文档库 最新最全的文档下载
当前位置:文档库 › 压力钢管毕业设计.

压力钢管毕业设计.

压力钢管毕业设计.
压力钢管毕业设计.

目录

第一章工程概况 (1)

一、流域概况 (1)

二、水文及气象 (1)

(一)气象概况 (1)

(二)水文特性 (1)

三、压力前池基本地质条件及评价 (4)

(一)基本地质条件 (4)

(二)前池工程地质评价 (4)

四、地震 (4)

五、工程总体布置 (4)

第二章压力钢管设计 (5)

一、工程的级别确定 (5)

二、压力管道的经济直径 (5)

三、压力钢管的布置 (5)

四、管壁厚度的确定 (6)

五、镇墩的稳定分析 (7)

(一)计算条件 (8)

(二)运行条件下作用在镇墩上的基本荷载 (9)

(三)检修条件下的基本荷载 (11)

(四)校核条件下(水压试验情况)作用在镇墩上的基本荷载 (12)

(五)运行条件下荷载组合后的水平、垂直分力 (14)

(六)检修条件下荷载组合后的水平、垂直分力 (16)

(七)校核条件下荷载组合后的水平、垂直分力 (17)

(八)镇墩尺寸的拟定 (19)

六、支墩的稳定分析 (22)

(一)计算条件 (22)

(二)荷载计算 (22)

(三)、抗滑、抗倾覆稳定及地基承载能力校核 (23)

七、管身应力分析 (25)

(一)抗外压稳定核算 (25)

(二)钢管受力计算 (25)

(三)轴向力计算 (26)

(四)管壁应力计算 (26)

八、管道附件 (38)

九、管道工程量 (38)

一、钢材工程量 (38)

二、土石方工程量计算 (38)

参考文献 (39)

致谢............................................. 错误!未定义书签。

第一章工程概况

一、流域概况

隔界河为怒江右岸支流,流域位于东经98°42′~98°51′50″、北纬26°19′14″~26°24′之间。行政区划属云南省怒江州沪水县称杆乡。电站取水口以上径流面积为64.02km2,多年平均流量2.51m3/s。

拟建的隔界河一级水电站位于高山峡谷区,除其下游建有隔界河二级水电站(目前二级水电站主体工程已基本完工)以及规划有泸水电站外,无其它水利设施。电站所在下游无重大防洪对象,故不承担下游的防洪任务。

二、水文及气象

(一)气象概况

隔界河流域位于高黎贡山东麓,沪水县城以北,为低纬度北亚热带与北温带过渡带气候,夏季炎热,冬季偏暖湿润,四季分明,无霜期长。区域内最高气温41.70C,最低气温-2.80C,多年平均气温17.00C。多年平均日照1100h,多年平均蒸发量1018 mm,最大风速12.0m/s,本流域西北部和西部处于多雨区及较多雨区,东北部处于较少雨区,流域降水量从上游至下游呈递减的趋势。干季降水稀少,雨季(5月~10月)降水集中,占全年降水量的82.7%。1号坝多年平均降水为2223.4mm,2号坝多年平均降水为1937.1mm。多年平均气温为7℃左右,极端最高气温为25℃左右,极端最低气温为-10 ℃左右。

(二)水文特性

1.径流

对推求出的隔界河1、2号坝址1960年6月至1999年5月径流采用P—III型频率曲线适线,频率分析的统计参数为:均值1号坝为2.60m3/s;2号坝为0.23 m3/s,Cv=0.23,Cs=2Cv[5],隔界河电站坝址多年平均流量成果见表1-1。

1

表1-1 隔界河水电站坝址径流成果及比较表(单位:m3/s)

表1-2 隔界河水电站坝址日平均流量保证率成果表

2.洪水

表1-3 隔界河水电站坝址设计洪水成果比较表

综合分析比较各方面,本次设计按SL44—93规范采用推理公式计算方法所得洪水成果较为合理,作为本次设计的推荐成果。

3.泥沙

隔界河电站坝址年平均悬移质输沙量为 2.58万t。年平均推移质沙量取悬沙量的30%估算为0.774万t,坝址年输沙总量为3.354万t。

4.装机规模

根据以上基本资料和调节原则对三组装机方案进行径流调节计算,计算结果见表1-4。

表1-4 隔界河电站径流调节计算表

从水能指标及其特性的变化规律可明显看出,本电站较为合理的装机规模为12600kw,机组台数为2台,单机容量为6300kw。

三、压力前池基本地质条件及评价

(一)基本地质条件

前池布置在引水隧洞末端,山坡地面高程1970~2000m,地形相对较陡,总体地形坡度20~30°,无大的不良物理地质现象,整个岸坡为一单斜逆向坡。

(二)前池工程地质评价

前池山坡高程1970~2000m,地形相对较陡,总体地形坡度20°~30°,无大的不良物理地质现象,整个岸坡为一单斜逆向坡。基岩为?3t灰色白云质灰岩,强风化带埋深约15m,岩层倾向山内,倾角40°~60°。

四、地震

根据2001年版“中国地震动参数区划图”(GB18306—2001)确定工程区“动峰值加速度”为0.15g,相应地震烈度为Ⅶ度,地震设防烈度为Ⅶ度。地震动反应谱特征周期值为0.40s。

五、工程总体布置

隔界河水电站主要建筑物由1#拦河取水坝、2#拦河坝取水坝、引水隧洞、压力前池、压力钢管、主副厂房及升压站组成。拦河坝坝型采用浆砌块石重力式溢流坝。

主引水隧洞布置于主坝取水口~前池之间,分三段组成折线型隧洞布置,全长3074.71m。隧洞采用无压引水的方式,断面为直墙高1.9m,拱高0.6m的城门洞形。隧洞进口布置在主坝前河道右岸,侧向进水。进水口前设置沉砂池,进水口底板高程为1977.00m,出口接前池。隧洞末端底宽度:b=2.00m;隧洞底坡降:i=0.002。

