文档库 最新最全的文档下载
当前位置:文档库 › 高二统考复习资料(八)不等式

高二统考复习资料(八)不等式

高二统考复习资料(八)不等式
高二统考复习资料(八)不等式

高二统考复习资料(八)不等式

学号________姓名________

一.选择题

1. 的是则若0)(11,,<->∈b a ab b

a R

b a

A.充分而不必要条件

B.必要而不充分条件

C.充要条件

D.既不充分又不必要条件

2. 不等式| x -4|≤3 的整数解的个数是

A.7

B.6

C.5

D.4

3. 设集合p={ x |-2< x <3},Q={ x | | x +1|>2,x ∈R},则集合P ∪Q=

A.{ x |-2< x <1}

B.{ x |1< x <3}

C.{ x |-3< x <3|

D.{ x | x <-3 或x >-2}

4. 关于x 的不等式a x 2+b x +2>0的解集是}3

121|{<<-x x ,则a +b= A.10 B.-10 C.14 D.-14

5. 已知集合A={ x | | x -1|≤a , a >0}, B={ x | | x -3|>4},且A ∩B=φ,则a 的取值范围是

A.(0, 2]

B.(-∞, 2]

C.(7, +∞)

D.(- ∞, -1)

6. 函数2

1-+=x x y (其中x >2)的最小值为 A.2 B. 3 C. 4 D.无最小值

7. 已知a 、b ∈R ,则b a 11<成立的一个充分不必要条件是

A.a>b

B.ab ·( a – b ) > 0

C.b

D.a ·b >0

8. 不等式01

312>+-x x 的解集是 A.}2131|{>-

131|{<<-x x C.}21|{>x x D.}31|{->x x 9..满足线性约束条件23,23,0,

x y x y x y +≤??+≤??≥??≥?的目标函数z x y =+的最大值是 ( )

(A )1. (B )32

. (C )2. (D )3.

10.若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥??--≤??-+≥?

且x y +的最大值为9,则实数m =

(A )2- (B )1- (C )1 (D )2

11.不等式

22x x x x --> 的解集是( ) A. (02), B. (0)-∞, C. (2)+∞, D. (0)∞?+∞(-,0),

12.设变量,x y 满足约束条件0,0,220,x x y x y ≥??-≥??--≤?

则32z x y =-的最大值为

(A )0 (B )2

(C )4 (D )6

13.设0a >b >,则()

211a ab a a b ++-的最小值是 (A )1 (B )2 (C )3 (D )4

14.某加工厂用某原料由车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天功能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为

(A )甲车间加工原料10箱,乙车间加工原料60箱

(B )甲车间加工原料15箱,乙车间加工原料55箱

(C )甲车间加工原料18箱,乙车间加工原料50箱

(D )甲车间加工原料40箱,乙车间加工原料30箱

15. 下列函数中,最小值是4的是 A.x x y 4+= B.2

22222+++=x x y C.x x y sin 4sin +=,0[∈x ,]2

π D.)77(2x x y -+= 16. 若a >0, b >0,则)11)((b

a b a ++ 的最小值是 A.2 B.22 C.24 D.4

17. 若实数a 、b 满足a +b=3,则b a 22+的最小值是

A.24

B.8

C.3

D.3

18.一元二次不等式220ax bx ++>的解集是11(,)23

-,则a b +的值是( )。 A. 10 B. 10- C. 14 D. 14-

19. 下列函数中,在R +上,最小值为2的是

A. y =x 2-2x +4

B. y =x +x 2

C. y =21222+++x x

D. y =x +x

1 20.设11a b >>>-,则下列不等式中恒成立的是 ( )

A .b

a 11< B .

b a 11> C .2a b > D .22a b > 二、填空题

1.设函数23()lg()4

f x x x =--,则()f x 的单调递减区间是 。 2.当=x ______时,函数)2(22x x y -=有最_______值,且最值是_________。

3.若*1(),()()()2f n n g n n n n N n

?===

∈,用不等号从小到大 连结起来为____________。

4.若{}|3,,A x x a b ab a b R +==+=-∈,全集I R =,则I C A =___________。

5.若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 (写出所有正确命题的编号).

