文档库 最新最全的文档下载
当前位置:文档库 › 数学建模数码相机定位模型

数学建模数码相机定位模型

数学建模数码相机定位模型
数学建模数码相机定位模型

高教社杯全国大学生数学建模竞赛

承诺书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):

我们的参赛报名号为(如果赛区设置报名号的话):

所属学校(请填写完整的全名):

参赛队员(打印并签名) :1.

2.

3.

指导教师或指导教师组负责人(打印并签名):

日期:年月日

赛区评阅编号(由赛区组委会评阅前进行编号):

高教社杯全国大学生数学建模竞赛

编号专用页

赛区评阅编号(由赛区组委会评阅前进行编号):

全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数码相机定位模型

摘要

本文利用光学原理建立物体成像位置关系的数学模型,解决了相机系统标定中的如何确定靶标圆心对应像坐标和固定相机的相对位置等问题。

针对如何确定靶标圆心对应像坐标问题,我们分析讨论了各种影像分析方法,基于针孔成像原理和相机坐标系变换矩阵的思想,建立了线性相机模型,利用透视变换矩阵确定摄像机的位置标定思想给出算法,通过找靶标和像平面上对应公切线切点的方法取点,利用取定的点和算法求得相机成像内外参数,利用MATLAB编程求解,求得靶标圆心对应像坐标。

结果如下:在问题1要求的三维坐标系下A,B,C,D,E圆心对应的像坐标是(单位:mm):(,,),(,,),(,,),(,,),(,,).

针对设计一种方法检验我们模型的问题,我们采用最小二乘法拟合椭圆,确定中心点,改变所选取的标定点,求得多组中心的值,比较每组中心值与拟合的中心点,差别不大。并对方法的精度和稳定性进行了讨论。

针对如何确定两部固定相机相对位置的问题,以物坐标为中间变量,通过坐标矩阵的变换建立模型,给出算法,最终确定两部相机的相对位置。

本论文通过两种方法对比分析,结果相对吻合,模型的可信度较高。考虑到畸变因素的影响,本论文进行了模型改进,使模型具有更高的精度,有较强的推广性。

关键词:针孔成像线性相机模型坐标系变换矩阵公切线切点最小二乘法拟合椭圆

1、问题重述

数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。

标定的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利

用这两组像点的几何关系就可以得到这两

部相机的相对位置。然而,无论在物平面或

像平面上我们都无法直接得到没有几何尺

寸的“点”。实际的做法是在物平面上画若

干个圆(称为靶标),它们的圆心就是几何

的点了。而它们的像一般会变形,如图1所

示,所以必须从靶标上的这些圆的像中把圆

心的像精确地找到,标定就可实现。

图1 靶标上圆的像

有人设计靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。以AC边上距离A点30mm处的B 为圆心,12mm为半径作圆,如图2所示(略)。用一位置固定的数码相机摄得其像,如图3所示(略)。

问题:

(1)建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标, 这里坐标系原点取在该相机的焦点,x-y平面平行于像平面;

(2)对由图2、图3分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标, 该相机的像距(即焦点到像平面的距离)是1577个像素单位(1毫米约为个像素单位),相机分辨率为1024×786;

(3)设计一种方法检验你们的模型,并对方法的精度和稳定性进行讨论;(4)建立用此靶标给出两部固定相机相对位置的数学模型和方法。

2、模型假设

假设相机镜头(凸透镜)前后两侧弧度、介质均相同,即镜头前后两侧折射率相同。

假设相机镜头是很完善的,没有缺损或倾斜等外部形变。

假设物平面和像平面的中心与镜头的光学中心在同一条直线(光轴)上。

假设物平面的点经透镜折射后都可以被像平面接到。

假设问题1中靶标和像平面的图形是已知的。

像平面上点的像坐标的原点为该相机的光学中心,x-y平面平行与像平面。

假设不考虑照相机畸变。

有效焦距f为相机镜头光学中心到像平面的距离,即像距。

3、符号说明

O x y:图像像素坐标系

f f f

(,)

u v:像点像素坐标

OXY:图像物理坐标系

X Y:像点物理坐标

(,)

(,,)

x y z:物点相机坐标系

c c c

Ox y z:世界坐标系

w w w

(,,)

x y z:物点世界坐标

w w w

R:旋转正交变换矩阵

T:平移变换矩阵

f:有效焦距

M:为相机成像内部参数阵

1

M:为相机成像外部参数阵

2

M:称为投影矩阵

4、模型建立及求解

问题1

4.1.1问题分析

本问题的整体思路是:在仅已知物平面和像平面,相机的其他属性参数未知的前提下,建立照相机模型,确定靶标(物平面)上的点到该照相机像平面的像坐标的映射关系,其中包括照相机成像系统内外几何及光学参数的标定,从而达到只要给定标靶上的点,就可直接通过模型求得其像坐标的目的。

在具体建立照相机模型时,由于照相机与摄相机在成像原理上没有本质区别,因此沿用现有比较成熟的摄机标定技术的理论思想。对于问题1,根据假设,靶标和像平面的图形是已知的,利用针孔成像原理建立模型,引入常用的相机模型坐标体系,确定各坐标体系的转换关系,建立线性相机模型,利用透视变换矩阵的相机标定技术的思想给出算法,求取相机模型的内部参数和外部参数。

考虑到上述模型是基于靶标点与像点已确定的前提下才能实现的,而实际

上我们看到的只是靶标上的若干个圆和其拍摄的像(圆的变形图),不是模型中要求的“点”。因此我们结合光学成像原理和两图形几何位置关系确定若干组特殊靶标点和对应像点。将靶标点与对应像点带入模型,求得相机成像系统的内外参数。此时只要给出靶标上的点,即可求得其像坐标。

建模流程图如下:

4.1.2 问题1模型建立:

4.1.2.1坐标系

为了定量的描述光学成像过程,计算机一般采用右手定则定义坐标体系,即图像像素坐标系,图像物理坐标系,相机坐标系和世界坐标系,如图1。【1】

图1

? 图像像素坐标系:在图像上定义直角坐标系f f f O x y ,本模型中原点f O 在图

像平面的左下角,(,)u v 是以像素为单位的图像坐标系的坐标。

? 图像物理坐标系:用物理单位表示图像像素位置,定义坐标系OXY ,原点O

定义在相机与图像平面交点,(,)X Y 是以毫米为单位的图像坐标系的坐标。 ? 相机坐标系:相机坐标系Oxyz 是固定在相机上的直角坐标系,其原点O 定

义在相机的光心,,x y 轴分别平行于图像物理坐标系的,x y 轴,c z 与光轴重合,(,,)x y z 是物点相机坐标。

? 世界坐标系:坐标系w w w Ox y z 描述环境中任何物体的位置,根据具体情况而定。

4.1.2.2常用坐标系变换关系【2】 (1)从世界坐标系

(,,)

w w w x y z 到相机坐标系(,,)x y z 的变换,世界坐标系中的

点到相机坐标系的变换可由一个正交变换矩阵R 和一个平移变换矩阵T 表示:

111213212223313233 w w w w w w x r r r x x y R y T r r r y T z z r r r z ????????

