编辑。删除、更新与用户相关信息(用户名、密码、联

系方式、身份信息、角色等); 8、列表查询。用户列表可通过默认条件或自定义条件,如姓名、身份证号、联系方式、角色等进行筛选; 9、角色信息。新建、更新、删除角色的相关信息(角色名称、角色权限等); 10、用户角色。激活、冻结、删除用户角色及相应权限; 11、页面权限。不同角色用户是否具备进入/浏览某页面的权限; 12、操作权限。不同角色用户具备进入/浏览某页面的权限后,是否具备对该页面进行操作的权限; 13、数据权限。不同角色用户是否针对某些数据具备浏览权限; 14、用户分为管理用户、测试管理用户和测试用户三种类型: 管理用户:对注册用户进行增加、删除、查询、信息修改、用户激活及权限修改等操作;测试管理用户:负责软件平台的设备管理和测试用例的维护,包括测试设备和测试用例的增加、删除、信息查询及修改操作;负责测试文档的维护、撰写与更新;负责测试管理工作,包括测试计划的制订、软件平台及设备的使用、测试进程中的各项管理工作;测试用户:需注册并激活后使用软件平台;提交待测试相关信息,申请测试,并在测试过程中配合测试管理用户工作。 (二)设备管理 1、测试设备信息管理。测试设备信息需包括但不限于:设备类别、设备编号、设备型号、设备厂商;购买时间、安装位置、IP地址、软件版本号、关联基础设施编号;关联测试设备;关联测试协议;

回波损耗的测试和计算

RL 的测试和计算 1、 RL 定义: in out P P IL lg 10-= in ref P P RL lg 10-= * 此处我们对所有的IL 和RL 定义为正值 2、 测试设备: A :Agilent 81680A TLS B :Agilent 81623A PM (PowerMeter ) C :50/50(3dB ) Coupler 3、 测试方法和步骤: A ??? ? ??-=in in p P dB lg 100 B :测试系统的RL :RLs ,搭建如图2所示的光路: 因为我们在步骤A 中做归零的时候已经将P in 作为基准功率,所以 ??? ? ??-=-in s ref s P P RL lg 10(式1) C :测试器件的RL :RL d ,搭建如图3所示的光路:

() ()()31lg 10lg 10lg 10?→?-+--+--+----??? ? ??--=??? ????????? ??-????? ??--=???? ??-=IL P p P P P P P P P P P RL in s ref d s ref in s ref d s ref s ref d s ref d ref in d ref d 根据式1,可以得出: 10 10 s RL in s ref P P --?= 设定:??? ? ??-=+-+in d s ref d s p p RL lg 10,推出: ()10 10 d s RL in P d s ref p +- ?=+- 将以上式3和式4带入式2,得到: ()311010311010311010lg 101010lg 10lg 10?→?--?→?--?→?-+--??? ? ??--=-????? ? ??????? ????? ? ?--=-??? ? ??--=++IL IL P P IL P p P RL s d s s d s RL RL in RL RL in in s ref d s ref d 令d s s RL RL x +-=,推出:x RL RL s d s -=+,将其带入式5,有: 3110103110 103110 1011010lg 101010lg 101010lg 10?→? -?→?---?→?---???? ? ????? ??--=-???? ? ?--=-???? ? ?--=+IL IL IL RL x RL RL x RL RL RL d s s s s d s 3110311010 110lg 10110lg 1010lg 10?→??→?--???? ??--=-???? ??--? ?? ? ??-=IL RL IL x s x RL s 综上,我们得出: 3110110lg 10?→?-??? ? ??--=IL RL RL x s d 试算如下: 设dB RL dB RL d s s 58,62==+,推出dB x 45862=-=,带入式6,得出: 31311042.60110lg 1062?→??→?-=-??? ? ??--=IL IL RL d (式2) (式3) (式4) (式5) (式6)

网络设备调试与配置实验(第一部分)