①1ab ≤; ③ 222a b +≥;

④333a b +≥; ⑤112a b

+≥ 6.设0≠x ,则函数1)1(2-+=x x y 在x =________时,有最小值__________。 7. 方程x 2

+mx +m -1=0有一正根和一负根,则实数m 的取值范围是_________.

8. 已知B A m m B m m A m ,,1,1,1则设--=-+=>之间的大小关系是______

9. 不等式1312>+-x x 的解集为__________________________. 10.设,x y R +∈ 且191x y

+=,则x y +的最小值为________. 三、解答题

1.求y x z +=2的最大值与最小值,使式中的x 、y 满足约束条件??

???-≥≤+≤.1,1,y y x x y

2.函数45

22++=x x y 的最小值为多少?

3.某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物6个单位蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.

如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?

4.. 一批救灾物资随26辆汽车从某市以x km/h 的速度匀速开往400km 处的灾区,为安全起见,每两辆汽车的前后间距不得小于2)20

(x km ,问这批物资全部到达灾区,最少要多少小时?

高二数学基本不等式训练题

高二数学基本不等式训练题 数学基本不等式训练题1.若xy0,则对xy+yx说法正确的是() A.有最大值-2 B.有最小值2 C.无最大值和最小值 D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x2,则当x=____时,x+4x有最小值____. 答案:2 4 4.已知f(x)=12x+4x. (1)当x0时,求f(x)的最小值; (2)当x0 时,求f(x)的最大值. 解:(1)∵x0,12x,4x0. 12x+4x212x4x=83. 当且仅当12x=4x,即x=3时取最小值83, 当x0时,f(x)的最小值为83. (2)∵x0,-x0. 则-f(x)=12-x+(-4x)212-x-4x=83,

当且仅当12-x=-4x时,即x=-3时取等号. 当x0时,f(x)的最大值为-83. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+12x B.x2-1+1x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+6x2+1的最小值是() A.32-3 B.-3 C.62 D.62-3 解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3. 3.已知m、nR,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n22mn=200,当且仅当m=n时等号成立. 4.给出下面四个推导过程: ①∵a,b(0,+),ba+ab2ba ②∵x,y(0,+),lgx+lgy2lgx ③∵aR,a0,4a+a 24a ④∵x,yR,,xy0,xy+yx=-[(-xy)+(-yx)]-2-xy-yx=-2. 其中正确的推导过程为() A.①② B.②③

人教版数学高二B版必修53.2均值不等式

课后训练 1.若-4<x <1,则()22222 x x f x x -+=-( ). A .有最小值1 B .有最大值1 C .有最小值-1 D .有最大值-1 2.已知a >b >0,全集I =R ,2a b M x b x ? +?<. 证明:证法一:∵abc =1,且a ,b ,c 为互不相等的正数, 求下列各式的最值: (1)已知x >y >0,且xy =1,求22 x y x y +-的最小值及此时x ,y 的值; (2)设a ,b ∈R ,且a +b =5,求2a +2b 的最小值. 参考答案 1. 答案:D

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

【高中数学】公式总结(均值不等式)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

例1:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

高中数学常见的10类基本不等式问题汇总

高中数学常见的 10类基本不等式问题汇总 一、基本不等式的基础形式1.2 2 2a b ab ,其中,a b R ,当且仅当a b 时等号成立。 2.2a b ab ,其中,0,a b ,当且仅当a b 时等号成立。 3.常考不等式: 2 2 2 2112 2a b a b ab a b ,其中,0, a b ,当且仅当a b 时等号成 立。 二、常见问题及其处理办法问题1:基本不等式与最值解题思路: (1)积定和最小:若 ab 是定值,那么当且仅当a b 时,min 2a b ab 。其中,0, a b (2)和定积最大:若 a b 是定值,那么当且仅当a b 时,2 max 2 a b ab ,其中,a b R 。 例题1:若实数,a b 满足2 21a b ,则a b 的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得: 2 2 2 22 22 122 2 4 a b a b a b a b , 当且仅当1a b 时取等号。 变式:函数1 (0,1)x y a a a 的图象恒过定点A , 若点在直线1mx ny 上,则mn 的最大值为______。 解析:由题意可得函数图像恒过定点 1,1A ,将点1,1A 代入直线方程1mx ny 中可得1m n ,明 显,和为定,根据和定积最大法则可得: 2 124 m n mn ,当且仅当 1 2 m n 时取等号。例题2:已知函数2 12 2 x x f x ,则 f x 取最小值时对应的 x 的值为 __________. 解析:很明显,积为定,根据积定和最小法则可得: 2 2 112 22 12 2 x x x x ,当且仅当 2 12 12 x x x 时取等号。 变式:已知2x ,则12 x x 的最小值为。