????????=+=+????????

????????????????

(1)

用齐次坐标和矩阵形式表示为:

0 111w w T w x x R T y y z z ????

??

????????=????

????????

????

(2)

其中:,,T

x y z T t t t ??=??是世界坐标系原点在相机坐标系中的坐标,

正交旋转矩阵123456789 r r r R r r r r r r ??

??

=??????

且矩阵元素满足:2221232224562227891

11

r r r r r r r r r ++=++=++=

正交旋转矩阵中的三个独立变量123,,r r r ,加上平移矩阵中的,,x y z t t t 总共有6 个参数决定了相机光轴在世界坐标系中空间位置,因此这六个参数称

为相机外部参数。

(2) 从相机坐标系到图像物理坐标系的理想投影变换(f 为有效焦距)

即针孔模型下的理想透视投影变换,有下式成立

/ Y /

X f x z

f y z =???

=?? (3) 同样用齐次坐标和矩阵表示上式为:

0 0 00 0 010 0 1 01x X f y z Y f z ??

??????

??????=????????????

??????

(4) 将上式的图像坐标系进一步转化为图像坐标系:

00//x x y y u u X d s X

v v Y d s Y -==????

-==???

(5) 齐次坐标表示为:

00 0 0 110 0 1x y s u u X v s v Y ??????

??????=??????

?????

??????? (6)

其中,00,u v 是图像中心(光轴与图像平面的交点)坐标,,x y d d 分别为一个

像素在X 与Y 方向上的物理尺寸,1/1/x x y y s d s d ==,分别为X 与Y 方向上的采样频率,即单位长度的像素个数。

由此可得物点P 与图像像素坐标系中像点P 的变换关系:

00////x x y y u u f s x z f x z

v v f s y z f y z -=??=???

-=??=??

(7) 其中, , x x y y f fs f fs ==分别定义为X 和Y 方向的等效焦距。0,0,,x y f f u v 等4 个参数只与相机内部结构有关,因此称为相机内部参数。

(3) 世界坐标系与图像物理坐标系变换关系(共线方程)

0111213313233212220313233w w w x x w w w z w w w y

y w w w z u u r x r y r z t X f f r x r x r x t

r x r y r z t v v Y f

f r x r x r x t -+++?==?+++?

?+++-?==?+++? (8) 齐次坐标表示为:

0012 0 0 z =0 v 0 =M 0 110 0 1 01w x w y T w x f u u R T y v f M X MX z ??

??????????????=????????????????????

??

(9)

上式就是摄影测量学中最基本的共线方程,说明物点、光心和像点这三

点必须在同一条直线上。这是针孔模型或者中心投影的数学表达式。根据共线方程,在相机内部参数确定的条件下,利用若干个已知的物点和相应的像点坐标,就可以求解出相机的六个外部参数,即相机的光心坐标和光轴方位的信息。 4.1.3 算法设计

利用透视变换矩阵相机标定思想【3】,写成具体算法如下: 将(9)式写为:

1112

1314212223

243132

33

3411w w w

x u m m m m y z v m m m m z m m m m ????????

??????=????????????

??????

(10) 其中(,,,1)w w w x y z 是空间三维点的世界坐标,(,,1)u v 为相应的图像坐标,ij m 为变换矩阵m 的元素。它包含三个方程,整理消去Z 后,可得到如下两个关于关于ij m 的线性方程。

11121314313233342122232431323334

w w w w w w w w w w w w m x m y m z m ux m uy m uz m um m x m y m z m vx m vy m vz m vm +++---=+++---= (11)

方程(11)描述了三维世界坐标点(,,,1)w w w x y z 与相应图像点(u ,v ,1) 之间的关系。如果已知三维世界坐标和相应的图像坐标,将变换矩阵看作未知数,则共有12 个未知数。对于每一个物体点,都有如上的两个方程,因此,理论上,取6 个物体点,就可以得到12 个方程,从而求得变换矩阵M 的系数。但特殊的是,由于该方程没有常数项,即方程形式为0AX =,因此无法直接求解。 (1)求解'M

一般可做如下变换令'34M m M =,即求解'M 时令'

34m =1,则共有11个未知数,

取n 个目标点(6)n ≥可得2n 个方程,是一个超定方程,表示成矩阵形式如下:

'K M U = (12) 其中

111111111111111111211

10

00000001 (10)

00000000......w w w w w w w w w w w w wi wi wi i wi i wi i wi wi wi wi i wi i wi i wi n x y z u x u y u z x y z v x v y v z K x y z u x u y u z x y z v x v y u z ?---????---????=??

---????---???? ''''''''''''1112131421222324313233[,,,,,,,,,,]T

M m m m m m m m m m m m =

[]11......T

i

i n

n U u v u v u v =

利用最小二乘法求出上述线性方程组的解为:

1'()T T M K K K U -=

实际上由等式'M 矩阵即可确定物体世界坐标(,,)w w w x y z 到图像点(,)u v 的映射关系。

(2)求解R ,T 和34m

将R 和M 矩阵分块,其中i R 代表R 矩阵中第i 行,i M 代表M 矩阵中第i 行的前三个元素组成的行向量,即

123r R r r ????=??

????

1

14224334M m M M m M m ??

??=??

????=''

114''

'3434224'31M m m M m M m M ????=?????

?

(13)

由矩阵变换12M M M =可得:

''

1141141030

''

342242242030

'

33343

1

x x x z

y y y z

z

M m M m f R u R f t u t

m M m M m f R v R f t v t

M M m R t

??++

????

??????

==++

??????

??????

????

??

(14)

化简结果如下:

''

34103

1

''

34203

2

'

3343

'

34140

'

34240

34

''

3413

''

3413

()

()

()

()

||

||

x

y

x

x

y

y

z

x

y

m M u M

R

f

m M v M

R

f

R m M

m m u

t

f

m m u

t

f

t m

f m M M

f m M M

?-

=

?

?

?-

=

?

?

?=

?

?-

?=

?

?

?-

=

?

?

?=

?

?=?

?

=?

??

