文档库 最新最全的文档下载
当前位置:文档库 › 石墨炉原子吸收光谱法测定食品中的铅(修改版)

石墨炉原子吸收光谱法测定食品中的铅(修改版)

石墨炉原子吸收光谱法测定食品中的铅(修改版)
石墨炉原子吸收光谱法测定食品中的铅(修改版)

石墨炉原子吸收光谱法测定食品中的铅

姓名:徐晨希班级:13资源1班学号:2013334116

食品中铅的测定有石墨炉原子吸收法、氢化物原子荧光法、火焰原子吸收法、二硫腙比色法。目前,应用较多的是石墨炉原子吸收法,但其重现性稍差,为提高其重现性,本文对铅的石墨炉原子吸收法的测定条件及影响因素进行探讨,加入基体改进剂,减少了干法灰化和湿法消化处理样品对铅测定的影响,使仪器的测定达到准确、快速的目的。

一,材料与方法

1.试剂铅标准溶液(1.0mg/mL),铅标准使用液(10.0ng/mL),硝酸(优

级纯)、高氯酸(优级纯)、磷酸铵溶液(20g/L)、混合酸:硝酸+高氯酸(4+1)、过氧化氢(30%)。

2.仪器原子吸收分光光度计 (WYX一9003原子吸收仪),热电谱通石墨管,

铅空心阴极灯,马弗炉,可调式电热板,可调式电炉,瓷坩埚。

二,测定步骤

(1)仪器工作条件:波长283.3nm,狭缝 0.5nm,灯电流 7mA,干燥温度 120℃、30s,灰化温度 450℃、20s,原子化温度 2200℃、5s,原子化阶段停气,除残2400℃、3s,进样体积 10μl,基体改进剂磷酸二氯铵(20g/L)lOμl。

(2)样品的预处理①干法灰化:取 1.0o~5.OOg 样品于瓷坩埚中,加 5ml硝酸,放置 2h,至电热板上炭化后,移人马弗炉 500℃灰化 4~6h,冷却,加入lml 混合酸和少量过氧化氢,在电炉上加热直至消化完全。冷却后,用 0.5mol/L 硝酸将灰分溶解,并移入25ml容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中,定容,混匀备用,同时作试剂空白。②湿法消化:取 1.0o一5.00g 样品于三角瓶中,加 10ml混合酸,加盖浸泡过夜。加一小漏斗于电炉上消化,补加适量混合酸,直至冒白烟,溶液呈无色透明,冷却后加少量蒸馏水,加热至冒白烟,赶酸。冷却移人 25ml容量瓶中,用少量水洗涤三角瓶,洗液合并于容量瓶,定容,混匀备用。同时作试剂空白。

(3)标准曲线绘制取铅标准使用液,用 0.5mol/ L硝酸配制成铅浓度为 0.00、5.00、10.00、20.00、 40.00、60.00、80.00μg/L的标准系列。(4)测定按仪器工作条件依次测定,标准系列和样品的吸光值,并绘制标准曲线。由标准曲线求得样品中铅的含量。

三、结果

1.灰化温度的选择其他条件不变,只改变灰化温度,当加入 10μL基体改

进剂后,灰化温度在 45℃,校准后的信号接近最大值,背景信号最低,故 450℃

为最佳灰化温度。

2.原子化温度的选择当原子化温度达到 2200℃时,校准后的信号接近最大值,背景信号较低,故 2200℃为原子化温度的最佳温度。

3.基体改进剂加入量的选择在相同条件下测定吸光值,5μL、10μL、15μ

L磷酸二氨胺的加入,与试样进样量相同的 10μL时,吸光度最大,故选 10μL为基体改进剂的加入量。

4.线性范围当铅浓度超过 80.OOμg/L时,曲线逐渐弯曲。本实验线性范围为 5 80μg/L,随机制作6条标准曲线,其相关系数及回归方程分别为 T= 0.9998,Y=0.00307x+0.00411;y=0.9994,Y=0.O0301x+0.00408;7=0.9990,Y=0.00308x+0.00409; =0.9989,y=0.00299x+0.00411; =0.9995,Y=0.00309x+0.00410;= 0.9992,Y=0.00302x+0.004 14。

5.方法检出限经过对空白样品 20次的重复测定,计算 Ks/b,以三倍标准

差对应的铅含量作为检出限,本方法检出限为 0.24μg/L。

6.方法精密度分别配制含 5、15、25μg/L铅标准样品液,每浓度各测定 6次,计算相对标准偏差为0.78%一1.89%。

7.回收率试验在样品中加入铅标准液,配成含铅标准 5、15、251~g/L液,各进行 6次测定,测得回收率为 90.7%一101%,94.2%~104%,96%~104%。