前池布置于主引水隧洞末端,位于厂区枢纽河对面山脊上,前池后接压力钢管。

压力管道位于隔界河右岸山脊上,为山麓斜坡地形,地形坡度22°~52°。压力管道为单管双机供水方式,管道由主管、岔管、支管及附件构成,岔管为对称Y形布置。

电站厂址选定在距隔界河与怒江交汇处1100m隔界河左岸。主厂房内布置两台冲击式水轮发电机组,水轮机型号为CJA475-w-140/2×12,机组间距为11.5m,进水管中心高程为1530.00m。

第二章 压力钢管设计

一、工程的级别确定

水电站的装机容量为1.26万kw ,利用水头为445m ,故本工程等级为特高水头小一型水电站[1]。

二、压力管道的经济直径

本工程规模小,可按经济流速法计算管径[9],即

e V Q D 128

.1==86152.06

5

.3128.1= (m ) 压力管道管径模数为50mm ,安全起见压力管道直径D 取1m 。 式中 Q ——设计引用流量,)/(5.33s m Q =

e V ——经济流速,明钢管和地下埋管为4~6(m/s),对高水头电站可取大值,因

此取6(m/s)计算。支管管径与水轮机进口对应,即支管管径为0.65m 。

则实际流速:459.4114.34

1

5.34

1

Q V 22=??=

=

D π(m/s )

三、压力钢管的布置

前池布置于主引水隧洞末端,位于厂区枢纽河对面山脊上,前池后接压力钢管。明钢管的路线选择在地形地质条件优越的隔界河右岸山脊上,为山麓斜坡地形,地形坡度22~52°,避开了滑坡、崩塌、坠石和地表水集中等不利地段。明钢管常采用垂直等高线方向布置,以缩短管道长度,沿山脊布置,管槽开挖边坡为逆向坡。为了避免局部管的产生负压,在地形凸起部分应进行开挖。明钢管沿线应布置排水沟和设置交通通道,在钢管的最低处应设置排水管,在适当位置处应设置进人孔。明钢管的转弯半径为3倍管径,底部高出地面0.6m ,以利于安装和检修。顶部低于最小压力线至少2m ,以保证不出现真空。

由于发电引水单机流量不大,管道较长,因此压力管道采用单管双机供水方式,正

向引进,管道由主管、岔管、支管及附件构成,岔管为对称Y 形布置。镇墩型式采用封闭式,支墩采用滑动式支墩,伸缩节位于管道转弯处下游2.5m 。

四、管壁厚度的确定

压力钢管的材料和壁厚选择是水电站压力钢管设计的主要内容之一,钢管壁厚和材料变化使得钢管造价同时发生变化,因此需要在钢管的适当位置改变壁厚和材料,以降低工程造价。根据《SL-2003.压力钢管设计规范》,钢管所用钢材的性能及技术要求必须符合国家现行有关标准的规定,因此选用Q235C 、及Q345C 钢材。

管道末端允许的最大水锤相对升压为[6]

H<40m, δ=0.7~0.5 H=40~100m, δ=0.5~0.3 H>100m, δ<0.3

式中:H 为静水头,在δ的变化范围中,低水头时取大值,本工程静水头为445m 〉100m ,故δ取0.25。沿线水击水头由公式∑∑=?vL

vx i h 计算确定。管壁厚度的计算采用锅炉

公式[1 ]:

[]

σ?γHr

0t 式中 H ——压力水头(m ); ())(560448%251m H =?+= r ——钢管内半径(m ),)(5.0m r =;

[]σ——材料容许应力(m ),明钢管膜应力区容许应力[]σ降低20%,即

[]s σσ55.08.0?=;

0t ——管壁计算厚度(m )。

?——焊缝系数,本工程管径小,拟采用单面对接焊的方式,故9.0=? 考虑磨蚀和钢板厚度误差等因素,管壁结构厚度应至少比计算值增加2mm 。本工程按增加2mm 计。结果如下表2-1:

表2-1 压力钢管管壁厚度计算表

由表2-1中计算数据确定钢管的钢材和壁厚如表2-2:

表2-2 钢管的钢材和壁厚选用表

五、镇墩的稳定分析

按《SL-2003.压力钢管设计规范》,镇墩布置在管道的转弯处,长度超过150m的直线管道设置中间镇墩,以承受管道因改变方向而产生的轴向不平衡力,固定管道不允许管道在镇墩处有任何位移。本工程在直管线段大致每隔100m设置一个镇墩,转弯处设置镇墩,共设置了9个封闭式镇墩,支墩每隔6m设一个,共设了115个滑动式支墩。

伸缩节布置在镇墩下游2.5m处,以改善镇墩受力条件。镇墩设计根据管道的满水、放空、压水试验、温升和温降等情况分析各力的最不利组合,计算确定镇墩所需的形状和尺寸。镇墩根据满足抗滑稳定和地基承载能力的条件拟定尺寸,并以满足抗倾覆稳定条件进行校核。这里以3#镇墩为例,其他镇墩计算方法相同。

(一)计算条件

根据钢管的布置情况,3#镇墩的稳定计算已知条件如表2-3:

表2-3 3#镇墩的稳定计算已知条件

(二)运行条件下作用在镇墩上的基本荷载

1.上游侧钢管自重的轴向分力(考虑进人孔、伸缩节等附件增重25%)1A :