人教新课标版数学高二-人教B版必修5练习 3.2 均值不等式(一)

§3.2 均值不等式(一) 一、基础过关 1.已知a >0,b >0,则1a +1b +2ab 的最小值是 ( ) A .2 B .2 2 C .4 D .5 2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是 ( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2 ab D.b a +a b ≥2 3.已知m =a +1 a -2 (a >2),n =????1 2x 2-2 (x <0),则m 、n 之间的大小关系是( ) A .m >n B .m 2 5.已知a ,b ∈(0,+∞),则下列不等式中不成立的是 ( ) A .a +b +1ab ≥2 2 B .(a +b )????1a +1 b ≥4 C.a 2+b 2 ab ≥2ab D.2ab a + b >ab 6.若a <1,则a +1 a -1有最______(填“大”或“小”)值,为________. 7.若lg x +lg y =1,则2x +5 y 的最小值为________. 8.设a 、b 、c 都是正数,求证:bc a +ca b +ab c ≥a +b +c . 二、能力提升 9.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1 y 的最大值为( ) A .2 B.32 C .1 D.1 2 10.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围为________. 11.已知x >y >0,xy =1,求证:x 2+y 2 x -y ≥2 2. 12.已知a ,b ,c 为不等正实数,且abc =1. 求证:a +b +c <1a +1b +1 c .

高中数学基本不等式知识点归纳与练习题

高中数学基本不等式的巧用 1.基本不等式:ab ≤ a + b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4) a 2+ b 22 ≥? ?? ??a +b 22 (a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2 ,几何平均数为ab ,基本不等式可叙述为 两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 2 4.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是 2 2 ?? ??a +b 22 (a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1) a 2+ b 22 ≥? ?? ??a +b 22 ≥ab (a ,b ∈R ,当且仅当a =b 时取等号);

a + b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2y = 的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231 ,(0)x x y x x ++= > (2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

人教新课标版数学高二B必修5学案 3.2 均值不等式(二)

明目标、知重点 1.熟练掌握均值不等式及变形的应用.2.会用均值不等式解决简单的最大(小)值问题.3.能够运用均值不等式解决生活中的应用问题. 1.用均值不等式求最值的结论 (1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y 时,积xy 有最大值为s 2 4. (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y 时,和x +y 有最小值为2p . 2.均值不等式求最值的条件 (1)x ,y 必须是正数; (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 前一节课我们已经学习了均值不等式,我们常把a +b 2叫做正数a 、b 的算术平均数,把ab 叫 做正数a 、b 的几何平均数.本节我们就最值问题及生活中的实际例子研究它的重要作用. 探究点一 均值不等式与最值 思考1 已知x ,y 都是正数,若x +y =s (和为定值),那么xy 有最大值还是最小值?如何求? 答 xy 有最大值.由均值不等式,得s =x +y ≥2xy ,所以xy ≤s 2 4,当x =y 时,积xy 取得最 大值s 2 4 . 思考2 已知x ,y 都是正数,若xy =p (积为定值),那么x +y 有最大值还是最小值?如何求? 答 x +y 有最小值.由均值不等式,得x +y ≥2xy =2p .当x =y 时,x +y 取得最小值2p .