8.干扰试验共存离子 Fe3+,Mn2+,Cu2+,Zn2+,AI3+,Ca2+,Mg2+,Sr2+,P042-,S042-.等离子,不影响铅的测定。

四、结论

石墨炉原子吸收分光光度法测定食品中铅,快速、准确,选择性高,式样用量少,适用于食品中微量铅的测定。

五,注意事项

①干燥温度应根据溶剂或样品中液态组分的沸点来选择,一般用稍高于溶剂的

沸点,对稀的水溶液可在100~130℃之间。

②原子化温度应取决于待测元素和样品基体的挥发程度,最佳的原子化温度是

能给出最大吸收信号的最低温度,一般以2800℃为上限。

③原子化时间的确定原则是尽可能选取较短时间,但仍能使原子化完全。

原子吸收光谱仪技术规格

原装进口原子吸收光谱仪技术规格 1. 工作条件 1.1 电源要求:230V (+5%~-10%),50/60 Hz;5000VA。 1.2 环境温度:+15℃~+35℃。 1.3 相对湿度:20~80%。 *2. 系统描述 台式设计原子吸收光谱仪,火焰、石墨炉一体机,全自动软件切换,切换后燃烧头和石墨管位置保持不变。 3. 光学系统和检测器技术指标 3.1 光学系统:实时双光束,1800线/mm,大面积平面光栅分光系统 *3.2波长范围:184-900nm 3.3狭缝:狭缝的宽度自动选择,狭缝的高度自动选择 *3.4检测器:全谱高灵敏度阵列式多象素点CCD固态检测器,含有内置式低噪声CMOS电荷放大器阵列。样品光束和参比光束同时检测,最大限度消除光学和电子噪声影响。 *3.5灯选择:8灯座,内置两种灯电源,可连接空心阴极灯和无极放电灯;通过软件由计算机控制灯的选择和自动准直,可自动识别灯名称和设定灯电流推荐值。 4. 火焰系统技术指标 *4.1火焰系统安全保护:安全联锁装置与燃烧头,雾化器/端盖,排液系统,废液桶液面高度,气体流量等联锁,防止在任何不当条件下点火,当监测不到火焰或任何锁定功能能激活时,联锁系统会自动关闭燃烧气体,以防万一。突然断电时,仪器会从任何操作方式按预设程序自动关机,确保安全。火焰有八个独立灯座。 4.2燃烧器系统:预混燃烧器可通过软件控制驱动装置自动换入样品室。火焰在光路中的准直,燃烧器的垂直,水平位置的调节完全自动化,并由软件控制自动进行位置最佳化。 4.3点火和熄火: 由计算机软件自动控制点火和熄火. 4.4燃烧系统:可调式通用型雾化器,高强度惰性材料预混室,全钛燃烧头 *4.5排液系统:排液系统前置以利于随时检测。 *4.6火焰AAS的灵敏度,5ppm Cu 吸光度大于0.9。测量方法按照中华人民共和国国家标准GB/T 21187-2007的4.5.2.1试验程序进行。 5. 石墨炉系统技术指标 5.1石墨炉:内、外气流由计算机分别单独控制。管外的保护气流防止石墨管被外部空气氧化。从而延长管子寿命,内部气流则将干燥和灰化步骤气化的基体成份清出管外。石墨炉的开、闭为计算机气动控制以便于石墨管的更换。石墨炉有八个独立灯座。 *5.2电源:石墨炉电源内置,整个仪器为一个整体。 *5.3温度控制:红外探头石墨管温度实时监控,具有电压补偿和石墨管电阻变化补偿功能。 *5.4石墨管:标准配置为一体化平台(STPF)热解涂层石墨管。 *5.5标配石墨炉加氧除碳炉内消解装置:在石墨炉灰化阶段软件可自动控制加氧时间和流量,对环境样品可直接进样。 5.6编程:可设置多达12步分析程序,每步均可按下列参数编程。

原子吸收法(石墨炉)测定铅的含量

原子吸收法(石墨炉)测定水样中铅的含量 一、实验目的 1了解石墨炉原子吸收分光光度计的基本结构; 2.初步掌握石墨炉原子吸收分光光度计的操作步骤。 二、实验原理 石墨炉原子吸收光谱法是采用石墨炉使石墨管升至2000。C以上,让管内试样中待测元素分解成气态的基态原子,由于气态的基态原子吸收其共振线,且吸收强度与含量成正比关系,故可进行定量分析。它属于非火焰原子吸收光谱法。 石墨炉原子吸收光谱法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g。但仪器较复杂、背景吸收干扰较大。工作步骤可分为干燥、灰化、原子化和除残四个阶段。 三、主要仪器和试剂: 石墨炉原子吸收分光光度计;石墨管;铅标准溶液(1000ppm);0.2%稀HNO3;去离子水 四、实验步骤 1. 设置仪器工作参数; 2.配制浓度为50ug/L的标样储备液(母液),利用仪器的自动配制功能配制浓度为10.00、20.00、30.00、40.00、50.00ug/L的铅标准溶液,分别测定其吸光度,扣除试剂空白后做标准曲线; 3.水样经消解后测定其吸光度。 五、结果与数据处理: 1.数据记录 2.绘制工作曲线 3.求待测水样中铅的含量。 附:原子吸收分光光度计操作流程: 1.打开冷却水系统,水温22度左右; 2.打开氩气气瓶,出口压力调节至140-200kPa; 3.打开通风系统、主机及石墨炉电源; 4.开计算机,进入操作系统; 5.SpectrAA软件,进入仪器页面,单击“工作表格”,新建工作方法; 6.按“添加方法”,选择要分析的元素; 7.按“编辑方法”,进行进样模式、测量模式、光学参数、石墨炉升温方式、进 样器等相关参数的设置; 8.按“选择”,选定要分析的样品标签; 9.按“优化”,进行元素灯的优化及进样器位置的优化; 10.按“开始”,进行标样及样品的分析。 11.实验结束后,关机顺序依次为:氩气、冷却水、退软件、主机及石墨炉电源、 计算机、通风系统。

仪器分析石墨炉原子吸收实验报告

原子吸收法测定水中的铅含量 课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量 原子吸收法测定水中的铅含量 一、实验目的 1。加深理解石墨炉原子吸收光谱法的原理 2。了解石墨炉原子吸收光谱法的操作技术 3. 熟悉石墨炉原子吸收光谱法的应用 二、方法原理 石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。它是一种非火焰原子吸收光谱法。 石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样.但仪器较复杂、背景吸收干扰较大。在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。 三、仪器与试剂 (1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2) 试剂铅标准溶液(0。5mg/mL)、水样 四、实验步骤 1。设置仪器测量条件 (1)分析线波长 217.0 nm (2)灯电流90(%) (3)通带 0.5nm (4)干燥温度和时间 100℃,30 s (5)灰化温度和时间 1000℃,20 s (6)原子化温度和时间2200℃,3s (7)清洗温度和时间 2800℃,3s (8)氮气或氩气流量100 mL/min 2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 ,10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。 3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值. 4.结果处理 (1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线. (2)从标准曲线中,用水样的吸光度查出相应的铅含量。 (3)计算水样中铅的质量浓度(μg/mL)

石墨炉原子吸收光谱仪

原子吸收光谱法 Atomic absorption spectrometry 各种元素的原子结构不同,不同元素的原子从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原子吸收光谱的频率ν或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hν=hc/λ 原理:利用物质的气态原子对特定波长的光的吸收来进行分析的方法。 原子吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、相当窄的频率或波长范围,即谱线实际具有一定的宽度,具有一定的轮廓。 I0为入射光强 I为透射光强 ν0为中心频率 产生谱线宽度的因素 1.自然宽度:与原子发生能级间跃迁时激发态原子的有限寿命有关,其宽度约在10-5nm数量级; 2.多普勒变宽(热变宽) 3.压力变宽通常认为两个主要因素是多普勒变宽和压力变宽。

原子吸收光谱的测量 理论上:积分吸收与原子蒸气中吸收辐射的基态原子数成正比。 吸收系数Kν将随光源的辐射频率ν而改变,这是由于物质的原子对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。长期以来无法解决的难题! 在频率O 处,吸收系数有一极大值K 0称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度范围内,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。因为当采用锐线光源进行测量,则Δνe<Δνa ,由图可见,在辐射线宽度范围内,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度范围内,可以认为原子的吸收系数为常数, 并等于中心波长处的吸2 00πd v e K v N f KN mc +∞-∞ ==?