KN

tL D A S m 72.16692sin 5.7886.91012.0012.125.1sin 25.111=???????==πα

γπ 下游侧钢管自重的轴向分力(考虑进人孔、伸缩节等附件增重25%)11A :

KN

tL D A S m 76.538sin 5.785.2012.0012.125.1sin 25.1211=???????==πβ

γπ 2.镇墩上下游端内水压力 3A :

上游端:

KN

H D A w 19.1289495.1678.9125.025.022

2

03=????==πγπ 下游端:

KN

H D A w 09.130895.1698.9125.025.023

2

031=????==πγπ 3.伸缩节管端水压力5A :

上游伸缩节:

()

KN

H D D A w 69.41493.1118.91024.125.0)(25.0221

2

0215=??-?=-=γ 下游伸缩节:

()

KN

H D D A w 36.64147.1728.91024.125.0)(25.0224

2

02151=??-?=-=γ 4.温度变化时伸缩节止水盘根对管壁摩擦力6A :(压缩力取水压力的1.25倍) 上游伸缩节:

KN

H b D A w 44.395493.1118.93.03.0024.125.125.11

2216=??????==πγμπ

下游伸缩节:

N

H b D A w 56.610147.1728.93.03.0024.125.125.14

22161=??????==πγμπ 5.温度变化时,支墩对管壁摩擦力7A :

αcos )(7lf q q A w s += KN

D q s 744.35.78012.0012.125.1t 25.1s

m =????==πγπ

KN

D q 697.78.9125.025.02w

2

0w =???==πγπ 式中: s q ——单位管长钢管自重,钢管附件的附加重量按钢管自重的25%考虑。

w q ——单位管长管内水重 支墩对管壁总摩擦力:

()()KN

f L L nl q q A w s 45.8892cos 1.02/93.693.0614697.7744.3cos )2/)((347=???++??+=+++=∑α

6.镇墩中弯管水流离心力8A :

KN

g

V D A A w 60.1581

.9459

.48.9125.025.022

2

081

8=????=?

==πγπ 7.镇墩前、后钢管对镇墩的法向力: 镇墩前半跨管的法向力:

()KN

L q q Q w s 67.34229cos 93.6697.7744.32

/cos )(31=÷???+=+=α

镇墩后管段长的法向力:

()KN

L q q Q w s 54.2238cos 5.2697.7744.3cos )(22=???+=+=β

运行条件下各力汇总见表2-4:

表2-4 运行条件下作用在镇墩上的各项力汇总表(单位:KN )

(三)检修条件下的基本荷载

1.上游侧钢管自重的轴向分力(考虑进人孔、伸缩节等附件增重25%)1A :

KN

tL D A S m 72.16692sin 5.7886.91012.0012.125.1sin 25.111=???????==πα

γπ 下游侧钢管自重的轴向分力(考虑进人孔、伸缩节等附件增重25%)11A :

KN

tL D A S m 76.538sin 5.785.2012.0012.125.1sin 25.1211=???????==πβ

γπ 2.温度变化时伸缩节止水盘根对管壁摩擦力6A :(压缩力取水压力的1.25倍)

上游伸缩节:

KN

H b D A w 44.395493.1118.93.03.0024.125.125.11

2216=??????==πγμπ

下游伸缩节:

KN

H b D A w 56.610147.1728.93.03.0024.125.125.14

22161=??????==πγμπ 3.温度变化时,支墩对管壁摩擦力7A :

αcos 7lf q A s =

KN D q s 744.35.78012.0012.125.1t 25.1s

m =????==πγπ

式中: s q ——单位管长钢管自重,钢管附件的附加重量按钢管自重的25%考虑。

支墩对管壁总摩擦力:

()KN

f L L nl q A s 95.2892cos 1.02/93.693.0614744.3cos )2/(347=???++??=++=∑α

4.镇墩前、后钢管对镇墩的法向力: 镇墩前半跨管的法向力:

KN

L q Q s 64.11229cos 93.6744.32

/cos 31=÷???==α

镇墩后管段长的法向力:

KN

L q Q s 74.838cos 5.2744.3cos 22=???==β

检修条件下各力汇总见表2-5:

表2-5 检修条件下作用在镇墩上的各项力汇总表(单位:KN )

(四)校核条件下(水压试验情况)作用在镇墩上的基本荷载 1.上游侧钢管自重的轴向分力1A :

KN

tL D A S m 72.16692sin 5.7886.91012.0012.125.1sin 25.111=???????==πα

γπ 下游侧钢管自重的轴向分力(考虑进人孔、伸缩节等附件增重)11A :

KN

tL D A S m 76.538sin 5.785.2012.0012.125.1sin 25.1211=???????==πβ

γπ 2.镇墩上下游端内水压力 3A : 上游端:

KN

H D A w 49.1611495.1678.9125.025.125.025.122

2

03=?????=?=πγπ 下游端:

KN

H D A w 11.163595.1698.9125.025.125.025.123

2

031=?????=?=πγπ 3.伸缩节管端水压力5A : 上游伸缩节:

()

KN

H D D A w 11.52493.1118.91024.125.025.1)(25.025.1221

2

0215=??-??=-?=γ 下游伸缩节:

()

KN

H D D A w 45.80147.1728.91024.125.025.1)(25.025.1224

2

02151=??-??=-?=γ

4.镇墩前、后钢管对镇墩的法向力: 镇墩前半跨管的法向力:

()KN

L q q Q w s 67.34229cos 93.6697.7744.32

/cos )(31=÷???+=+=α

镇墩后管段长的法向力:

()KN

L q q Q w s 538.2238cos 5.2697.7744.3cos )(22=???+=+=β

校核条件下各力汇总见表2-6:

表2-6 校核条件下作用在镇墩上的各项力汇总表(单位:KN )