综上,带入已知参数,可得到投影矩阵M(

34

'

M m M

=?),同时可以求得相机成像内

外参数。

(3)在靶标图和像图上确定特殊标点及其对应像点

线性相机模型成像原理本质是相同的,因此基于小孔成像的原理,靶标中两圆间公切线所在的切点在经过镜头折射后,必然与像中对应的两个形变后的圆的公切线所在切点是对应的,如下图所示:

由左图(物图)到右图(像图),圆的形状虽然有改变,但是公切线所在切点还是对应不变的。

对于物平面上的若干个圆,任取两圆可得四个切点,这样可得若干个切点及其对像平面上的像点,实际取多少切点可根据图形和解题需要具体确定。由此可确定靶标中切点的世界坐标和对应像中切点像素坐标。

4.1.4 求解

通过上述模型和算法(程序见附录pro1)得到投影矩阵,也就是确定了原模型中相机成像的内外参数。此时,只要给出物平面的圆心,就可直接求得靶

标上圆心在像平面上像坐标。

问题2

4.2.1 问题分析

根据题目给出的已知条件,首先利用问题1取点方法得到多组靶标点与其对应像点,从而确定靶标点的世界坐标及其像点的像素坐标,再将其带入问题1模型,可以得到相机成像内外参数。最后将图2的圆心的世界坐标带入模型,得到对应像平面上的像坐标。

4.2.2 模型的建立

(1)选取特殊物点及其对应像点

本题中选取的世界坐标系是以物平面的左下角E为原点,EA方向为x轴,EB 方向为y轴。

利用问题1中公切线取点的方法,结合问题本身,可选取的切点及其像平面对应的像点如下(图中仅给出圆两两外切情况,公切线内切选点也可用):靶标上的取点:

像平面上靶标点相对应的像点

具体取点的算法和流程图如下(编程见附录program2):

算法:

Step1:根据图3靶标的像的每个像素颜色的不同将bmp图转化为0/1编码

Step2:运用广度搜索算法扩展节点,建立在一个区域图形的相互关系

Step3:运用并查集算法压缩路径,将每个区域图形独立

Step4:用一个像点周围四个点来确定该点是否为区域图形的边缘点,如果为边缘点则存入v数组中

Step5:对于任意两个区域,各取一个边缘点,确定一条直线y=k*x-b

Step6:将这两个区域上所有的边缘点的横坐标带入直线,检测该直线是否与该区域相切,如果该直线与两个区域都相切,则这对边缘点为两个区域的

一对切点

Step7:对求出的切点进行处理,确定任意两个区域的所有切点

注:任意两个区域应有两对切点,但由于精度原因,两个区域我们求出多对解。将横纵坐标不超过2个像素的点归为一类点,将这一类点求平均值,抛弃距离平均值点10个像素点,再求剩余点横纵坐标的平均值,取整,确定两个区域的两对切点。

得到如下特殊切点的像点坐标(像平面左下角为原点,单位是像素): u v u v u v P1 326 619 P7 288 301 P13 364 580 P2 425 610 P8 591 296 P14 323 266 P3 645 591 P9 278 232 P15 604 554 P4 312 539 P10 577 233 P16 549 253 P5 416 532 P11 282 579 P17 676 559 P6 636 517 P12 246 262 P18 617 270

(2)确定相机内外参数

确定特殊点以后,带入问题1中线性相机模型,利用问题1中具体算法可以求得相机成像内外参数:

' 3.380.140283.790.16 2.710264.820.000.0001M ??

??=??

???? 4

4

3.380.140283.790.16

2.710264.827.0010

7.001001M --??

??=????????

0.260.0400.010.2600.100.100R ??

??=-??

??-?? 20.9620.2511.73T ??

??=??????

注: 线性方程组中未知数的数目大于实际自由度的数目,因此,线性方程中的

未知数不是相互独立的,在有噪声的情况下,解的线性方程中的未知数也许能很好地符合这一组线性方程,但由此分解得到的参数值未必能与实际情况相符,使得精度受到一定限制。

(3) 靶标上圆心在像平面上对应的像坐标

利用MATLAB 编程求解,(程序见pro2)对于靶标上的圆,通过M 矩阵变换

,单位:像素):

z

利用MATLAB 做图,在像平面的圆上标出求得的像点,如下:

从图形可以直观的看出,求得的像点在图形(近似看成椭圆)的中心附近,偏差不大,这是符合实际中照相机拍照原理的,由此也体现了模型的合理性和有效性。

问题3 4.3.1 问题分析

在前两问中,我们建立的模型主要是从光学成像原理方面,利用坐标系的变换关系来找到靶标上圆的像坐标。实际中,由于物距比相距大得多,一般可以近似的认为,圆在经过透镜成像以后变为椭圆,若不考虑畸变因素,可以认为椭圆的中心就是原物平面圆的中心。基于这种思路,在本问题中我们首先提取椭圆边缘点,然后采用最小二乘法提取像平面中椭圆,进而求得椭圆中心坐标,即为靶标圆心的像坐标,并基于此解对问题2进行检测。。

4.3.2 模型建立

(1) 建立椭圆最小二乘法拟合模型:

先对采集的像平面的bmp 图像转化为0/1编码,通广度搜索和并查集确定椭圆区域边缘点,跟据边缘点数据进行最小二乘拟合。

椭圆的平面方程为【4】:22Ax Bxy Cy Dx Ey F +++++=0

根据该方程所确定的椭圆的中心坐标为:2

22424c c BE CD x AC B BD AE y AC B -?=??-?-?=

?-?

假设一般形式的椭圆方程如所列,为了避免零解,并将解的任何整数倍都

视为对同一椭圆的表述,对参数做一些限制 ,约束条件设为 A=1.显然,直接应用上述方程对边缘检测后的离散点进行最小二乘处理,就可以得到方程中的各系数 .也即求目标函数

f ( B,C,D,E,F)=

2221

(0)n

i i i i i i i Ax

Bx y Cy Dx Ey F =+++++-∑

的最小值来确定各系数.再由极值原理,欲使f(A ,B ,C ,D ,E)值为最小,必有0f f f f f B C D E F

?????=====?????,由此可得一个线性方程组【5】:221322

1

1111

134232

11111222

1

111121

N N N N N

i i i i i i i i i i

i i i i i N N N N N

i i i i i i i i i i i i N N N N N

i i i i i i i i

i i i i i N i i i x y x y x y x y x y x y y x y y y x y x y x x y x x y ================∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑312213132

211112

1

111 N i i i N

i i i N i i N N N N

i i i i i

i i i i i N

N N N i i i i i i i i i x y B x y C D x E y x y y y x y F x y y x y N

===========???????????????

???????=-????????????????????????∑∑∑∑∑∑∑∑∑∑∑∑121 N i i N i i x ==??

????

????????????????????????

∑∑ 然后应用求解线性方程组的算法(如全主元高斯消去法),结合约束条件,

用MATLAB 编程求解(程序见pro3),就可以求得方程系数 A ,B ,C ,D ,E ,F 的值,同时求得椭圆圆心.