实验四 石墨炉原子吸收法测定铜的含量

实验四石墨炉原子吸收法测定铜的含量 一、实验目的 1. 学习原子吸收光谱法的基本原理; 2. 了解石墨炉原子吸收光谱仪的基本结构及使用方法; 3. 掌握标准曲线法测定铜的定量分析方法。 二、实验原理 石墨炉原子吸收光谱法是采用石墨炉使石墨管升至2000 ℃以上,让管内试样中待测元素分解成气态的基态原子,由于气态的基态原子吸收其共振线,且吸收强度与含量成正比关系,故可进行定量分析。它属于非火焰原子吸收光谱法。 石墨炉原子吸收光谱法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14 g,并可直接测定固体试样。但仪器较复杂、背景吸收干扰较大。工作步骤可分为干燥、灰化、原子化和除残四个阶段。 通常使用偏振塞曼石墨炉原子吸收分光光度计。它具有利用塞曼效应扣除背景的功能。 三、实验仪器和试剂 A3石墨炉原子吸收分光光度计;铜空心阴极灯;石墨管;AS3自动进样器;容量瓶铜标准溶液100.0 μg/mL;铜未知液。 四、实验步骤 1. 按下列参数设置测量条件 1) 分析线波长(324.75 nm) 2) 灯电流(75%) 3) 狭缝宽度(0.5 nm) 4) 气化温度(120 ℃)和时间(25 s) 5) 灰化温度(600 ℃)和时间(20 s) 6) 原子化温度(2000 ℃)和时间(3 s) 7) 净化温度(2100 ℃)和时间(2 s) 8)冷却时间(45 s) 9) 氩气流量(2 L/min) 2.取铜标准溶液稀释到刻度,摇匀,配制0.00,5.00,10.00,15.00,20.00,2,5.00 ng/ml

的铜标准溶液,备用。 3.另配制铜未知液1个样。 4.采取自动进样方式进样,进样量20 μg。 五、结果与数据处理 1. 数据记录; 2. 绘制工作曲线; 3. 根据函数关系,计算待测液浓度。 六、注意事项 1. 实验正式开始之前要做好微调,使得进样管的尖端能顺利进样管尖端不能触及石墨管内壁。 2. 在配制溶液时,要注意操作规范使得样品不受杂质干扰。 3. 实验开始前,要仔细检查气瓶总阀与减压阀的连接处,并仔细检查冷却水装置和排气扇是否已打开。 4. 石墨炉温度很高,实验过程中要注意安全,防止灼伤。 七、思考题 1. 石墨炉法为何灵敏度高? 2. 为什么必须使用背景扣除技术? 3. 如何选择石墨炉原子化的实验条件?

石墨炉原子吸收光谱法测定水样中铜的含量

石墨炉原子吸收光谱法测定水样中铜的含量 一、实验目的 1、加深理解石墨炉原子吸收光谱分析的原理。 2、了解原子吸收分光光度计的主要结构,并学习其操作方法, 3、学习石墨炉原子吸收光谱法的应用。 二、实验原理 原子吸收光谱法是原子光谱法的重要组成部分,是一种适用于微量和痕量元素分析的仪器分析方法。这种分析方法的分析过程为:光源(空心阴极灯、氙弧灯等)产生的特征辐射经过样品原子化区(火焰、石墨炉等),特征辐射会被待测元素基态原子所吸收,由辐射的减弱程度求得试样中待测元素的含量。 石墨炉原子化的方法是将石墨管升至2000℃以上的高温,使管内试样中的待测元素分解成气态基态原子。该方法原子化效率高、用样量少、灵敏度高等优点,但仪器较复杂、背景吸收干扰较大。石墨炉工作步骤分干燥、灰化、原子化和净化4个阶段。 本实验采用石墨炉原子吸收光谱法测定水样中铜的含量。 三、仪器与试剂 1、原子吸收分光光度计;空气压缩机;自动循环冷却水系统;铜空心阴极灯;各种玻璃器皿等。 2、铜标准储备液:称取1.0000g铜(含铜量≥99.95%)置于250ml烧杯中,加入5ml浓硝酸酸,盖上表 面皿,待完全溶解后,将溶液移入1000ml容量瓶中,用水稀释至刻度,摇匀。此溶液1ml含1.0mg 铜。 3、铜标准使用液:移取1.00 ml铜标准储备液于100ml容量瓶中,用1%硝酸稀释至刻度,摇匀。再取该 溶液1.00 ml于100ml容量瓶中,用1%硝酸稀释至刻度,摇匀。此溶液1L含0.1mg铜。 四、实验步骤 1、将盛有高纯水的取样杯放在自动取样器的1号位置,将盛有铜标液(25μg/L)的取样杯放在自动取样 器的2号位置。将未知样品的取样杯放在3号、4号、5号……位置。 2、开机(主机、计算机、氩气、空压机和冷却水循环系统)→进入原子吸收分析系统→建立分析方法并 保存→打开方法→打开自动分析进样系统→开始分析并保存数据(同时监测分析数据)→编辑并处理数据→打印结果→关机(关空压机,氩气,冷却水循环系统,退出系统,关主机、计算机)。 建立分析方法的实验条件: 升温程序100℃(5s,20s);140℃(15s,15s);1000℃(10s,20s);2300℃(0s,5s);2600℃(1s,3s)。 取样体积20μL, 。 铜标准系列浓度5、10、15、20、25μg/L (铜标准储备液浓度25μg/L) 波长(nm):324.8nm 氩气流量:250mL/min 狭缝宽度(nm):0.7L 五、分析数据记录及实验结果 略。 六、问题讨论 1、石墨炉原子吸收法与火焰原子吸收法相比有何优点,在分析不同样品时应如何选择分析方法? 2、如何评价方法的准确度?并为本实验设计相应的实验方法。 注:本实验可自备待测水样,如各品牌矿泉水,白开水,自来水或成分简单的饮料等。