(五)运行条件下荷载组合后的水平、垂直分力 1.温升情况

(1)自上游方向指向镇墩的轴向力:

KN

A A A A A A A 08.199760.1545.8844.39569.4119.128938.1338

76531=+++++=+++++=∑ 水平方向分力:)cos (αA ∑KN 69.174692cos 08.1997=??= 垂直方向分力:)sin (αA ∑KN 21.96892sin 08.1997=??= (2)自下游方向指向镇墩的轴向力:

KN

A A A A A A 85.1992600.1556.61036.6409.130876.581

6151311101-=----=----=∑ 水平方向分力:)cos (01βA ∑KN 39.1570cos3885.1992-=??-= 垂直方向分力:)sin (01βA ∑KN 92.122683sin 85.1992-=??-= (3)法向力:

1Q 的水平方向分力:)sin (1αQ KN 81.1692sin 67.34-=??-= 1Q 的垂直方向分力:)cos (1αQ KN 32.30cos2967.34=??= 2Q 的水平方向分力:)sin (2βQ KN 876.1383sin 54.22-=??-= 2Q 的垂直方向分力:)cos (2βQ KN 760.1783cos 54.22=??= 水平总推力X ∑:

压力传感器的论文

压力传感器的论文 合理进行压力传感器的误差补偿是其应用的关键。压力传感器主要有偏移量误差、灵敏度误差、线性误差和滞后误差,本文将介绍这四种误差产生的机理和对 测试结果的影响,同时将介绍为提高测量精度的压力标定方法以及应用实例。 目前市场上传感器种类丰富多样,这使得设计工程师可以选择系统所需的压力传感器。这些传感器既包括最基本的变换器,也包括更为复杂的带有片上电路的高集成度传感器。由于存在这些差异,设计工程师必须尽可能够补偿压力传感器的测量误差,这是保证传感器满足设计和应用要求的重要步骤。在某些情况 下,补偿还能提高传感器在应用中的整体性能。 本文以摩托罗拉公司的压力传感器为例,所涉及的概念适用于各种压力传感器的设计应用。 摩托罗拉公司生产的主流压力传感器是一种单片压阻器件,该器件具有3类: 1. 基本的或未加补偿标定; 2. 有标定并进行温度补偿; 3. 有标定、补偿和放大。 偏移量、范围标定以及温度补偿均可以通过薄膜电阻网络实现,这种薄膜电阻网络在封装过程中采用激光修正。 该传感器通常与微控制器结合使用,而微控制器的嵌入软件本身建立了传感器数学模型。微控制器读取了输出电压后,通过模数转换器的变换,该模型可以将电压量转换为压力测量值。 传感器最简单的数学模型即为传递函数。该模型可在整个标定过程中进行优化,并且模型的成熟度将随标定点的增加而增加。 从计量学的角度看,测量误差具有相当严格的定义:它表征了测量压力与实际压力之间的差异。而通常无法直接得到实际压力,但可以通过采用适当的压力标准加以估计,计量人员通常采用那些精度比被测设备高出至少10倍的仪器作为测量标准。 由于未经标定的系统只能使用典型的灵敏度和偏移值将输出电压转换为压力,测得的压力将产生如图1所示的误差。 这种未经标定的初始误差由以下几个部分组成: a. 偏移量误差。由于在整个压力范围内垂直偏移保持恒定,因此变换器扩散和激光调节修正的变化将产生偏移量误差。 b. 灵敏度误差,产生误差大小与压力成正比。如果设备的灵敏度高于典型值,灵敏度误差将是压力的递增函数(见图1)。如果灵敏度低于典型值,那么灵敏度误差将是压力的递减函数。该误差的产生原因在于扩散过程的变化。 c. 线性误差。这是一个对初始误差影响较小的因素,该误差的产生原因在于硅片的物理非线性,但对于带放大器的传感器,还应包括放大器的非线性。线性误差曲线可以是凹形曲线,也可以是凸形曲线。 d. 滞后误差:在大多数情形中,滞后误差完全可以忽略不计,因为硅片具有很高的机械刚度。一般只需在压力变化很大的情形中考虑滞后误差。 标定可消除或极大地减小这些误差,而补偿技术通常要求确定系统实际传递函数的参数,而不是简单的使用典型值。电位计、可调电阻以及其他硬件均可在补偿过程中采用,而软件则能更灵活地实现这种误差补偿工作。 一点标定法可通过消除传递函数零点处的漂移来补偿偏移量误差,这类标定方法称为自动归零。

毕业设计---智能压力传感器系统设计

毕业设计任务书 一、题目 智能压力传感器系统设计 二、指导思想和目的要求 1.培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能; 2. 培养学生建立正确的科学思想,培养学生认真负责、实事求是的科学态度和严谨求实作风; 3.培养学生调查研究,收集资料,熟悉有关技术文件,锻炼学生的科研工作能力和培养学生的团结合作攻关能力。 三、主要技术指标 1.培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能; 2. 培养学生建立正确的科学思想,培养学生认真负责、实事求是的科学态度和严谨求实作风; 3.培养学生调查研究,收集资料,熟悉有关技术文件,锻炼学生的科研工作能力和培养学生的团结合作攻关能力。 三、主要技术指标 本设计主要设计一个智能压力传感器的设计,要求如下: 被测介质:气体、液体及蒸气 量程:0Pa~500pa 综合精度:±0.25%FS 供电:24V Dc(12~36VDC) 介质温度:-20~150℃ 环境温度:-20~85℃ 过载能力:150%FS 响应时间:≤10mS 稳定性:≤±0.15%FS/年 能实时显示目标压力值和保存参数,并能和上位机进行通信,并具有较强的抗干扰能力。 所需要完成的工作: 1.系统地掌握控制器的开发设计过程,相关的电子技术和传感器技术等,进行设计任务和功能的描述;