(2) 结果检验及精度和稳定性分析

Step1:判断区域图像内的每个像点是否在拟合的椭圆内,像素点坐标为00(,)x y ,

代入22Ax Bxy Cy Dx Ey F +++++,若22

00000Ax Bx y Cy Dx Ey F +++++>0,则点00(,)x y 在拟合的椭圆外,否则则在椭圆内。

Step2:确定像点在拟合椭圆内的个数M ,像点个数为N,则该区域的拟合精度为

M N

?=

Step3:求出所有区域图像的拟合精度,求平均值,即为此最小二次拟合椭圆的

精度

利用MATLAB编程求解(程序见pro4),拟合图像为:

椭圆 1 2 3 4 5

精度

=,由此可以看出拟合度较高,拟合效果很好。

(3)利用拟合椭圆对问题2结果的检验

由于对相机来说,物距远远大于焦距,圆经小孔成像的投影接近椭圆,我们对成像进行椭圆的最小二乘拟合,以椭圆的中心作为圆心的参考投影点,评价模型结果的精确性以及稳定性。

①模型2结果的精确性检验

根据椭圆拟合的结果,以椭圆左下角为原点,自左向右为x轴,自下向上为y轴

A B C D E

u

v

定义平均偏差

5

'2'2

1

()()

5

i i i i

i

u u v v

d=

-+-

=

则求得8.12

d=像素单位

若以分辨率1024

x

l=,

y

l=768作为权重

则误差率0.63%?=

=

两种方法得到的圆心坐标基本一致,证明模型结果比较精确。 ② 模型2结果的稳定性分析

在问题二的模型中,参数是由切点的世界坐标和图像像素坐标决定的。 考察模型结果的稳定性应考察取不同的切点组求得的圆心坐标的差异。

在取100组(10

18100C ≤)不同的切点,每组10个切点:

第一组:P1,P2,P3,P4,P5,P6,P7,P8,P9,P10 第二组:P1,P2,P3,P4,P5,P6,P7,P8,P9,P11 第三组:P1,P2,P3,P4,P5,P6,P7,P8,P9,P12

……

求得误差率分别为:

10.6%?= 20.72%?= 30.63%?= ……

2015建模A题太阳影子定位

A题太阳影子定位 一,摘要 (宋体小四号,简明扼要的详细叙述,字数不可以超过一页,不要译成英文) 本文针对太阳影子定位技术,通过太阳与地球相对运动的规律,建立杆长、影长、经纬度、时间、日期的关系,建立模型。综合分析了不同地点,不同的时间,不同的季节时影子长度的形成规律及变化趋势,运用了软件进行分析,得出不同地区影子变化的模型。最后将具体情况运用到建立的模型中,对实际问题进行可行性分析,根据条件的改变完善对模型的应用和实用性检验。 第一问中,我们通过两种太阳高度角的表示方法建立等式关系,根据控制变量法,分析出影子长度分别与经、纬度、杆长、时间、日期的关系。然后,根据时差计算关系,当北京时间在9:00-15:00时,天安门广场的时间,并应用建立的模型。 第二问中,首先根据影子坐标求出影子的长度,拟合北京时间与影子长度的函数,找出影子长度的最低的点,从而根据时间求出当地经度,由于误差的存在,我们将经度、杆长、纬度给定一定范围,根据第一问公式进行搜索,从而确定可能的地点。 关键字:(宋体小四号)真太阳时平太阳时赤纬角太阳高度角熵值法 二,问题提出 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技 术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用 你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39 度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆 所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直 杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据, 给出若干个可能的地点与日期。 4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直 杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个 可能的拍摄地点。 如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期? 三,问题分析

数学建模:数码相机定位

高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数码相机定位 摘要 柯达于1975年开发世界第一部数码相机。由此,数码照相机便家喻户晓起来。数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。 标定的一种做法是:在一块平板上画若干个点,同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。而它们的像一般会变形,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,标定就可实现。 关键词:针孔成像,坐标变换,图像处理,相机镜头畸变,双目定位 。

太阳影子定位

太阳影子定位 摘要 太阳影子定位技术就是通过分析物体的太阳影子长度变化,来确定物体所在的时间和地理位置。本文通过分析有关太阳影子各因素之间的关系,采用几何关系和MATLAB编程等方法,对所给问题分别给出了数学模型及处理方案。 针对问题一,确立影长变化模型。首先以经度、纬度、日期、时间、杆长为参数分析影长的变化规律,通过中间变量太阳高度角、赤纬角、时角确立影长变化模型。其次利用影长变化模型,运用MATLAB进行编程,求解出天安门在9:00-15:00影长变化曲线类似一条凹抛物线,其中最短影长出现时刻为多少分,影长为多少m。

一、问题重述 1.1问题背景 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.2问题提出 问题一:建立影子长度变化与各个参数关系的数学模型,并应用所建模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 问题二:根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点,据此确定所给影子顶点坐标数据的若干个可能的地点。 问题三:在前一问的基础上进一步确定影子顶点坐标与日期的变化关系,建立模型并确定所给影子顶点坐标数据的若干个可能的地点与日期。 二、问题分析 这属于竿影日照数学问题,把竿顶影子端点坐标移动轨迹, 2.1问题一的分析 针对问题一首先为了建立影子长度变化的数学模型,应先确定影响影子长度变化的因素,拟选取直杆所在经度、纬度、日期、时刻及杆长为参数建立数学模型。由于题设中未直接给出关于影长与五个参数的数据,所以拟通过中间量描述影长与上述五个参数之间的关系。查阅相关资料得到可以太阳高度角、太阳赤纬角、太阳时角及太阳方位角四个中间参量作为转换分析中间变量,再根据四个中间变量得到影长与 5 个参数的函数关系式,即影长长度变化的数学模型。最后将天安门广场的 5 个参数带入影长变化模型,可得到杆影的变化曲线,分析影子长度关于各个参数的变化规律。 2.2问题二的分析 针对问题二以直杆的太阳影子顶点为坐标数据建立数学模型,并应用于附件 1 的影子顶点坐标数据求解直杆位置。可视为已知影长坐标、日期和时刻,求影长所在的地点的问题。首先应根据影长坐标计算实际太阳影长,本文拟将附件 1

太阳影子定位,2015数学建模国赛A题资料

对太阳影子定位算法探究 摘要 本文是对2013年全国大学生数学建模竞赛A题的解答.随着人们对数据挖掘的深入,如何确定视频的拍摄地点和拍摄日期已经成为视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法,进而可以促进视频分析定位技术发展。 对于问题一,我们根据地球自转公转的自然规律,建立影子长度变化的数学模型,并且分析影子长度关于各个参数的变化规律。基于对问题的分析以及理论的学习研究,画出模拟概念图,然后计算相关量(如太阳高度角、赤纬角等)的表达式,并按照相关地理知识建立起模型,得到杆子影长与时间函数表达式,再将题目所给的数据代入求解方程,并用MATLAB作出曲线图,最后检验模型的准确性。 对于问题二,我们以问题一所求出的表达式和资料作为基础,继而利用球面天文学求算太阳视坐标的简化算法建立一模型直接求解出经度,纬度的估算值。再代进数据并用利用多项式拟合出更长的时间序列曲线,用函数的特征值(最低点)加上时角,时区计算相关知识,再推算出经度值。最后利用第一问模型,经度,加上曲线获得的几组影长数据联立求解出大致纬度,最后估算杆子所在的地区。 对于问题三,结合问题一问题二所建立的模型,将附件2,附件3的数据先画出散点图并以多项式拟合出两条相对完整的曲线,通过其曲线函数求得影长的最小值以及最小值所对应的时间求得经度,纬度,将经度和纬度代入赤纬角公式以及影长公式可求得相应的具体日期。 对于问题四,首先将视频数据利用MATLAB,并且编程处理视频得到每分钟一帧的图片,再把相关图片转化为灰度图矩阵,最后用语句转化为二值图(0为黑,1为白)。下一步把二值图集分析并且分析出杆子影长的变化规律,求出视频拍摄点经度,利用模型一求出纬度,即是位置。 关键字:影长位置 MATLAB编程多项式拟合最小二乘法二值图