石墨炉原子吸收光谱仪

原子吸收光谱法 AtOmiC absorption SPeCtrOmetry 各种元素的原于结构不同,不同元素的原于从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原于吸收光谱的频率V 或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hv = hc∕λ 原理:利用物质的气态原于对特定波长的光的吸收来进行分析的方法。 原于吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、 相当窄的频率或波长范围,即谱线实际具有一定的宽度,具有一定的轮廓。 VO 产生谱线宽度的因素 1?自然宽度:与原于发生能级间跃迁时激发态原于的有限寿命有关,其宽度约在 10-5n m数量级;2.多普勒变宽(热变宽)3.压力变宽通常认为两个主要因素是多普勒 变宽和压力变宽。

退射光与频车的关系吸收线轮廊与半宽度 原子吸收光谱的测畳 +∞ 2 [K v dv = -NJ = KN. i mc 理论上:积分吸收与原于蒸气中吸收辐射的基态原于数成正比。 吸收系数KV将随光源的辐射频率V而改变,这是由于物质的原于对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。长期以来无法解决的难题! 在频率。处,吸收系数有一极大值K。称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度范围内,可以认为原于的吸收系数为常数,并等于中心波长处的吸收系数。 因为当采用锐线光源进行测量,则?ve

线宽度范围内,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度范围内,可以认为原于的吸收系数为常数,并等于中心波长处的吸收系数。 定量基础 由于NOoCNOCaC (No基态原于数,N原于总数,C待测元素浓度) 所以:A=KLN(I=KLN=KC 这表明当吸收厚度一定,在一定的工作条件下,峰值吸收测量的吸光度与被 =kN0L 测元素的含量成正比。这是原于吸收光谱定量分析法的基础。 石墨炉非火焰原子化器:利用大电流加热高阻值的石星管,产生髙达3()()0°C的 高温,使之与其中的少量试液固体熔融,可获得自由原于。 火焰的组成: 空气一乙烘火焰:最高温度约230O O C左右; N2O-乙块火焰:温度可达到3000 °C左右; 氧屏蔽空气-乙烘火焰:新型的髙温火焰,大于290OKO 原子吸收法的选择性高,干扰较少且易于克服。 由于原于的吸收线比发射线的数目少得多,这样谱线重叠的几率小得多。而且空 心阴极灯一般并不发射那些邻近波长的辐射线,因此其它辐射线干扰较小。 原子吸收具有较高的灵敏度。 在原于吸收法的实验条件下,原于蒸气中基态原于数比激发态原于数多得多,所以测定的是大部分原于。 原子吸收法比发射法具有更佳的信噪比

原子吸收光谱仪

原子吸收光谱仪高效、精确、可靠 Agilent 200 系列原子吸收系统

2Agilent 240Z AA Agilent 240FS AA 原子吸收解决方案系列 –A gilent 240 AA 将灵活性和硬件的可靠性相结合,为预算有限的用户提供高性价比的高性能火焰/石墨炉/氢化物分析原子吸收仪器 –A gilent 240FS/280FS AA 是快速高效的火焰原子吸收系统,其快速序列式操作可将样品通量增加一倍,从而大幅降低运行成本。它们可以轻松地进行多元素分析,是食品与农业或任何高通量实验室的理想选择 –A gilent 240Z/280Z AA 塞曼石墨炉原子吸收 (GFAA) 系统高效而精确,提供优异的石墨炉性能和准确的背景校正 –A gilent Duo系统可以成倍提高您的工作效率,它能够真正实现火焰和石墨炉同时分析,没有转换延时 安捷伦 AA 系列具有高效、易用和极其可靠的特性。该系列产品具有适用于任何分析所需要的高性能,并且同样适用于重视可靠性和易用性的常规实验室。 高效、精确、可靠

3 Agilent 280FS AA Agilent 280Z AA 满足您的应用需求 安捷伦始终致力于为您的应用提供有效的解决方案。我们的各种技术、平台和专家指导可帮助您 获得成功。 FS 火焰原子吸收系统 240FS/280FS AA + SIPS 20铁、钾、镁和钠FAME (脂肪酸甲酯) 中的钠和钾(SIPS 配件提供自动校准常量元素 银和铂族元素240Z/280Z AA 纯工艺用水中的钠、钙和硅元素 铅、钴和镍 水和土壤中的有毒元素 (US EPA 方法 200.9)电子产品与塑料产品中的铅、镉和铬 (WEEE/RoHs)

石墨炉原子吸收法测定大米中铅镉

不同消化方法-石墨炉原子吸收法测定大米中镉的比较 秦品芝1 摘要采用干法灰化法、湿法消解法及微波消解法作为前处理方式,石墨炉原子吸收光谱法测定大米中的镉。试验结果表明,干法消解法准确度和回收率均偏低;湿法消解法空白值较高,试剂消耗量大,前处理时间长;微波消解法具有准确度高,回收率好,操作简单快速,试剂消耗小等特点。 关键词镉;微波消解;湿法消解;干法灰化 镉是食品卫生标准中的重要限量指标,国标分析方法中镉的测定有石墨炉原子吸收光谱法、火焰原子吸收光谱法、比色法和原子荧光法[1]。石墨炉原子吸收光谱法具有较高的灵敏度,已成为日常工作中测定食品中镉的首选方法。所以,本次实验采用石墨炉原子吸收法测定大米中的镉。 前处理时元素及有机物分析测试过程中不可或缺的关键步骤,也是样品分析整个过程中最费力、费时的部分,同时也会对分析结果的准确性有着较大的直接影响,预处理方法与手段的好坏将直接在测试结果中体现[2],样品前处理方法通常是干灰化法或湿消解法[3],这些方法操作繁琐,试剂用量较大,危险性高,易受沾污和损失,测定周期较长,影响因素多,测定的准确度不易控制。微波消解技术是近年来发展成熟的新的试样消解技术[4],样品在密闭消解罐中,用硝酸和过氧化氢在高温高压下对待测样品进行消化处理[5]。其优点是消解速度快,试剂用量少,操作简单安全,大大减少易挥发元素的损失和实验环境对样品的污染,降低了空白值,提高了方法的灵敏度和准确度[6]。 实验原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm 共振线,在一定浓度范围,其吸收值与镉含量成正比,与标准系列比较定量。 2.实验材料 2.1仪器 原子吸收分光光度计;电子天平(精确度:0.01g);微波消解仪;马弗炉;超纯水器;可调式电热板;电子控温加热板。 2.2试剂 硝酸(分析纯);高氯酸(分析纯);盐酸(优级纯);过氧化氢;镉标准溶液;大米标准物质。 3.实验方法 3.1样品前处理 3.1.1干灰化法 首先将大米样品粉碎,然后准确称取2.00g~5.00g样品于瓷坩埚中,先在可控温电热板上小心加热至样品完全炭化,然后移入马弗炉中,在500~550℃灰化约8小时,冷却后取出。然后用硝酸将灰分小心溶解,若有少量样品灰化不完全,再补加一定量硝酸,在可控温电热板上小心加热,直至消化完全,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.2湿消解法 准确称取已粉碎的大米样品1.00g~2.00g于锥形瓶中,加盖小漏斗,加入体积比为5∶1硝酸高氯酸混合消化液15mL,于电热板上缓慢加热,反应趋于缓和后,慢慢加入1mL过氧化氢,继续加热消化直至溶液澄清,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.3微波消解法