实验1:实验常用命令练习 一、操作内容和环境 ◆操作内容:本实验内容包括以太网交换机利用Console口进行连接配置的 方法。熟悉华为以太网交换机的命令行视图,掌握简单的常用命令。 ◆组网环境:华为Quidway S2403系列以太网交换机1台,操作系统为VRP (R)Software V ersion 3.1,PC机1台,专用配置电缆1根。 ◆连接方法:PC机COM口与交换机的Console口通过专用配置电缆相连, 如图1所示。 图1 交换机console口配置网络拓扑图 二、实验步骤 1.查看当前设备的配置信息 display current-configuration 2.进入用户视图 # 与交换机建立连接即进入 3.进入系统视图 system-view [Quidway] 4.进入以太网端口视图 [Quidway]interface ethernet0/1 [Quidway-ethernet0/1] 5.进入VLAN配置视图 [Quidway]VLAN 2 [Quidway-vlan2] 6.进入VLAN端口视图 [Quidway] ]interface vlan-interface 2 [Quidway-vlan-interface2]

7.进入OSPF协议视图 [Quidway]ospf [Quidway-ospf] 8.进入RIP协议视图 [Quidway]rip [Quidway-rip] 9.进入AUX用户接口视图 [Quidway]user-interface aux 0 [Quidway-ui-aux0] 10.进入多个VTY用户接口视图 [Quidway]user-interface vty 0 4 [Quidway-ui-vty0-4] 11.进入同/异步串口视图 [Quidway]interface serial 1/0/1 #在路由器上配置 [Quidway-ethernet1/0/1] 12.退出当前视图 [Quidway-ethernet1/0/1]quit [Quidway 13.删除某项操作 [Quidway]undo vlan 2 #把vlan 2 删除 14.更改交换机/路由器的名称 [Quidway]sysname SW1 [SW1] 15.更改中英文模式 language-mode chinese language-mode english 16.命令行在线帮助 language-mod? display ? dis #此时按键补全命令 display 17.查看历史命令 display history-command #用户在输入命令时可以使用向上键或访问上一条历史命令;使用向下键或访问下一条历史命令;最多可以保存10条历史命令。 18.保存当前配置信息 save 19.查看Flash中的配置信息 display saved-configuration 20.删除Flash 中的配置信息 reset saved-configuration 21.重新启动交换机 reboot

汽车网络测试系统

汽车网络测试系统 如果说车载以太网代表了汽车电子科技的 “新兴力量 “,那么 CAN/LIN 网络无疑是属于 “传 统”的那一方。 虽然近两年车载以太网正以雨后春笋般的速度发展, 可久经考验的传统网络 技术也在展现着它独有的魅力。 为了充分发挥它们的光和热, 针对网络协议的测试技术也依 旧任重而道远。 Rain Sensor LIN 15765-x 、ISO 14229 等。 Diag Tool L N BCM C A N Comfort Infotainment 传统网络技术的国际标准协议, 也伴随着实际应用需求不断的迭代更新, 目前协议体系较为 成熟的有 ISO 11898-x x :子协议编号) 、SAEJ1939-x 、ISO LIN 2.x 、 SAE J2602-x 、ISO Diagnostic s CAN

网络自动化测试系统核心功能为 CAN/LIN 网络基本通信测试、 OSEK/AUTOSAR 网络管理 测试、 UDS on X ( X :网络类型)诊断协议测试、网关路由功能测试、 BootLoader on X 在线刷写测试。 系统采用了 Vector 工具链,自动化测试软件为 Vector CANoe ,可根据测试需求选择不同 的网络协议选项包,例如 option LIN 、option J1939 等; CANoe 的 Test Module 提供了 测试用例 Script 的开发环境,应用 CAPL 语言编辑 Script 相关内容,系统内所有的测试设

备均可通过 CANoe 进行远程访问及控制。 测试不同协议时都需要添加不同CMX(通信矩阵 Communication Matrix )的数据库文 件。 自动化执行硬件采用了 Vector VT System ,从而实现系统中各测试设备的协同工作,以及 真实 CAN 信号线的短路故障注入。