例1 求函数f (x )=-2x 2+x -3 x (x >0)的最大值,及此时x 的值. 解 f (x )=1-(2x +3 x ). 因为x >0,所以2x +3 x ≥2 2x ·3 x =26, 得-(2x +3 x )≤-2 6.因此f (x )≤1-2 6. 当且仅当2x =3x ,即x 2=3 2时,式中等号成立. 由于x >0,因而x = 6 2 时,式中等号成立. 因此f (x )max =1-26,此时x = 62 . 反思与感悟 在利用均值不等式求最值时要注意三点:一是各项均为正;二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件. 跟踪训练1 (1)若x >0,求函数y =x +4 x 的最小值,并求此时x 的值; (2)设02,求x +4 x -2 的最小值; (4)已知x >0,y >0,且 1x +9 y =1,求x +y 的最小值. 解 (1)当x >0时,x +4 x ≥2 x ·4 x =4, 当且仅当x =4 x ,即x 2=4,x =2时取等号. ∴函数y =x +4 x (x >0)在x =2时取得最小值4. (2)∵00, ∴y =4x (3-2x )=2 ≤2?? ?? ??2x +(3-2x )22=9 2. 当且仅当2x =3-2x ,即x =3 4 时,等号成立.

高中数学基本不等式练习题

一.选择题 1.(2016?济南模拟)已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A. B.2C.4 D.4 2.(2016?乌鲁木齐模拟)已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.(2016?合肥二模)若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.(2016?宜宾模拟)下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2 B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2 D.若a<b<0,则> 5.(2016?金山区一模)若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.(2015?福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于 () A.2 B.3 C.4 D.5 7.(2015?红河州一模)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为() A.6 B.8 C.10 D.12 8.(2015?江西一模)已知不等式的解集为{x|a<x<b},点A(a,b)在直线 mx+ny+1=0上,其中mn>0,则的最小值为() A.B.8 C.9 D.12 9.(2015?南市区校级模拟)若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.(2015?湖南模拟)已知x+3y=2,则3x+27y的最小值为() A.B.4 C.D.6 11.(2015?衡阳县校级模拟)若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.(2015春?哈尔滨校级期中)已知a,b,c,是正实数,且a+b+c=1,则的最小值 为() A.3 B.6 C.9 D.12 二.填空题 1.(2016?吉林三模)已知正数x,y满足x+y=1,则的最小值为. 2.(2016?抚顺一模)已知a>0,b>0,且a+b=2,则的最小值为. 3.(2016?丰台区一模)已知x>1,则函数的最小值为.4.(2016春?临沂校级月考)设2<x<5,则函数的最大值 是. 5.(2015?陕西校级二模)函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为.

高中数学基本不等式教案

《基本不等式》教学设计方案 人教版(A 版) 普通高中课程标准试验教科书必修第五册 【教学目标】 1、知识与技能目标 (12 a b +≤,认识其运算结构; (2)了解基本不等式的几何意义及代数意义; (3)能够利用基本不等式求简单的最值。 2、过程与方法目标 (1)经历由几何图形抽象出基本不等式的过程; (2)体验数形结合思想。 3、情感、态度和价值观目标 (1)感悟数学的发展过程,学会用数学的眼光观察、分析事物; (2)体会多角度探索、解决问题。 【能力培养】 培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。 【教学重点】 2 a b +≤的证明过程。 【教学难点】 2 a b +≤等号成立条件。 【教学方法】 教师启发引导与学生自主探索相结合 【教学工具】 课件辅助教学、实物演示实验 【教学过程设计】 一、 创设情景,引入新课 如图是在北京召开的第24届国际数学家大会的会标, 这是根据赵爽弦图而设计的。用课前折好的赵爽弦图示范,比较 4个直角三角形的面积和与大正方形的面积,你会得到怎样的相 等和不等关系? 赵爽弦图

1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形。 设直角三角形的两条直角边长为a,b那么正方形 的边长为。这样,4个直角三角形的面积的和是2ab, 正方形的面积为。由于4个直角三角形的面积小于正 方形的面积,我们就得到了一个不等式:。 当直角三角形变为等腰直角三角形,即a=b时,正 方形EFGH缩为一个点,这时有。 2.得到结论:一般的,如果 3.思考证明:你能给出它的证明吗? 证明:因为 当 所以,,即 4.基本不等式 1)特别的,如果a>0,b>0,我们用分别代替a、b ,可得,通常我们把上式写作:2)从不等式的性质推导基本不等式 用分析法证明: 要证 (1) 只要证≥ +b a ab 2 (2)要证(2),只要证 a+b-ab 20 (3)要证(3),只要证(a-b)0 ≥(4)显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。 3)理解基本不等式的几何意义 如图所示:AB是圆的直径,点C是AB上一点,AC=a,BC=b。过点C作垂直于AB的弦DE,连接AD、BD。 你能利用这个图形得出基本不等式的几何解释吗? 引导学生发现:表示圆的半经,表示半弦长CD,得到不等关系:≤() 易证Rt△ACD∽Rt△DCB,那么CD2=CA·CB 即CD=. 这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立. 几何意义:半弦长不大于半径长。 我们称ab为正数b a,的几何平均数,称 2b a+ 为正数b a,的算术平均数。 代数意义:几何平均数小于等于算术平均数 5.随堂练习 已知a、b、c都是正数,求证:(a+b)(b+c)(c+a)≥8abc