原子吸收光谱仪品牌比较

原子吸收光谱仪品牌比较-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

原子吸收光谱仪品牌比较 国内市场上常见的原子吸收光谱仪品牌大概有二、三十种。进口厂商方面,包括PE、热电(原UNICAM)、瓦里安、耶拿、GBC(照生公司代理)、日本岛津、日立(天美公司代理)、美国利曼、威格拉斯以及加拿大AURORA(路易公司代理)等;国产厂商方面,主要有北京瑞利(原北二光)、普析通用、东西电子、上海精科(原上分厂)、科创海光、瀚时制作所、上海天美、北京华洋、博晖创新、上海光谱等。基本上涵盖了国内外主流的原子吸收光谱仪生产厂家。 2004年,中国原子吸收光谱仪市场的销售总量接近2000台,其中国产原子吸收光谱仪所占份额在70%以上。从产品性能上看,国产仪器已接近国外中档原子吸收水平,火焰原子吸收基本上已达到进口仪器水平,且价格便宜,具有很强的竞争力。与进口高档原子吸收光谱仪相比,国产仪器主要是在自动进样器、石墨管寿命、综合扣背景能力以及自动化程度等方面还存在着一定的技术差距,有待进一步提高。 就原子吸收市场占有量而言,进口厂商方面,来自美国的三家公司:PE、热电和瓦里安应该是排名在前三位的厂家。 据我们保守估计,这三家公司2004年的原子吸收销售量之和应该占到中国进口原子吸收光谱仪市场的五分之三。此外,德国耶拿和日本日立的原子吸收在中国市场的表现也不错,尤其是在某一行业或地区,如:耶拿在中国的地质行业,日立在中国的华南市场都有着不错的原子吸收市场占有率。国产厂商方面,普析通用已取代了北京瑞利,成为中国国产原子吸收光谱仪的最大供货商,紧随其后的是北京瑞利和另一家民营企业——东西电子。这三家原子吸收2004年的销售台数总和大致在900~1000台左右。此外,上海精科和科创海光在国产原子吸收市场上也占据了不小的份额。就原子吸收光谱仪产品而言,PE的 AA800、耶拿的ZEEnit700、热电的M6、瓦里安的AA280以及GBC的Avanta Ultra Z等可以称得上是进口高档原子吸收光谱仪的杰出代表。 可以说,当今原子吸收光谱仪上几乎所有最先进的技术在这一档次的仪器身上均不同程度地得到了体现。譬如:横向加热石墨炉技术、多功能石墨炉背景校正技术、火焰-石墨炉一体化设计(原子化器无需切换)、石墨炉可视技术、单/双光束自动切换、火焰快速序列式分析模式、固体进样技术、固态检测器等等。当然,这一档次的原子吸收仪器的价格也是比较昂贵的,平均价格大致在五万美金左右。在国产仪器方面,普析通用的TAS-990、东西电子的 AA7003、北京瑞利的WFX-210、和瀚时制作所的CAAM—2001代表了国产原子吸收仪器发展的最高水平。这些仪器在一些主要技术指标方面(如:分辨率、基线稳定性、检出限等)已和国外同档次产品非常接近,同时也具有一些各自的特点。 TAS-990/986是国产目前唯一采用横向加热石墨炉技术的商品化原子吸收光谱仪;AA7003则将火焰原子化器和石墨炉原子化器固定在同一个可推拉平台上,通过推拉运动,在瞬间完成火焰/石墨炉的切换;WFX-210采用全新富氧火焰专利技术替代氧化—乙炔火焰分析高温元素,使火焰温度在2300℃-2900℃之间连续可调,对不同元素可选择最佳原子化温度条件;CAAM—2001则是以火焰原子吸收分析法为主、兼有流动注射氢化物原子吸收法(有内置流动注射氢化物发生器)、石墨炉原子吸收法、火焰发射法、可见/紫外溶液分子吸收法、流动注射在线富集法等多种功能的原子吸收光谱仪。价格方面,单火焰的国产原子吸收仪器的成交价格大致在 6~9万人民币,如果再配置石墨炉原子化器的话,成交价格则在10~15万人民币左右。(依具体配置不同而定 2