2.进行系统设计方案的论证和总体设计; 3.从全局考虑完成硬件和软件资源分配和规划,分别进行系统的硬件设计和软件设计; 4.进行硬件调试,软件调试和软硬件的联调; 5.查阅到15篇以上与题目相关的文献,按要求格式独立撰写不少于15000字的设计说明书及1.5万(或翻译成中文后至少在3000字以上)字符以上的英文翻译。 四、进度和要求 第01周----第02周:查阅相关资料,并完成英文翻译; 第03周----第04周:进行市场调查,给出系统详细的设计任务和功能,进行系统设计方案的论证和总体设计; 第05周----第07周:完成硬件电路设计,并用PROTEL画出硬件电路图; 第08周----第10周:完成软件模块设计与调试; 第11周----第12周:进行硬件调试,软件调试和软硬件的联调; 第13周----第14周:撰写毕业设计论文; 五、主要参考书及参考资料 1. 单片机原理及应用,张鑫等,电子工业出版社 2. MCS51单片机应用设计,张毅刚等,哈尔滨工业大学 3. MCS51系列单片机实用接口技术,李华等,北京航天航空大学 4. PROTEL2004电路原理图及PCB设计,清源科技,机械工业出版社 5. 基于MCS-51系列单片机的通用控制模块的研究,曹卫芳,山东科技大 学,2005.5 6. 单片机应用技术选编,何立民,北京航空航天大学出版社,2000 7. 检测技术与系统设计,张靖等,中国电力出版社,2001

MEMS压力传感器论文

基于MEMS实现SOI压力传感器的设计研究 学院:机械与材料工程学院 专业班级:机械(专研)-14 学号:2014309020127 学生姓名:王宇 指导教师:赵全亮 撰写日期:2015年1月6日

目录 1.MEMS传感器概述 (1) 1.1 MEMS传感器研究现状 (1) 1.2 MEMS压力传感器分类 (1) 1.3MEMS压力传感器应用 (2) 2.基于MEMS实现SOI压力传感器的设计研究 (2) 2.1 SOI压力传感器简介 (2) 2.2 SOI压力传感器的理论及结构设计 (3) 2.3 SOI压力传感器总结 (6) 3.MEMS压力传感器发展趋势 (7)

1.MEMS传感器概述 1.1 MEMS传感器研究现状 进入21世纪以来,在市场引导、科技推动、风险投资和政府介入等多重作用下,MEMS传感器技术发展迅速,新原理、新材料和新技术的研究不断深入,MEMS传感器的新产晶不断涌现。目前,MEMS传感器正向高精度、高可靠性、多功能集成化、智能化、微型化和微功耗方向发展。 其中,MEMS技术也是伴随着硅材料及其加工技术、IC技术的成熟而发展起来的,它的运用带来了传感器性能的大幅度提升,其特点主要包括:1)质量和尺寸的减少;2)标准的电路避免了复杂的线路和外围结构;3)可以形成传感器阵列,获取阵列信号;4)易于处理和长的寿命;5)低的生产成本,这包括低的能源消耗,较少的用材;6)可以避免或者少用贵重的和对环境有损害的材料,其中压力传感器是影响最为深远且应用最为广泛的MEMS传感器。 1.2 MEMS压力传感器分类 MEMS传感器的发展以20世纪60年代霍尼韦尔研究中心和贝尔实验室研制出首个硅隔膜压力传感器和应变计为开端。压力传感器是影响最为深远且应用最广泛的MEMS传感器,其性能由测量范围、测量精度、非线性和工作温度决定。从信号检测方式划分,MEMS压力传感器可分为压阻式、电容式、压电式和谐振式等,其特点如下: 1)压阻式:通过测量材料应力来测量压力大小,它具有体积小、全动态测量范围的高线性度、较高的灵敏度、相对较小的滞后和蠕变的特点,此类型传感器多采用惠斯通电桥来消除温度影响; 2)电容式:通过测量电容变化来测量压力大小,相比较压阻式的传感器,它具有很高的灵敏度、低温度敏感系数、没有滞后、更高的长期稳定性,但同时它也有更高的非线性度、更大的体积,需要更复杂的检测电路和更高的生产成本; 3)谐振式:通过测量频率或频率的微分变化来测量压力大小,它可以通过诸如热、电磁和静电效应来改变膜片频率,并且可以通过真空封装来提高传感器精度; 4)压电式:压电传感器是利用某些电介质受力后产生的压电效应制成的传

传感器课程设计 压力计的设计论文

一、概述 1.1、相关背景和应用简介 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。 压力传感器的原理是将压力信号转变为某种电信号,如应变式,通过弹性元件变形而导致电阻变化;压电式,利用压电效应等。工业生产控制过程中,压力是一个很重要的参数。例如,利用测量大气压力来间接测量海拔高度;在工业生产中通过压力参数来判断反应的过程;在气象预测中,测量压力来判断阴雨天气。因此,压力计的设计拥有广阔的市场前景。这种压力传感器能比较精确和快速测量,尤能测量动态压力,实现多点巡回检测、信号转换、远距离传输、与计算机相连接、适时处理等,因而得到迅速发展和广泛应用。本课题就是在这样的背景下设计一个简单的数字压力计,使得测量得到的压力能够数码管显示。 1.2总体设计方案 本设计是通过以单片机为主的压力测量系统。压力的测量是通过把压力信号转换为电信号,再通过A/D (ADC0808)转化把电信号转换为数字量后,再由单片机(AT89C51)进行处理,最后把数字量显示在LED 显示屏上。原理图如图1-1所示 ① ② ③ ④ ⑤ ⑥ 图1-1 压力计原理方框图 压力 传感器 LED 显示屏 单片机 A/D 转换 电信号测量