插回损测量

1 光器件的回损测量 引言:随着宽带接入如 LTE, FTTX 的应用越来越多,骨干光纤通信带宽越来越大,光纤本身的和光 纤系统中的无源光器件都变得越来越复杂,光纤系统中无源器件的反射对更高速率的通信系统性 能的影响越发显著,人们对光纤无源器件回波损耗指标测试的关注度在持续上升。 光纤无源器件的回损测试方案自光纤通信系统开始就有了,早期的典型测试仪表如:JDSU 公 司的 RX Meter, Agilent 公司的 816xx 系列。这些测试仪表的共同特点是:测试方法采用标准的连 续光方法,即 IEC 建议的 OCWR(Optical Continuous Wave Reflectometer)法,测量时通常需要用缠 绕光纤的方法消除额外反射,测量回损的范围在 70dB 以下。随着光纤通信技术的进步,测试仪 表也在发展,使用 OCWR 方法的测试仪技术非常成熟,随着竞争产品的越来越多,这两种仪表都 早已停止生产。 使用 OCWR 方法测量回损存在许多限制,如:测试步骤多,需要过程复杂的系统校“零”, 不能一次连接进行插损/回损的测试,不能区分瑞利散射和菲涅尔反射回损,只适用于≤55dB 的 回损测量等[1]。 另一方面,由于这些限制,在很多应用场合下不适合或者无法使用 OCWR 法进行测量,如: 无法弯曲也不允许破坏接头的光缆接头盒,特种光缆,MPO 接头等。 图 1:无法弯曲的光纤接头 为了解决这些问题,我们需 要采用其他的回损测量方法,如 OTDR 法。为了比较 OCWR 和 OTDR 两种测量方法,让我们首先回顾一下回损测试的原理以及 IEC61300‐3‐6 对回损测试方法的描 述。 1. 原理和测量方法 1.1 回损的来源 按照 IEC61300‐3‐6 的定义,回损是指在器件输入端、光纤接头或者定义的某一段光路上反射 光功率[mW]与入射光功率[mW]的比值。

以太网测试仪中基于FPGA的FCS实现

摘要 以太网测试仪在流量发生以及数据接收检测过程中,都需要计算fcs,还要能支持线速。本文简要介绍了以太网帧fcs的计算方法,分析了基于fpga的实时fcs计算面临的问题,提出了一种兼容10/100/1000mbps三种速率的fcs计算实现。 【关键词】以太网 fpga fcs vhdl 作为高性能以太网测试仪,全线速的流量发生与接收检测已成为必备功能。以10/100/1000m以太网为例,速率越高,所用时钟频率越高,时钟周期越小,对发送和接收的设计要求也越高。由于普通网卡缓存受限,加之发送时需要主机cpu参与,无法达到全线速,因此大多数测试仪都采用fpga+phy的方案,利用fpga在时序控制、并行处理等方面的优势,辅之以存储芯片,很好地解决了线速处理的问题。 在以太网测试中,涉及fcs(帧校验和)实时计算,特别是在线速下。本文通过一款测试仪中流量发生设计实践为例,对实际中所遇到的问题进行分析,给出10/100/1000m三种速率下fcs的vhdl实现方法和仿真结果。 1 fcs计算方法 在ieee std 802.3 csma/cd接入方法和物理层规范中,规定了fcs的算法为32比特循环冗余校验(crc32),生成多项式: g(x)=x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1 2 vhdl实现 在硬件设计上, fpga与phy芯片之间采用mii和gmii接口。10/100m采用mii接口,发送时钟分别为2.5mhz、25mhz,数据宽度4bit;1000m采用gmii接口,发送时钟125mhz,数据宽度8bit。在利用fpga实现fcs时,就需要考虑三种不同时钟频率以及两种不同的数据宽度的处理。 2.1 10/100m 10/100m宜采用4bit宽度的并行crc32算法,硬件实现电路如下: next_crc(0)<=(d(0) xor c(28)); next_crc(1)<=(d(1) xor d(0) xor c(28) xor c(29)); …… next_crc(31)<=c(27); 其中,d[3:0]为输入的4bit宽度数据,c[31:0]为前一次crc32计算结果,next_crc[31:0]为输入4bit数据后计算出的新的结果。详细电路可参考[1]中的代码。 2.2 1000m 1000m下对应的发送数据宽度为8bit,宜采用8bit宽度的并行crc32算法,其硬件实现电路如下: next_crc(0)<=d(6) xor d(0) xor c(24) xor c(30); next_crc(1)<=d(7) xor d(6) xor d(1) xor d(0) xor c(24) xor c (25) xor c(30) xor c(31); …… next_crc(31)<=d(5) xor c(23) xor c(29); 其中,d[7:0]为输入的8bit宽度数据,c[31:0]为前一次crc32计算结果,next_crc[31:0]为输入8bit数据后计算出的新的结果。详细电路可参考[1]中的代码。 3 问题分析 基于fpga的10/100/1000m三种接口速率的以太网fcs设计中,有两种方案,一种是仅用8bit宽度的crc32算法,另一种针对10/100m采用4bit宽度算法,1000m采用8bit宽度

相关文档
相关文档 最新文档