石墨炉原子吸收光谱法分析步骤教学提纲

石墨炉原子吸收光谱法分析步骤

石墨炉原子吸收光谱法分析步骤 内容摘要:压力消解罐消解法称取1.00~2.OOg试样(干样、含脂肪高的样品少于1.OOg,鲜样少于2.0g或按压力消解罐使用说明书称取试样)于聚四氟乙烯内罐,加硝酸2~4mL浸泡过夜,再加过氧化氢(总量不能超过罐容积的1/3)。盖好内盖,旋紧不锈钢外套,放人恒温干燥箱,120~140℃保持3~4h,在箱内自然冷却至室温,用滴管将消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤罐,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 (1)试样预处理在采样和制备过程中,应注意不使样品污染。粮食、豆类去杂质后,磨碎,过20目筛,储于塑料瓶中,保存备用。 (2)样品消解可根据实验室条件选用以下任何一种方法消解。 ①压力消解罐消解法称取1.00~2.OOg试样(干样、含脂肪高的样品少于1.OOg,鲜样少于2.0g或按压力消解罐使用说明书称取试样)于聚四氟乙烯内罐,加硝酸2~4mL浸泡过夜,再加过氧化氢(总量不能超过罐容积的1/3)。盖好内盖,旋紧不锈钢外套,放人恒温干燥箱,120~140℃保持3~4h,在箱内自然冷却至室温,用滴管将消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤罐,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 ②干法灰化称取1.00~5.OOg(根据镉含量而定)样品于瓷坩埚中,先小火在可调式电热板上炭化至无烟,移人马弗炉500℃灰化6~8h,冷却。若个别样品灰化不彻底,则加1mL硝酸一高氯酸(4十1)在可调式电炉上小火加热,反复多次直到消化完全,放冷,用硝酸(O.5mol/L)将灰分溶解,用滴管将样品消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 ③过硫酸铵灰化法称取1.OO~5.OOg样品于瓷坩埚中,加2~4mL硝酸浸泡1h以上,先小火炭化,冷却后加2.OO~3.OOg过硫酸铵盖于上面,继续炭化至不冒烟,转入马弗炉,500℃恒温2h,再升至800~C:,保持20min,冷却,加2~3mL硝酸(1.Omol/L),用滴管将样品消化液洗人或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 ④湿式消解法称取样品1.OO~5.OOg于三角瓶或高脚烧杯中,放数粒玻璃珠,10mL硝酸一高氯酸(4+1)(或再加1~2mL硝酸),加盖浸泡过夜,加一小漏斗电炉上消解,若变棕黑色,再加硝酸一高氯酸(4 +1),直至冒白烟,消化液呈无色透明或略带黄色,放冷用滴管将样品消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤三角瓶或高脚烧杯,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 (3)测定 ①仪器条件根据各自仪器性能调至最佳状态。参考条件为波长228.8nm,狭缝0.5~1.Onm,灯电流8~10mA,干燥温度120℃,20s;灰化温度350~C:,15~20s,原子化温度1’700~2300~(:,4~5 s,背景校正为氘灯或塞曼效应。 ②标准曲线绘制吸取上面配制的镉标准使用液0、1.OmL、2.OmL、3.OmL、5.OmL、7.OmL、10.O mL于100mL容量瓶中稀释至刻度,相当于0、1.Ong/。mL、2.Ong/mL、3.0ng/mI.、5.Ong/mL、7.Ong

血中铅的石墨炉原子吸收光谱测定方法(精)

(湖南 /湖北 /贵州 /广东血中铅的石墨炉原子吸收光谱测定 1主题内容与适用范围 本标准规定了血中铅的石墨炉原子吸收光谱测定方法。本方法最低检测浓度为 3mg/L。本标准适用于正常人和接触铅的工人血中铅的测定。 2血中铅的石墨炉原子吸收光谱测定原理 血样用 Triton X-100作基体改进剂,溶血后用硝酸处理,在 283.3nm 波长下用石墨炉原子吸收光谱法测定铅的含量。 3 仪器 3.1 原子吸收分光光度计。 (南京科捷分析仪器有限公司 3.2 铅空心阴极灯。 3.3 自动进样装置。 3.4 石墨杯。 3.5 聚乙烯加盖离心管。 3.6 容量瓶, 25mL 。 3.7 微量取液器。 3.8 所用容量器皿均用 1+3硝酸浸泡过夜,冲洗干净,晾干后备用。 原子吸收光谱仪(湖南 /湖北 /贵州 /广东 4血中铅的石墨炉原子吸收光谱测定试剂 本标准所用试剂除另有说明外,均为分析纯试剂。

4.1 实验用水:为亚沸蒸馏水或去离子水。 4.2 硝酸,优级纯ρ20=1.42g/mL。 4.3 硝酸铅,优级纯或金属铅,光谱纯。 4.4 硝酸溶液 1%(V/V。 4.5 硝酸溶液 0.1%(V/V。 4.6 肝素钠溶液, 5g/L。 4.7 Triton X-100溶液, 0.1%(V/V。 4.8 铅标准溶液 4.8.1 铅标准储备液:购买国家级铅标准储备液 (1mL=1mg铅或称取 0.100g 金属铅,溶于 1.0mL 硝酸 (4.2,加水稀释到 100mL ,此溶液 1mL=1mg铅。或称取 0.1598g 硝酸铅 (105℃干燥 2h 用 1 mol/L硝酸溶解并稀释至 100mL ,此溶液 1mL=1mg铅。存于聚乙烯塑料瓶中。 4.8.2 铅标准应用液:临用前用硝酸溶液 (4.5逐级稀释成 1mL=0.4mg铅的中间液,然后用 TritonX-100溶液稀释成 1mL=0.1mg铅(应用液 I 和 1mL=0.2mg铅 (应用液Ⅱ的标准应用液。 4.9 质控样:用标准血样、接触者混合血样或加标的正常人混合血样作质控样。 5血中铅的石墨炉原子吸收光谱测定采样、运输和保存 可选用下述两种方式: 5.1 常规采集耳垂或手指血 (严格控制污染和组织液稀释,去掉第一滴 ; 用微量取液器 (3.7抽取血样 40mL , 置于盛有 0.32mL TritonX-100溶液 (4.7的带盖离心管中,充分振摇,然后加入 40mL 硝酸溶液 (4.4,混匀。冰瓶运输, 4℃下至少可保存 5d 。 5.2 早晨空腹采集静脉血,置入事先加好肝素钠溶液 (4.6,用量为每毫升