数码相机定位(优秀论文)

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

2008高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用):评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

数码相机定位 摘要 本文对双目定位的具体模型和方法进行了研究,分别给出了针孔成像模型、椭圆拟合模型等并对其进行研究。这种方法可以较好的解决由于像坐标存在误差,而引起靶标坐标能否精确计算的问题。我们用此模型,比较准确的还原出靶标上的点。给定靶标上的点,我们可以对应的求出像面上的点,即得到了一个像面上的点与靶标上的点的一一对应的较准确的关系。 我们首先要确定出像面上椭圆的中心坐标,因此我们采用了几何方法,建立合理的坐标,根据椭圆最高点和最低点的连线、最左与最右点的连线必交与椭圆中心的原理,创造性的利用了Photoshop软件直接将所给的图形以像素为单位进行坐标化处理,再读出各个点的坐标,这样椭圆中心即可确定下来,靶标上圆的圆心在该相机像平面的像坐标也就确定了。 由于本文采用的是一个优化模型,求出的是其近似解,与实际的原坐标位置有一定的偏移,所以我们需检验其精度,采用两种方法检验:1、通过靶标面和像平面中存在的几何关系建立一定的方程,从而去验证上述模型的精度;2、如果直接用图像中图形边界做切线,精度将会变得非常低,会造成很大的误差,所以在本模型中,先要利用所给图像中图形的边界(在1中提取)拟合出椭圆的方程。通过MATLAB、最小二乘法等计算出像平面椭圆圆心的坐标,结果与实际进行比较,进而检验模型的精度和稳定性。 对于由两部相机摄的像确定两部相机的相对位置及方向,我们通过建立方程并求解,从而得到两部相机之间的位置关系。该方法可以较好的处理误差所引起的方程不相容问题。 关键词:针孔成像模型几何模型椭圆拟合Photoshop

大学生数学建模太阳影子定位

基于实数离散逐级优化模型的太阳影子定位问题 摘要 本文研究了基于实数离散逐级优化模型的太阳影子定位问题 针对问题一,本文运用天文、地理知识和基本的几何关系,得到影长关于各个参数的函数关系子模型,并建立影长逐级代换模型。我们首先找出影响影子变化的因素,即时间、日期、地理位置、杆的高度;再根据定量分析的方法,得出影子变化与四种因素的变化规律;然后将不同地理位置均按120°E正午12点为0°时角计算当地时角,并通过构建太阳高度角与杆长的简单直角三角图形,利用MATLAB [1]软件计算得出北京时间9:00—15:00时间段内影子的变化曲线。根据曲线得出,该时间段内影长的变化范围在 3.674m—7.366m。每个整点影长如 标求出每个时刻所对应的方位角,将问题一和二中关系式联立,以1°为步长,通过编程遍历整个坐标系分别解出对应时刻不同地理位置所求出的方位角与理论方位角最接近的地理位置,每一点只对应一个时刻。再根据所给信息进行大致筛选,并通过求筛选出的任意一点同其他时刻理论方位角与实际方位角差的平方和最小时的点进行二次筛选。由于误差较大,我们需通过实数离散逐级求解模型,来分别以1分和1秒为步长对先前的二次筛选点进行小范围的遍历,遍历规则同上。最终求出最佳近似位置为: (39°29’30”N,120°29’30”E) 针对问题三,同样利用问题二中模型,增加了日期变量,此时所需遍历参数为经度、纬度、日期,用模型二的方法初步得到21个三维坐标,然后由此21个数据定出与它们方差最小的点的坐标,再进一步减小步幅,得到新的精度更高的21个坐标(精度达到分),重复以上步骤确定经纬精度达到1秒,日期精度达到1日,以此作为我们逐层优化得到的近似最优解,也就确定了坐标。最终求出最佳近似位置和日期分别为: 附录2:(35°29’29”N,31°29’29”E) ,日期为10月6日 附录3:(53°29’29”N,124°29’30”E),日期为2月4日针对问题四,首先对视频进行截图,取时间间隔1min,对图片进行增大对比度处理,建立空间距离矩阵,确定影子长度,位置的变化,进行相应的处理,确定坐标系,坐标点,第一小问就转化为了问题二模型进行求解了,第二小问缺少日期,符合模型三,利用模型三求解即可 关键词:逐级遍历优化、近似最优位置、控制变量法、问题归并

推荐-数学建模优秀数码相机定位的数学模型 精品 精品

数码相机定位的数学模型 摘要 随着数码相机定位在各领域的广泛应用,对相关问题《机器视觉》的研究也成为热点。因此建立一个精度较高,稳定性好的数码相机定位的数学模型,具有很好的现实意义。 问题1要求给出确定靶标上圆的圆心在给定相机像平面的像坐标的算法,问题2利用问题1的模型对给定数据求解。为此,首先建立了四个空间直角坐标系,在MATLAB中把图3的数字信息提取出来,主要是五个椭圆的边缘点的信息;同时为了便于运算,通过坐标变换将计算机图像坐标变换为图像坐标;并用提取的图像边界坐标拟合出5个椭圆的方程,利用“曲线切线的投影仍与曲线的投影相切,而且切点的投影仍为投影的切点”这一引理,提取出靶标上圆及其像上的公切点的坐标作为特征点,利用RAC两步法标定过程和最小二乘法建立了计算世界坐标系到相机坐标系的旋转变换矩阵R和平移向量T及径向畸变系数k的算法。利用16个公切点作为特征点,通过Matalb编程求得靶标上圆的圆心在文中给定相机像平面的五个坐标(单位:mm):A(-49.7132, 51.1289 417.1958),B(-23.3475, 49.1539 417.1958),C(33.8194, 44.8716, 417.1958),D(18.8173,-31.5798, 417.1958),E(-59.7830, -31.1754, 417.1958)。 问题3的解决分为两步:一是通过对模型计算出的焦距及畸变系数及上面五个坐标值的分析得出模型的精度较高的结论;二是采用改变特征点数的方法或利用“A,B,C三个标靶的中心的像应在一条直线上”验证模型的稳定性。问题4采用二目立体视觉模型确定了给出两部固定相机相对位置的数学模型和方法。 本文建立的算法可操作性强,精度较高,稳定性好,对解决类似问题的计算有一定的推广价值。 关键词:拟合椭圆特征点提取 RAC两步法坐标旋转矩阵公切点