高中数学必修5 均值不等式

均值不等式复习(学案) 基础知识回顾 1.均值不等式:ab ≤ a +b 2 (1)均值不等式成立的条件:_______________. (2)等号成立的条件:当且仅当____________时取等号. 2.几个重要的不等式 (1)a 2 +b 2 ≥2ab (a ,b ∈R ). (2)b a +a b ≥2(a ,b 同号). (3)ab ≤? ????a +b 22(a ,b ∈R ). (4) a 2+ b 22≥? ?? ??a +b 22 (a ,b ∈R ). 注意:使用均值不等式求最值,前提是“一正、二定、三相等” 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2 ,几何平均数为ab ,均值不等式可叙述为两个正数的 算术平均数大于或等于它的几何平均数. 4.利用均值不等式求最值问题 已知x >0,y >0,则 (1) 如果积xy 是定值p ,那么当且仅当________时,__________有最_____值是_____(简记:积定和 最小) (2)如果和x +y 是定值s ,那么当且仅当_____时,____有最______值是_______.(简记:和定积最大) 双基自测 1.函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2 +1x 2+1≥1.其中正确的个数是( ). A .0 B .1 C .2 D .3 3.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2 +b 2 有最小值 22 4.若实数b a ,满足2=+b a ,则b a 33+的最小值是( ) A .18 B. 6 C. 32 D. 432 5.若正数b a ,满足3++=b a ab ,则ab 的取值范围是 . 6.若+ ∈R y x ,,且12=+y x ,则 y x 1 1+的最小值为 . 典型例题 类型一 利用均值不等式求最值 1.若函数f (x )=x +1 x -2 (x >2)的最小值为____________. 2.已知t >0,则函数y =t 2-4t +1 t 的最小值为________.

人教版数学高二B版必修53.2 均值不等式

课后训练 1.函数f (x )=x + 4 x +3在(-∞,-2]上( ). A .无最大值,有最小值7 B .无最大值,有最小值-1 C .有最大值7,有最小值-1 D .有最大值-1,无最小值 2.设a >0,b >0是3a 与3b 的等比中项,则11 a b +的最小值为( ). A .8 B .4 C .1 D . 14 3.点P (x ,y )是直线x +3y -2=0上的动点,则代数式3x +27y 有( ). A .最大值8 B .最小值8 C .最小值6 D .最大值6 4.若a ,b ,c >0,且a (a +b +c )+bc =4-2a +b +c 的最小值为( ). A 1 B 1 C .2 D .2 5.在区间[12 ,2]上,函数f (x )=x 2 +bx +c (b ,c ∈R )与21()x x g x x ++=在同一点取得 相同的最小值,那么f (x )在区间[ 1 2 ,2]上的最大值是( ). A . 13 4 B .4 C .8 D .5 4 6.一批救灾物资随26辆汽车从某市以v 千米/时的速度匀速直达灾区,已知两地公路线长400千米,为了安全起见,两辆汽车的间距不得小于2 ()20 v 千米,那么这批物资全部到达灾区,最少需要________小时. 7.设a ≥0,b ≥0,且 a 2+ 2 2 b =1,则的最大值为________. 8.已知直线x +y =1经过第一象限内的点11()P a b ,,则a +4b 的最小值是________. 9.某游泳馆出售冬季游泳卡,每张240元,其使用规定:不记名,每卡每次只限一人,每天只限一次.某班有48名同学,老师打算组织同学们集体去游泳,除需购买若干张游泳卡外,每次游泳还需包一辆汽车,无论乘坐多少名同学,每次的包车费均为40元. (1)若使每个同学游8次,每人最少应交多少元钱?