图2-1 数字压力计系统硬件设计框图 二、硬件电路的设计 2.1传感器的选型 力学传感器的种类繁多,但常用的压力传感器有电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器,光纤压力传感器等。应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。 在选择合适的压力传感器过程中,了解介质的特点尤为重要。 介质的腐蚀性如何,导电性如何。根据介质的这些属性选用相应类型的传感器。 介质温度范围如何,一是介质的经常性的温度范围为多少,根据此信息选择补偿温度与其范围一致的传感器,二是介质的最高温度范围,根据此信息选择使用温度范围一致的传感器。 若以上两点如果选择不正确,极有可能损害传感器甚至引起事故。 设计仿真时由于PROTEUS 中没有传感器,因此用一个范围为75~150分压电路代替传感器的输出电流,使的仿真得以进行。(滑动变阻器) 2.2传感器接口电路设计 最小系统 复位电路 A/D 转换电路 测量电压输入 显示系统 A T89C51 P0 P1 P1 P2

压力传感器原理及应用

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,江苏省苏科仪表有限公司技术部的同志就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

智能压力传感器的设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2009—2013年) 题目智能化压力传感器的设计 学院:环化学院系测控系 专业班级:测控技术与仪器093班 学生姓名:钟刚学号: 5801209114 指导教师:刘诚职称:讲师 起讫日期: 2013.3.15—2013.6.6 南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。

作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

传感器及转换器形成系统的“前端”,没有它,许多现代化的电子系统都无法正常工作。传感器已广泛的应用于工业控制系统和能源工业装置当中(如石油和天然气的生产、配电工业)。它们也是制造录音机和录像机这些原始设备产品的重要内在组成部分。大多数这些数字电子系统之所以具有普遍性和强大优势是得益于传感器广泛应用于这些电子电路中。 本课题将深入研究智能压力传感器系统理论及其在压力测试方面的应用,对新型智能压力传感器系统的智能化功能、智能化软件和硬件配置进行全面的设计。提出了一种差动电容式传感器的前置电路,基于电容/ 电压转换的原理,对微小电容变化量进行测量。电路输出的直流电压与差动电容变化量成线性关系,且能对偏差电容和电路的漂移进行自动补偿。 完善智能化软件,实现温度补偿、自动校准、总线数字通讯、自动增益控制等多种智能化特性,使智能化程度尽可能的提高。 关键词:传感器;压力;智能化。

基于单片机的智能压力检测系统的设计—-毕业论文设计

题目:基于单片机的智能压力检 测系统的设计

基于单片机的智能压力检测系统的设计 摘要 压力是工业生产过程中的重要参数之一。压力的检测或控制是保证生产和设备安全运行必不可少的条件。实现智能化压力检测系统对工业过程的控制具有非常重要的意义。本设计主要通过单片机及专用芯片对传感器所测得的模拟信号进行处理,使其完成智能化功能。介绍了智能压力传感器外围电路的硬件设计,并根据硬件进行了软件编程。 本次设计是基于AT89C51单片机的测量与显示。是通过压力传感器将压力转换成电信号,再经过运算放大器进行信号放大,送至8位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成LED显示器可以识别的信息,最后显示输出。而在显示的过程中通过键盘,向计算机系统输入各种数据和命令,让单片机系统处于预定的功能状态,显示需要的值。 本设计的最终结果是,将软件下载到硬件上调试出来了需要显示的数据,当输入的模拟信号发生变化的时候,通过A/D转换后,LED将显示不同的数值。 关键词:压力;AT89C51单片机;压力传感器;A/D转换器;LED显示;

Design of pressure detecting system based on single-chip Abstract Pressure is one of the important parameters in the process of industrial production. Pressure detection or control is an essential condition to ensure production and the equipment to safely operating, which is of great significance. The single-chip is infiltrating into all fields of our lives, so it is very difficult to find the area in which there is no traces of single-chip microcomputer. In this graduation design, primarily through by using single-chip and dedicated chip, handling of analog signal measured by the sensor to complete intelligent function. This design illustrates external hardware circuit design of intelligent pressure sensor, and conduct software development to the hardware. The design is based on measurement and display of AT89C51 single-chip. This is the pressure sensors will convert the pressure into electrical signals. After using operational amplifier, the signal is amplified, and transferred to the 8-bit A/D converter. Then the analog signal is converted into digital signals which can be identified by single-chip and then converted by single-chip into the information which can be displayed on LED monitor, and finally display output. In the course of show, through the keyboard to input all kinds of data and commands into the computer, the single-chip will locate in a predetermined function step to display required values. The end result of this design is that by downloading software to the hardware, it will get the data which is required to display by debugging. When the input analog signals change, the LED monitor will display different values through the A/D converting. Key words:pressure; AT89C51 single-chip; pressure sensor; A/D converter; LED monitor;

压力传感器应用论文.