数学建模太阳影子定位

西安邮电大学 (理学院) 数学建模报告 题目:太阳影子定位问题 班级:信息工程1403班 学号:03144079 姓名:侯思航 成绩: 2016年6月30日

一、摘要 本文针对太阳影子定位技术,通过太阳与地球相对运动的规律,建立杆长、影长、经纬度、时间、日期的关系,建立模型。综合分析了不同地点,不同的时间,不同的季节时影子长度的形成规律及变化趋势,运用了软件进行分析,得出不同地区影子变化的模型。最后将具体情况运用到建立的模型中,对实际问题进行可行性分析,根据条件的改变完善对模型的应用和实用性检验。第一问中,我们通过两种太阳高度角的表示方法建立等式关系,根据控制变量法,分析出影子长度分别与经、纬度、杆长、时间、日期的关系。然后,根据时差计算关系,当北京时间在9:00-15:00时,天安门广场的时间,并应用建立的模型。第二问中,首先根据影子坐标求出影子的长度,拟合北京时间与影子长度的函数,找出影子长度的最低的点,从而根据时间求出当地经度,由于误差的存在,我们将经度、杆长、纬度给定一定范围,根据第一问公式进行搜索,从而确定可能的地点。 关键字:(宋体小四号)真太阳时平太阳时赤纬角太阳高度角熵值法 二、问题提出 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。 4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。 三、问题分析 第一问:根据物体在太阳光照射下将产生影子的自然现象,研究物体影子的形成原理, 通过分析太阳光线照射物体的角度的日变化和年变化,引起物体影子的长度和朝向有规律地变化来建立数学模型。利用Matlab软件绘出影子长短随时间变化的图像。将问题中所给参数带入,解决问题。由于太阳光线照射物体的角度的日变化和年变化,引起物体影子的长度和朝向有规律地变化。 第二问:通过对附件所给的影子坐标的数据,求出影子的长度,然后通过第一问的相关公式,对影长和时间的关系进行拟合,得到一个二次方程,得出影长的最低值,从而可知正午时间,再算出经度。

太阳影子确定位置

太阳影子确定位置 太阳影子定位摘要太阳影子定位摘要太阳影子定位技术就是通过分析物体的太阳影子长度变化,来确定物体所在的时间和地理位置。 本文通过分析有关太阳影子各因素之间的关系,采用几何关系及MATLAB软件编程、数学建模等方法,对问题一、问题二、问题三分别给出了数学模型及处理方案。 对于问题一,根据题目所给的时间,日期,地理位置,杆长等条件,首先确定影响影子长度的各个因素,然后再根据几何知识确定它们之间的数学关系,建立相关的数学模型。 再运用MATLAB软件进行编程及绘出影长与时间点的变化曲线图。 对于问题二,根据题目可知,在时间点,日期,影子坐标已知的条件下,需要求出所测点的地理位置,即经纬度。 在问题一的基础上,我们根据问题一的相关结论,做出合理的假设。 用MATLAB软件拟合出所求点的影长与当地时间的关系曲线,确定各个影长所对应的当地时间。 根据附件1中所给点求出影长,找到对应的北京时间。 得到所求地与北京的时间差,即可用时间差和经度的关系求得当地的经度。 在问题二中,我们运用相关公式转换了坐标系,分析各个公式之间的相互转换,计算出题目所求地点的纬度。

从而,确定当地的位置。 对于问题三,给定时间与影子的坐标,确定日期及地理位置。 经度的确定与问题二中求得经度的方法一样,都是通过MATLAB 软件、时间差等方法求得的。 对于纬度的求解,则是运用相关因素之间的公式,转换变化得出日期与纬度之间的关系。 再用MATLAB软件进行穷举,得出所有的纬度,来确定的。 最后,对于论文的优缺点做出了评价,还给出了客观的改进建议。 关键词MATLAB 公式一.问题重述二.问题分析1.3问题三的分析三.模型建设1.假设题目中所给的数据全都真实可靠四.符号说明五.模型的建立与解决5.1 问题一:1.模型的准备2模型的建立3模型的求解5.2 问题二:1.模型的准备2.模型的建立(1)直角坐标系的转换原直角坐标系:根据附件1给出的一系列点的坐标,用Matlab软件编写程序,输入附件1中给定的点,得到偏转角度θ。 新直角坐标系:根据原直角坐标系得到的角度θ,以此角度θ为旋转角度,建立起新的坐标系。 公式1:公式1中,θ为旋转角度,x,y分别为原直角坐标系中的横、纵坐标,x1,y1分别是新直角坐标系的横、纵坐标。

太阳影子定位-2015高教社杯全国大学生数学建模竞赛题

2015高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”) A题太阳影子定位 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。 4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。 如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期? 太阳影子定位 摘要 本文通过分析物体的太阳影子变化,利用太阳影子定位技术建立确定视频拍摄的地点和日期的模型。 针对问题一,首先通过分析知影子长度的变化主要影响参数为:当地的经度λ、纬度?、时刻t、直杆长度l、季节J(日期N)等,引入地理学参数:太阳

赤纬δ、时角α及太阳高度角h 0,建立一个能够刻画影子长度变化和各个参数 间关系的模型:??? ????=?? ?? ????-+-=h l h l t 000tan )cos cos sin sin sin arccos(300151δ?δ?λ;其次以实例对模 型进行检验,在误差可允许的范围内,认为模型正确;进而对模型采用控制变量法分析影子长度关于各个参数的变化规律;然后求解出满足条件影子长度12时15分是最短,大约3.674米(表3)。影子长度的变化曲线(图5),9时至12时15分影子长度呈现下降趋势,12时15分之15时影子长度呈现上升趋势;最后考虑太阳照射中发生折射现象的推广。 针对问题二, 关键词 一、问题重述: 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。 4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。

数码相机数学建模

2008高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上 咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资 料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文 献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则 的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 1324615 所属学校(请填写完整的全名):中国地质大学(武汉) 参赛队员 (打印并签名) :1. 王飞 2. 李丁 3. 代永力 指导教师或指导教师组负责人 (打印并签名):付丽华 日期: 2008 年 9 月22日 赛区评阅编号(由赛区组委会评阅前进行编号):