石墨炉原子吸收光谱仪技术文件

石墨炉原子吸收光谱仪技术文件 1.货物名称:石墨炉原子吸收光谱仪 2.用途:用于微量铁、铜的测定,测定范围— 4.技术参数要求 仪器系统 石墨炉原子吸收光谱分析系统,包括石墨炉分析系统和自动进样系统 操作环境 电源:± , 环境温度:—℃ 环境湿度:— 光谱仪主机系统 光学系统 高性能全反射光学系统,所有光学元件均采用石英涂层保护,光学系统严格密封 单色器:波长范围,自动寻峰和扫描 光栅刻线密度:≥条 光栅有效刻线面积≥* 狭缝:,,,可调,自动调节,自动设定波长狭缝宽度和能量 波长设定:全自动检测检索,自动波长扫描 焦距:≥ 噪声:< 基线稳定性:± 仪器光谱分辨能力:可分辨和,且光谱通带为时,两线间峰谷能量≤ 灯座:≥灯位自动转换灯架,全自动切换,可用空心阴极灯和高强度超灯(可直接通用国产灯和各种同口径灯),独立于供电电路,可同时点亮两个灯,有下一灯预热和自动关灯功能。灯电流设备:— 检测器:宽范围的光电倍增管 同时具有两种背景校正技术,均可校正达的背景 背景校正:氘空心阴极灯和塞曼两种扣背景方式,交流塞曼效应,最新一代—磁场塞曼技术可直接扩展石墨炉分析的线性范围,磁场强度连续可调允许选择各个元素的最佳分析条件,调节范围:—,校正模式:—磁场和—磁场两种模式任选或自动动态选择。 石墨炉分析系统 石墨炉加热方式:横向加热方式,最高加热温度:℃ 石墨炉加热速度:最高≥℃秒。连续可调

加热控温方式:和控温技术(非传感器温控和无辐射干扰双光控温度重校技术),有过热保护和报警功能,石墨管自动格式化功能,石墨管加热电源内置主机中。 升温方式:阶梯升温、斜坡升温,升温程序可设置≥步 石墨管:热解涂层石墨管,平台管多种可选 测定方式:峰高,峰面积任意选择和互换 代表元素检测指标:检出限≤,≤ 气体控制:计算机自动控制,内外气体分别单独控制 操作软件可自动优化最佳灰化和原子化温度,智能化自动稀释,自动判断最佳稀释比 可升级配置直接固体进样附件,样品无需前处理,可直接进行固体样品检测 石墨炉自动进样器 样品位数:≥个,可加入三种以上基体改进剂,可自动配置校正曲线 进样精度:优于±,进样重复性≤ 除残功能:有智能化自动除残功能,交叉污染≤ 稀释功能:全自动智能化稀释 多次重复进样富集和热注射,智能化调节取样深度和进样注入速度 石墨炉辅助设备 石墨炉循环恒温冷却水系统,最高温度:℃ 5.计算机控制和数据处理系统 与主机相匹配的计算机 激光打印机 软件 全自动仪器及附件控制,数据采集和分析,多重任务,鼠标操作,自动设定菜单数据和校正方法,自动优化操作参数(石墨炉最佳灰化和原子化温度),智能化自动稀释,自动判断最佳稀释比:积分峰高峰面积测量,(质量控制)软件,自检和自诊断功能 6.零配件及易耗品 空心阴极灯:铁元素只,铜元素只 样品杯:聚酯样品杯个 石墨管:根 石墨炉自动进样器进样毛细管:根 石墨炉自动进样器进样针导管:根 7.售后服务 设备至少保修一年;在质保期内,非人为因素造成的质量问题保修、保退、保换,必要时提供备机 免费安装调试至仪器可正常运行,仪器到达用户现场后,在接到用户通知后一周内进行安装调试,直至通过验收;现场安装调试后,负责对用户进行免费培训,直至用户能熟练操作仪器。

石墨炉原子吸收光谱法测定食品中的铅(修改版)

石墨炉原子吸收光谱法测定食品中的铅 姓名:徐晨希班级:13资源1班学号:2013334116 食品中铅的测定有石墨炉原子吸收法、氢化物原子荧光法、火焰原子吸收法、二硫腙比色法。目前,应用较多的是石墨炉原子吸收法,但其重现性稍差,为提高其重现性,本文对铅的石墨炉原子吸收法的测定条件及影响因素进行探讨,加入基体改进剂,减少了干法灰化和湿法消化处理样品对铅测定的影响,使仪器的测定达到准确、快速的目的。 一,材料与方法 1.试剂铅标准溶液(1.0mg/mL),铅标准使用液(10.0ng/mL),硝酸(优 级纯)、高氯酸(优级纯)、磷酸铵溶液(20g/L)、混合酸:硝酸+高氯酸(4+1)、过氧化氢(30%)。 2.仪器原子吸收分光光度计 (WYX一9003原子吸收仪),热电谱通石墨管, 铅空心阴极灯,马弗炉,可调式电热板,可调式电炉,瓷坩埚。 二,测定步骤 (1)仪器工作条件:波长283.3nm,狭缝 0.5nm,灯电流 7mA,干燥温度 120℃、30s,灰化温度 450℃、20s,原子化温度 2200℃、5s,原子化阶段停气,除残2400℃、3s,进样体积 10μl,基体改进剂磷酸二氯铵(20g/L)lOμl。 (2)样品的预处理①干法灰化:取 1.0o~5.OOg 样品于瓷坩埚中,加 5ml硝酸,放置 2h,至电热板上炭化后,移人马弗炉 500℃灰化 4~6h,冷却,加入lml 混合酸和少量过氧化氢,在电炉上加热直至消化完全。冷却后,用 0.5mol/L 硝酸将灰分溶解,并移入25ml容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中,定容,混匀备用,同时作试剂空白。②湿法消化:取 1.0o一5.00g 样品于三角瓶中,加 10ml混合酸,加盖浸泡过夜。加一小漏斗于电炉上消化,补加适量混合酸,直至冒白烟,溶液呈无色透明,冷却后加少量蒸馏水,加热至冒白烟,赶酸。冷却移人 25ml容量瓶中,用少量水洗涤三角瓶,洗液合并于容量瓶,定容,混匀备用。同时作试剂空白。 (3)标准曲线绘制取铅标准使用液,用 0.5mol/ L硝酸配制成铅浓度为 0.00、5.00、10.00、20.00、 40.00、60.00、80.00μg/L的标准系列。(4)测定按仪器工作条件依次测定,标准系列和样品的吸光值,并绘制标准曲线。由标准曲线求得样品中铅的含量。 三、结果 1.灰化温度的选择其他条件不变,只改变灰化温度,当加入 10μL基体改 进剂后,灰化温度在 45℃,校准后的信号接近最大值,背景信号最低,故 450℃ 为最佳灰化温度。 2.原子化温度的选择当原子化温度达到 2200℃时,校准后的信号接近最大值,背景信号较低,故 2200℃为原子化温度的最佳温度。 3.基体改进剂加入量的选择在相同条件下测定吸光值,5μL、10μL、15μ L磷酸二氨胺的加入,与试样进样量相同的 10μL时,吸光度最大,故选 10μL为基体改进剂的加入量。