传感器的应用 压 力 传 感 器 姓名:白智伟 学号:2011081403 班级:2011级电本2班 压力传感器 摘要:压力传感器以stc11f04e单片机为中心控制系统. 主要由弹性体、电阻应变片电缆线等组成,内部线路采用惠更斯电桥,当弹性体承受载荷产生变形时,电阻应变片受到拉伸或压缩应变片变形后,它的阻值将发生变化,从而使电桥失去平衡,产生相应的差动信号,再经相应的测量电路把这一电阻变化转换为电信号,然后用放大器将此信号放大。用双积分型A/D转换电路转换,将转变的数字量经单片机处理。最后由LCD将其显示。 关键词:stc11f04e;传感器;双积分型A/D转换电路。 一.系统设计 1.总体设计思路:

本设计主要由压力传感器,运算放大器,双积分型A/D转换电路,单片机,LCD显示屏构成。总体框架如下图1。 图1总体电路框图 二.各个单元电路设计 1.压力传感器的设计 采用电阻应变式压力传感器。是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把 4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 2.输入放大电路的设计 由于所测出的微压力传感器两端的电压信号较弱,所以电压在进行A/D 转换之前必须经过放大电路的放大。输入放大的主要作用是提高输入阻抗和,本设计采用OP07集成运算放大器构成同相比例放大电路,以提高电路的输入阻抗,以达到设计要求。 3.双积分式A/D转换器的设计

压力传感器(大学物理)

一、实验目的 1. 了解应变压力传感器的组成、结构及工作参数。 2. 了解非电量的转换及测量方法——电桥法。 3. 掌握非平衡电桥的测量技术。 4. 掌握应变压力传感器灵敏度及物体重量的测量。 5. 了解多个应变压力传感器的线性组成、调整与定标。 二、实验原理 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式联接)粘贴于弹性体中的应变片,产生电阻变化的过程。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(VIN)、输出电压(VOUT)范围。 压力传感器是由特殊工艺材料制成的弹性体、电阻应变片、温度补偿电路组成;并采用非平衡电桥方式联接,最后密封在弹性体中。 弹性体: 一般由合金材料冶炼制成,加工成S 型、长条形、圆柱型等。为了产生一定弹性,挖空或部分挖空其内部。 电阻应变片: 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 A L R ρ = (1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 A A L L R R ?- ?+ ?=?ρ ρ (2) 这样就把所承爱的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片的结构:电阻应变片一般由基底片、敏感栅、引线及履盖片用粘合剂粘合而成。 电阻应变片的结构如图1所示: 1-敏感栅(金属电阻丝) 2-基底片 3-覆盖层 4-引出线 图1 电阻丝应变片结构示意图 敏感栅:是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05毫米高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分.敏感栅用粘合剂固定在基底片上。b ×l 称为应变片的使用面积(应变片工作宽度,应变片标距(工作基长)l ),应变片的规格一般以使用面积和电阻值来表示,如3×10平方毫米,350欧姆。 基底片:基底将构件上的应变准确地传递到敏感栅上去.因此基底必须做得很薄,一般为0.03~0.06毫米,使它能与试件及敏感栅牢固地粘结在一起,另外它还具有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜和玻璃纤维布等。 引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1-0.2毫米低阻镀锡钢丝制成,并与敏感栅两输出端相焊接,覆盖片起保护作用.

压力传感器的毕业设计英语论文

The Basic knowledge of Sensor and Development of Sensor The Basic knowledge of Sensor A transducer is a device which converts the quantity being measured into an optical, mechanical, or-more commonly-electrical signal. The energy-conversion process that takes place is referred to as transduction. Transducers are classified according to the transduction principle involved and the form of the measured. Thus a resistance transducer for measuring displacement is classified as a resistance displacement transducer. Other classification examples are pressure bellows, force diaphragm, pressure flapper-nozzle, and so on. 1、Transducer Elements Although there are exception ,most transducers consist of a sensing element and a conversion or control element. For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement. This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance. Such combination of mechanical and electrical elements form electromechanical transducing devices or transducers. Similar combination can be made for other energy input such as thermal. Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical transducers respectively. 2、Transducer Sensitivity The relationship between the measured and the transducer output signal is usually obtained by calibration tests and is referred to as the transducer sensitivity K1= output-signal increment / measured increment . In practice, the transducer sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1. 3、Characteristics of an Ideal Transducer The high transducer should exhibit the following characteristics a) high fidelity-the transducer output waveform shape be a faithful reproduction of the measured; there should be minimum distortion. b) There should be minimum interference with the quantity being measured; the presence of the transducer should not alter the measured in any way. c) Size. The transducer must be capable of being placed exactly where it is needed.

智能压力传感器的设计说明

前言 (1) 1 压力传感器 (1) 1.1压力传感器的简介 (1) 1.2 压力传感器的种类 (1) 1.3压力传感器的结构与特点 (1) 2 智能压力传感器 (1) 2.1智能压力传感器的构造 (1) 2.2智能压力传感器的作用 (2) 2.3智能压力传感器的优势 (2) 与传统传感器相比,智能压力传感器的特点是: (2) 2.4智能压力传感器的前景 (3) 3 智能压力传感器的系统设计 (3) 3.1系统结构整体设计 (3) 3.2系统的特点 (3) 4 系统硬件设计 (4) 4.1前端传感器模块 (4) 4.2信号调理电路模块 (5) 4.3 A/D转换模块 (5) 4.4微处理器 (8) 4.5显示模块 (9) 4.6温度补偿模块 (11) 4.7 硬件设计原理图 (11) 5软件程序设计 (16) 5.1软件程序语言介绍 (16) 5.2程序流程图 (16) 5.3 C语言程序设计 (16) 6问题与探究 (16) 7总结.......................................... 错误!未定义书签。

参考文献 (17)