2008高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

数码相机定位 摘 要 相机定位是计算机视觉领域里从二维图像获取三维信息的基本要求,是完成许多视觉工作必不可少的步骤。 题目利用由五个圆组成的靶标模板(图2)对相机进行标定。对于给出的相机拍摄的靶标的像(图3),本文对其进行了预处理:首先应用MATLAB 软件对图3进行去噪,然后利用自行设计的算法(扫描法)提取去噪后图形的边缘(图8)。事实上,标定就是找到空间坐标系和像平面坐标系之间的相互关系。而这是由相机成像的几何模型决定的,其成像参数包括相机内部几何和光学特性(内部参数),以及相机世界坐标系的三维位置和方向(外部参数)。求解相机内外参数是解决问题的关键。 本文考虑了理想的情况,即直线的投影仍是直线,以及交点的投影仍然是像的交点。利用图2中A 、B 、C 、D 、E 两两圆的外公切线的切点与图3中像的外公切线的切点相对应,通过最小二乘法求出该相机的内、外参数。然后,利用相机成像原理,将图2中圆心的坐标c A 、c B 、c C 、c D 、c E 和相机内外参数代入,即可得到靶标上圆的圆心在该相机像平面的像坐标'c A 、'c B 、'c C 、'c D 、'c E (见表2)。 为了验证该模型,本文利用留一法,用四个圆(共有三组:A 、B 、D 、E ;B 、C 、D 、E ;A 、C 、D 、E )的切点与对应像点求相机内外参数,剩下的一个圆用于做检验。以第一组为例,具体过程是:根据A 、B 、D 、E 算出内外参数,然后求出C 圆圆心的像的坐标''c C ,并与'c A 、'c B 所确定的直线的距离来检验方法的精度和稳定性。结果显示(见本文13-14页),本文所用方法精度较高,稳定性较好。 双目标定时,将双目系统的坐标系建立在左相机上,把右相机的坐标系相对于其的旋转和平移参数利用最小二乘法求出,从而可以得到两部相机的相对位置。 关键词:标定;内、外参数;深度优先搜索;最小二乘法

数学建模 数码相机定位

一问题的提出 1.1背景 数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。 标定的一种做法是:在一块平板上画若 干个点,同时用这两部相机照相,分别得到 这些点在它们像平面上的像点,利用这两组 像点的几何关系就可以得到这两部相机的 相对位置。然而,无论在物平面或像平面上 我们都无法直接得到没有几何尺寸的“点”。 实际的做法是在物平面上画若干个圆(称为 靶标),它们的圆心就是几何的点了。而它 们的像一般会变形,如图1所示,所以必须 从靶标上的这些圆的像中把圆心的像精确 地找到,标定就可实现。图 1 靶标上圆的像 有人设计靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。以AC边上距离A点30mm处的B为圆心,12mm为半径作圆,如图2所示。 用一位置固定的数码相机摄得其像,如图3所示。

图 2 靶标示意图图3 靶标的像 1.2问题 (1)建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标, 这里坐标系原点取在该相机的光学中心,x-y平面平行于像平面; (2)对由图2、图3分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标, 该相机的像距(即光学中心到像平面的距离)是1577个像素单位(1毫米约为3.78个像素单位),相机分辨率为1024×768; (3)设计一种方法检验你们的模型,并对方法的精度和稳定性进行讨论;(4)建立用此靶标给出两部固定相机相对位置的数学模型和方法。 二问题的假设 1.考虑光的衍射,色散,只考虑反射和折射; 2.假设所有场景中感兴趣的点都在镜头前面; 3.将相机简化为一个小孔成像机构,对于产生的相差,以及相机对像平面成像的调整作用不予考虑; 4.像平面是由一个个有大小的像素点组成,是一个不连续的点空间,而几何定义大都是在连续空间内定义的,这里假定,在几何推理中,像平面是连续的面,也即每个象素点除了表示坐标外,不再具有实际的大小; 5.为了在离散空间中求解,在解答过程中对相切、相割的含义做了一些调整,具体论述见正文; 6.对于题中随给相机中的几何关系有如下描述:焦点,透镜中心,像平面中点三点共 三符号说明 四问题分析 问题涉及的是数码相机的定位问题,问题出现在双目定位的背景下,要解决的问题是如何实现物体表面某些特征点在物平面和像平面之间的坐标转换,其中如何在像平面中找到发生变形的靶标(圆)像的圆心是需要解决的核心问题。 4.1 基本思路 题目中给出了已经得到的靶标的像和一些可测量的参数,如相机的像距,分辨率及靶标圆的半径和各圆之间的相对位置等。精确确定两部相机的相对位置是最终目的;实现物体表面某些特征点在物平面和像平面之间的坐标转换,是解决问题的基础;而像的变形决定了找到圆心在像上的投影是问题的核心也是难点。我们考虑先找出实现物体表面某些特征点在物平面和像平面之间的坐标转换的方法,在此基础上找到靶标圆心在像平面上的圆心的具体位置,然后通过坐标转换,把空间点从图像中恢复出来,最后根据两次恢复中求出的空间点位置的不一致关系,通过坐标系转换推出两部相机的相对位置。 4.2 具体分析 问题1需要确定靶标上圆的圆心在相机像平面的像坐标。有两种方法可以考虑实现,第一是利用物与像之间某些不变的相对位置关系找到对应与圆心的像点;另一种方法就是借助计算机图形处理中的霍夫变换和聚类算法在一定模型假设基础上求解。 问题2主要是模型的求解。根据问题一中得到的模型和算法,具体的编制程序进

A题 太阳影子定位

A题太阳影子定位 摘要

一.问题重述 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。 4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。 如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期? 二.问题分析 本题第一问是研究太阳影子长度随各个参数的变化规律,影响太阳影子长度的因素主要有时间以及地点,也就是当地的经纬度和时间来影响太阳高度角来影响太阳影子长度。 太阳高度角:对于地球上的某个地点,太阳高度角是指太阳光的入射方向和地平面之间的夹角,专业上讲太阳高度角是指某地太阳光线与通过该地与地心相连的地表切线的夹角。根据太阳高度角的计算公式: sin h=sin φ sin δ+cos φ cosδ cos t 即求出太阳高度角就能算出太阳影子长度。 本题第二问是根据第一问的模型通过最小二乘法拟合来判断大致的经纬度,从而确定地点。