石墨炉原子吸收分光光度方法通则

MV_RR_CNJ_0023 石墨炉原子吸收分光光度方法通则 1.石墨炉原子吸收分光光度方法通则的说明 编号JY/T 023—1996 名称(中文) 石墨炉原子吸收分光光度方法通则 (英文) General rules for graphite furnace atomic absorption spectrophotometry 归口单位国家教育委员会 起草单位国家教育委员会 主要起草人邓 勃 批准日期 1997年1月22日 实施日期 1997年4月1日 替代规程号无 适用范围本标准规定了石墨炉原子吸收分光光度法,适于用新购置的和在 用的各种类型的石墨炉原子吸收分光光度计。 方法原理 主要技术要求 1. 2. 试剂和材料 3. 仪器 4. 样品分析步骤 5. 分析结果的表述 是否分级无 检定周期(年) 附录数目无 出版单位科学技术文献出版社 检定用标准物质 相关技术文件 备注 2.石墨炉原子吸收分光光度方法通则的摘要 本标准规定了石墨炉原子吸收分光光度法,适于用新购置的和在用的各种类型的石墨炉原子吸收分光光度计。 3 方法原理 原子吸收分光光度法是基于蒸气相中被测元素的基态原子对来自光源的特性辐射的共 振吸收。石墨炉原子吸收分光光度法是以电热石墨炉为原子化器进行原子吸收测定的方法。原子吸收的大小以吸光度表示,吸光度与试样中被测组分浓度之间的关系,遵循光吸收定律:

A = lg - I I - =KcL (1) 式中 A ——吸光度(其单位为A) I 0——入射辐射(光)强度 I ——透射辐射(光)强度 K ——摩尔吸光系数 c ——试样中被测组分的浓度 L ——光通过石墨炉原子化器的光程 4 试剂和材料 实验中所用的制剂和溶液按GB/T602化学试剂杂质测定用标准溶液的制备和GB/T603化学试剂试验方法中所用制剂和样品的制备中所规定的方法配制。去离子水应符合GB/T6682中实验用水二级水规格。 5 仪器 石墨炉原子吸收分光光度计应有锐线光源,石墨炉电热原子化系统、光学系统、检测器、背景校正系统与数据处理系统等主要部件。 5.1 锐线光源 锐线光源是发射被测元素特征的锐线辐射。常用的锐线光源是空心阴极灯与无极放电灯。 5.2 石墨炉原子化系统 石墨炉原子化系统应有石墨炉原子化器、冷却水箱、内外保护气气路与供电电路。石墨炉原子化器是提供能量,使被测元素化合物解离与实现原子化。石墨炉电热原子化器有管式原子化器和杯式原子化器及组合式原子化器。石墨炉电热原子化系统应设有慢速斜坡升温与快速升温两种方式。在实际工作中,采用何种升温方式取决于试样的性质。 5.3 光学系统 光学系统应有入射狭缝,准光镜,色散元件,成像物镜与出射狭缝,分光系统的核心部件是光栅。光栅应具有中等分辨能力,190nm ~900nm 光谱范围。 5.4 检测器 广泛使用的检测器是光电倍增管,光电倍增管的增益应达到106倍,暗电流小到10- 10A 。 5.5 背景校正系统 背景校正系统应有连续光源、或塞曼效应、或自吸效应校正背景装置。 5.5.1 连续光源校正背景是先用锐线光源测得分析线与背景吸收的总吸光度,再用连续光源(在紫外区用氘灯,在可见区用碘钨灯)在同一波长测量背景吸收的吸收值,两次测得的吸光度值相减,得到校正背景后的分析线的吸光度值。它测得的背景是光谱带宽范围内的平均背景,只能校正低背景吸收,不能校正精细结构与光谱干扰引起的背景。 5.5.3 塞曼效应校正背景是基于光的偏振特性。目前在商品仪器中采用吸收线调制法,调制方式有恒定磁场与可变磁场调制两种方式。 5.5.4 自吸效应校正背景是基于高电流脉冲供电时空心阴极灯发射线的自吸效应。 5.5.5 5.6 数据处理系统 由检测器阳极输出的信号经前置放大器放大,阻抗转换,锁相放大器滤波,对数变换等,

95石墨炉原子吸收光谱法检测重金属之技

九十五年度 石墨爐原子吸收光譜法檢測重金屬之技術與探討

撰寫單位:第六區管理處檢驗室 撰寫人員:鄭堡文 撰寫日期:九十五年一月至九十五年五月 目錄 一、緣起及目的......................2 二、文獻回顧.......................2 三、研究方法.......................4 四、結果與討論......................6 五、結論.........................9 六、參考文獻.......................10 表1 PERKIN ELMER AA-800砷分析條件............12 表2灰化溫度與原子化溫度之變化對測定50ug/L砷元素吸收值之影響..........................12 表3 PERKIN ELMER AA-800硒分析條件............13 表4灰化溫度與原子化溫度之變化對測定100ug/L硒元素吸收值之影響.......................... 13

表5 PERKIN ELMER AA-800鉛分析條件............14 表6灰化溫度與原子化溫度之變化對測定50ug/L鉛元素吸收值之影響..........................14 表7 PERKIN ELMER AA-800鎘分析條件............15 表8灰化溫度與原子化溫度之變化對測定2 ug/L鎘元素吸收值之影響..........................15 表9 PERKIN ELMER AA-800銻分析條件............16 表10灰化溫度與原子化溫度之變化對測定100ug/L銻元素吸收值之影響........................16 圖1灰化溫度與原子化溫度之變化對測定50ug/L砷元素吸收值之影響..........................12 圖2灰化溫度與原子化溫度之變化對測定100ug/L硒元素吸收值之影響.......................... 13 圖3灰化溫度與原子化溫度之變化對測定50ug/L鉛元素吸收值之影響..........................14 圖4灰化溫度與原子化溫度之變化對測定2 ug/L鎘元素吸收值之影響..........................15 圖5灰化溫度與原子化溫度之變化對測定100ug/L銻元素吸收值之影響..........................16

相关文档
相关文档 最新文档