高中均值不等式讲解及习题

高中均值 不等式讲解及习题 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时 取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅 当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”) ;若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的 和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+ 12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

基本不等式全题型

题型1 基本不等式正用a +b ≥2ab 例1:(1)函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1 x (x ∈R )值域为________; (2)函数f (x )=x 2 + 1 x 2 +1 的值域为________. 解析:(1)∵x >0,x +1 x ≥2 x ·1 x =2,∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞); (2)x 2 + 1x 2 +1=(x 2 +1)+1x 2+1 -1≥2x 2+ 1 x 2 +1 -1=1,当且仅当 x =0 时等号成立. 答案:(1)[2,+∞) (-∞,-2]∪[2,+∞) (2)[1,+∞) 4.(2013·镇江期中)若x >1,则x +4 x -1 的最小值为________. 解析:x + 4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1 ,即x =3时等号成立.答案:5 [例1] (1)已知x <0,则f (x )=2+4 x +x 的最大值为________. (1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-???? ??4 -x + -x .∵-4x +(-x )≥24=4,当且仅当-x =4 -x ,即x =-2时等号成立.∴f (x )=2-???? ? ?4-x +-x ≤2-4=-2,∴f (x )的最大值为-2. 例:当x >0时,则f (x )= 2x x 2 +1的最大值为________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x + 1x ≤22=1,当且仅当x =1 x ,即x =1时取等号. 3.函数y =x 2+2 x -1 (x >1)的最小值是________. 解析:∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1= x 2-2x +1+x - +3x -1 = x -2 +x -+3 x -1 =x - 1+ 3 x -1 +2≥2 x - 3x -1+2=23+2.当且仅当x -1=3x -1 ,即x =1+3时,取等号.答案:23+2 10.已知x >0,a 为大于2x 的常数,求y =1 a -2x -x 的最小值. 解:y = 1a -2x +a -2x 2-a 2 ≥2 12-a 2=2-a 2.当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a 2 . 题型2 基本不等式反用ab ≤ a +b 2 例:(1)函数f (x )=x (1-x )(00, x (1-x )≤?? ????x +-x 22=14,∴f (x ) 值域为? ?? ??0,14. (2)∵00. x (1-2x )=12×2x (1-2x )≤12·??????2x +-2x 22=18,∴f (x ) 值域为? ?? ??0,18.

高二数学基本不等式综合测试题

基本不等式的最大最小值问题随堂练习 1、在下列函数中,最小值是2的是 .A 1(,y x x R x =+∈且0x ≠) .B 224 y x =+ .C 22x x y -=+ .D 1sin (0)sin 2y x x x π=+ << 2、已知正数,x y 满足1x y +=,则1 1x y +的最小值为 3、若102 x <<,则(12)y x x =-的最大值 。 4、设1x >时,则函数411y x x =++ -的最小值 。 三、解答题 5、为迎接北京奥运会,北京市决定在首都国际机场粘贴一幅“福娃”宣传画,要求画面面积为272m ,左、右各留1米,上、下各留0.5米,问怎样设计画面的长和宽才能使宣传画 所用纸张面积最小? 6、函数4(0)y x x x =+≠的值域 7、若,x y 是正数,且191x y +=,则xy 有最 值= 8、已知lg lg 1x y +=,则5 2x y +的最小值是 。

9、已知1x >-,求2311 x x y x -+=+的最值及相应的x 的值。 10、正数a 、b 满足1,a b ab ++=则32a b +的最小值是 11、 已知函数f(x)满足2f(x)-f( 1x ) = 1| x | ,则f(x)的最小值是 12、函数],1,1[,323)(-∈--+=x a b ax x f 若1)(≥x f 恒成立,则b 的最小值为_ 13、函数log (3)1a y x =+-(01)a a >≠且,的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n +的最小值为 14、已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则2()a b cd +的最小值是 15、若y x y x -=+则,422的最大值是 . 16、已知a 、b +∈R ,且1=+b a ,则?? ? ??+??? ??+b a 1111的最小值是 17、若直线)0,(022>=+-b a by ax 始终平分圆014222=+-++y x y x 的周长,则b a 11+的最小值是 18、求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值 19、若a 是1+2b 与1-2b 的等比中项,则| |2||2b a ab +的最大值为 20、已知两正数x,y 满足x+y=1,则z=1 1()()x y x y ++的最小值为 21、已知a>b>0,求216() a b a b +-的最小值 22、已知a ,b ,c 为正实数,a +b +c =1求证