基于并列选择遗传算法的太阳影子定位方法

第35卷第1期2017年2月 陕西科技太摩摩裉 Journal of Shaanxi University of Science & Technology Vol.35 No.1 Feb.2017 关 文章编号:1000-5811 (2017)01-0193-05 基于并列选择遗传算法的太阳影子定位方法 于鹏\刘泽锋2,郭改慧\陆金巧\吕杨1 (1.陕西科技大学文理学院,陕西西安710021: 2.陕西科技大学机电工程学院,陕西西安710021) 摘要:根据“立竿见影”和竿影日照图的原理,提出了一种太阳影子定位方法.首先结合太阳 高度角、太阳赤綷角,以理论影长和实际影长的相关系数最大和其误差平方和最小为目标函数 建立了求太阳影子定位的多目标优化模型,并以测量地的经綷度作为设计变量,运用并行选择 的遗传算法进行求解,实现了对测量地的精准定位.最后通过实例分析,指出与传统的枚举算 法相比,本文采用的遗传算法的求解结果无论在精度还是在收敛速度上都优于传统的枚举算法. 关键词:太阳影子定位;多目标优化;并行选择;遗传算法 中图分类号:TP391 文献标志码:A Positioning method by the shadow of the sun based on parallel selected genetic lgorithm YU Peng1,LIU Ze-feng2,GUO Gai-hui1,LU Jin-qiao1,LV Yang1 (1. School of Arts and Sciences,Shaanxi University of Science Technology,Xi^an 710021, China;2. Col- lege of Mechanical and Electrical Engineering,Shaanxi University of Science Technology,X i’an 710021,China) Abstract:According to the natural phenomenon that produces a shadow of objects under di-rect sunlight and the formation principle of stick sunlight shadow chart,the positioning method by the shadow of the sun is https://www.wendangku.net/doc/6b5581166.html,bined with relevant knowledge such as solar altitude and declination of sun.The multiple object optimization model,whose objective fun-ction is the maximum of correlation coefficient and the minimum of error sum of squares a-bout practical and theoretical shadow7s length,is built.Regarding longitude and latitude of measure area as design variables,the measure area is confirmedwith parallelism selection ge-netic algorithm.In the analysis of case,compared with enumeration method,there is the truth that,the result by genetic algorithm is more accurate and the solution speed is faster than enumeration method. Key words:positioning by the shadow of the sun;multiple object optimization;parallelism selection;genetic algorithm 收稿日期=2016-07-21 基金项目:国家自然科学基金项目(11401356) 作者简介:于鹏(1981 —),男,宁夏永宁人,讲师,硕士,研究方向:不确定推理

2015高教社杯全国大学生数学建模竞赛A题太阳影子定位资料

摘要 通过太阳影子定位技术可以确定视频的拍摄地点和时间,为拍摄出更好的视频,掌握太阳影子的变化规律就变得尤为重要。本文主要综合运用了地理学、几何学、统计学、数学分析和高等代数等知识,并利用MATLAB,SPSS 和mathematica 等计算机软件,通过建立数学模型来研究影子长度的变化特征,进一步确定视频的拍摄地点和时间。 针对问题一,首先我们通过分析影子长度的影响因素得到与影子长度的关系(见表达式六)整理计算之后,就得到了影子长度的数学模型。 1*tan (arcsin(cos cos cos sin sin ))l L ?θ?θ-=Ω+ 然后我们通过分析他们之间的关系,再利用MATLAB 编程,得到了影子长度关于各个参数的变化规律(见图3到图7)。其次根据我们建立的模型,利用MATLAB 编程画出了给定时间天安门广场3米高的直杆的太阳影子长度的变化曲线(见图8),然后在考虑折射率的情况下又画了一条变化曲线(见图9),最后进行了误差分析(见图10)。 针对问题二,我们采用了测试分析法(数据分析法和计算机仿真相结合),通过分析各个参量之间的关系,先以影长l 为目标做回归,用模型一的模型,通过SPSS 进行拟合得到多组数据,再用MATLAB 进行检验得到符合的两组经纬度。 (19.251,109.645),(24.579,98.1)N E N E 然后我们又以太阳方位角K 为目标做回归,得到模型(见表达式12),其计算方法与影长l 做回归目标时一样。我们分步做了两次拟合,先用MATLAB 拟合出经度,再做回归模型(见表达式14)最后得到经纬度(18.74 ,109.35)N E 和杆长 1.993L m =。综 上可知,肯定有一地点是在海南,还有一个地点可能在云南。 针对问题三,我们用问题二中的多项式回归,得到回归模型(见表达式17和20) 利用附件二得到的经纬度为(32.83N,110.25E)和杆长L 3.03m = ,得到天数307n =。利用附件三得到的经纬度为(39.19N,79.5E) 和杆长L 1.962m = ,得到天数=140n 针对问题四,首先运用MATLAB 软件,根据画面灰度,运用MATLAB 软件,把视频转化成二值图,求得影子端点的像素坐标,然后根据相似原理,把像素坐标转化成水平面上的坐标(消去了视角的影响),进而求得影子的长度。用以上方法求得的数据,运用多次拟合的方法,得到该地的经纬度为(34.32,108.72)N E ,日期未知时,得到的经纬度与其相似。 【关键字】 影子长度 多项式拟合 太阳方位角 画面灰度

数码相机的定位数学建模Word版

数码相机的定位 摘要 数码相机的定位问题,实际就是关于对图的处理,射影关系的确定以及多种坐标系之间相互转化的综合考察,该题一共给出四个问题,前三个问题是关于数码相机双目定位原理的解释与求算,在已知原靶标的基础之上,我们能够利用图像之间的关系,实际点与射影点的相互关系来定位圆心,前三问分别是对该问题的解释,求算以及检验。 对于前三问,我们首先对图形进行处理,对给出的图像进行坐标化的处理可以让我们的计算由几何图形求解变成代数化处理,方便我们利用计算机辅助,而后的引入两个模型对圆心进行定位和计算,并利用共线和交比两个手段进行误差检验,。 模型一:我们利用射影后保持切线不变的性质来求解圆心坐标:对处理后的图像进行椭圆的多次拟合我们能够得到五个类椭圆的系数,随后我们通过切线的性质,找到任意两个椭圆的两组外公切点,通过外公切点的连线,没我们能够定位类椭圆的圆心坐标。 模型二:我们将靶标点成像看作是靶标向像点的映射,那么类椭圆的最上最下最左最右点也将是靶标上圆的四个极位点,他们的连线是靶标中圆的圆心,那么在类椭圆中,最上最下,最左最右四个点由于射影过程中上下左右位置并未改变,他们的连线同样可以确定圆心。同时由于淡出求解映射点的方式误差相对大一些,我们引入对畸变的修正模型,对畸变进行修正,通过交比不变的性质对畸变系数进行求解,得到准确的结果。 在我们得到圆心坐标后,我们分别考察了ABC的共线情况来计算两个模型的误差,同时再利用消影点的只是,考察了ABCM的交比情况,得到实际理想状态下的交比为10:7,与我们的计算情况误差极小,确保了模型的准确性。 在解决了单个相机的定位问题,我们在第四问中解决两个相机的相互位置关系问题,我们首先推导了世界坐标系,相机坐标系以及像点坐标系的转化关系作为基础,再通过两个相机坐标系与世界坐标系的关系,找到单个坐标系向世界坐标系的转化矩阵,分别为旋转变化系数矩阵和平移变化系数矩阵,在定位两个坐标系分别于世界坐标系的转换方式后,我们最后在世界坐标系下找到两个相机坐标系的相对关系,通过高等代数的方法求解出两个相对坐标系的夹角。 关键词:公切线模型映射点模型畸变修正转化矩阵系统标定

相关文档
相关文档 最新文档