高中数学基本不等式几大题型

题型1 基本不等式反用ab ≤ a +b 2 例1:(1)函数f (x )=x (1-x )(00, x (1-x )≤? ? ????x + 1-x 22=1 4 , ∴f (x ) 值域为? ? ???0,14. (2)∵00. x (1-2x )=12×2x (1-2x )≤12·?? ????2x + 1-2x 22=1 8 , ∴f (x ) 值域为? ? ???0,18. 答案:(1)? ????0,14 (2)? ? ???0,18 例2:(教材习题改编)已知00.

∴x (3-3x )=3x (1-x )≤3? ????x +1-x 22=3 4 . 当x =1-x ,即x =1 2 时取等号. 例5:已知x >0,a 为大于2x 的常数, 求函数y =x (a -2x )的最大值; 解:∵x >0,a >2x , ∴y =x (a -2x )=1 2×2x (a -2x ) ≤12×??????2x +a -2x 2 2=a 28 ,当且仅当x =a 4时取等号,故函数的最大值为a 2 8. 题型2 基本不等式正用a +b ≥2ab 例6:(1)函数f (x )=x +1 x (x >0)值域为________; 函数f (x )=x +1 x (x ∈R )值域为________; (2)函数f (x )=x 2+ 1 x 2 +1 的值域为________. 解析:(1)∵x >0,x +1 x ≥2 x ·1 x =2, ∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞);

高中数学均值不等式题库

高中数学均值不等式题库 满分: 班级:_________ 姓名:_________ 考号:_________ 一、单选题(共13小题) 1.在△ABC中,角A,B,C所对边的长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A.B.C.D.- 2.设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是()A.[1-,1+]B.(-∞,1-]∪[1+,+∞)C.[2-2,2+2]D.(-∞,2- 2]∪[2+2,+∞) 3.若的最小值是() A.B.C.D. 4.设x,y∈R,a>1,b>1,若,则的最大值为() A.2B.C.1D. 5.已知,则的最小值是( ) A.2B.C.4D.5 6.设a>0,b>0,若是的等比中项,则的最小值为() A.8B.4C.1D. 7.设a>b>0,则的最小值是() A.1B.2C.3D.4

8.若a>0, b>0, 且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于()A.2B.3C.6D.9 9.已知,,则的最小值是 A.B.4C.D.5 10.若集合,且,则=()A.B.C.D. 11.设, ,若,,则的最大值为() A.1B.2C.3D.4 12.若直线平分圆, 则的最小值是()A.1 B.5C.D. 13.设,若关于的不等式在恒成立,则的最小值为()A.16B.9C.4D.2 二、填空题(共15小题) 14. 已知函数f(x) =4x+(x> 0, a> 0) 在x=3时取得最小值, 则a=. 15.函数的最小值为___________. 16.若,则的最小值为 17.已知,且满足,则xy的最大值为_______. 18.若对任意x>0,恒成立,则a的取值范围是________.

北师大版数学高二基本不等式(一)教案 北师大版

高中数学 基本不等式(一)教案 北师大版 一、教学目标:1.知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.过程与方法:通过实例探究抽象基本不等式;3.情态与价值:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣 二、教学重点:应用数形结合的思想理解不等式,并从不同角度探索不等式2a b ab +≤的证明过程;教学难点:基本不等式2a b ab +≤ 等号成立条件 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、课题导入:基本不等式2 a b ab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根 据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一 个风车,代表中国人民热情好客。你能在这个图案中找出一些相等 关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 (二)、探析新课 1.探究图形中的不等关系:将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。 2.得到结论:一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+ 当

高中均值不等式讲解及习题

高中均值不等式讲解及习题 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当 b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+ 12x 2 (2)y =x +1 x

解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--?? 231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0<-x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y

相关文档
相关文档 最新文档