前言 压力传感器是目前最为大众常见所知的传统传感器,这种传感器以压力形变为指标体现压力变化,这种结构传感器存在质量大,敏感度低,不能和电路器件相连使用等缺陷。随便科技的进步,半导体的迅猛发展,半导体压力传感器的诞生弥补了这些不足,半导体压力传感器,不仅体积小,重量轻,而且可以和电路元器件配套使用,从而大大的提高了智能化和可操作性。压力传感器大大的推动了传感器的发展,让人们能够更好的实现压力体现发展。 1 压力传感器 1.1压力传感器的简介 压力传感器是最为普遍的一种传感器,大多使用在各种自动化环境中,涉及到电力石化,军工科技,船舶制造,数码产品等多方面。一般压力传感器都是用模拟信号转换成输出信号,将输出信号转换为数值表现。这种转换方式大大的提高了工作效率。进而为智能化提供了强有力的发展基础。 1.2 压力传感器的种类 压力传感器通常分为以下几种:1;电容式,2;电阻式,3;压电式,4;电感式,5;智能式。智能式传感器是通过和微处理器相连,与传感器相结合,从而产生了智能化效果,它具有信号处理,信号记忆和逻辑思辨的能力。 1.3压力传感器的结构与特点 本次论文采用差压式电容传感器,电容式传感器灵敏度高,性价比高,操作简单,质量高,过载能力强,在极端环境下,能够稳定工作,提供持续的传感能力,保证了整个元器件工作,并把环境影响降到最低,特点鲜明。 2 智能压力传感器 2.1智能压力传感器的构造 智能压力传感器是利用精密机械制造工艺和集成电路原理,将智能芯片和传感器紧密结合在一个半导体原件上,与传统传感器相比,智能式传感器体积更小,质量小,适用围更大。整个智能压力传感器结构如下图所示;

基于单片机的压力传感器实验

课程设计说明书题目:压力传感器设计 学院(系): 年级专业:电子信息科学与技术 学号: 学生姓名: 指导教师:

目录 摘要---------------------------- -------------------------------------------------------------------------2 关键字---------------- ----------------------------------------------------------------------------------2 第一章总体设计方案及模块划分---------------------------------------------------------------2 1.1总体设计方案--------------------------------------------------------------------------------3 1.2模块划分--------------------------------------------------------------------------------------4 1.3设计框图如下图所示-----------------------------------------------------------------------5 第二章各模块设计参数-------------------------------------------------------------------------------5 2.1传感器元件模块------------------------------------------------------------------------------5 2.2 A/D转换模块---------------------------------------------------------------------------------8 2.3控制器处理模块-----------------------------------------------------------------------------12 2.4 AD0809接口电路及LED接口电路------------------------------------------------------14 第三章压力传感器实验数据采集、显示及程序---------------------------------------------14 3.1数据采集及显示-----------------------------------------------------------------------------14 第四章心得体会--------------------------------------------------------------------------------------15 附录-----------------------------------------------------------------------------------------------------16 程序设计--------------------------------------------------------------------------------------16 参考文献资料---------------------------------------------------------------------------------25 实物图--------------------------------------------------------------------------------------25

基于单片机的压力传感器系统的设计与实现

摘要 (4) 第1章绪论..................................................................... - 1 - 1.1 课题设计背景............................................................. - 1 - 1.2 传感器系统简介........................................................... - 1 - 1.3 本文内容提要............................................................. - 2 -第2章调理电路硬件设计......................................................... - 2 - 2.1 传感器电路分析........................................................... - 2 - 2.2选用放大电路及其电路分析.................................................. - 3 - 2.3 AD转换电路的设计......................................................... - 4 - 2.3.1AD0804的外围接口的功能:............................................ - 4 - 2.3.3控制程序的设计: (6) 2.4 LCD显示电路的设计 (8) 2.4.1LCD的介绍 (8) 第3章控制程序的设计 (15) 3.1 程序要完成的任务 (15) 3.2 程序流程设计 (16) 第4章课题总结 (18) 4.1 仪用放大电路 (18) 4.2单片机的使用 (18) 4.3 AD转换和LCD的控制...................................................... - 18 - 在使用类似于AD转换芯片和LCD显示等数字集成芯片时,我们重点关注于其外围引脚的功能和控制时序图就可以了,通过外围引脚的功能来设计电路连接图,等外围电路连接好以后其实它的控制程序的大概框架就有了,再结合着时序图对各个引脚状态变化的先后顺序和各个状态的持续时间做一下处理,我们的控制程序基本上就可以出炉了。当然这时我们编写出的控制程序只是一个理论上的结果,最多有一个仿真结果。在实际调试时若出现了焊接失误或者是程序控制的问题时,我们最好任然秉持先前的网口概念。对整个电路和程序进行模块化处理,一个模块一个模块的检查处理。这样我们调试的效率就会提高很多。 .................................... - 18 -第5章结论.................................................................... - 19 -在课题选择之初,其目的是为了熟练掌握针对于压力测量电路的设计和应用,并分析在设计过程中对测量精度影响较大的部分。但是在设计过程中,这一目的被逐渐淡化,转而注重于各个模块的选择和设计。因为在设计的过程当中发现,我们对调理电路的设计所考虑的参数似乎和实际的物理量并没有太大的关系,若不考虑传感器与物理世界的交互方式的话,如文章开头所述:我们只要对电量进行操作就可以了。.................................................................... - 19 -致谢........................................................................ - 19 -参考文献........................................................................ - 20 -

智能化压力传感器的设计开题报告

本科生毕业设计(论文)开题报告题目:智能化压力传感器的设计 学院:环境与化学工程学院系化工系 专业:测控技术与仪器 班级: 学号: 姓名: 指导教师:刘诚 填表日期:年月日

一、选题的依据及意义 随着计算机技术和传感器技术的发展,两者的结合也愈来愈紧密,智能化传感器作为两者结合的新兴的研究方向,越来和越受到更多人的关注。近年来,虽然取得了一定的研究和开发成果,但是实际的需求还远远得不到满足。压力测控系统正急需发展,已经开发和使用的压力传感器在无法满足需求,智能化的压力传感器系统,即将信息采集、信息处理和数字通信功能集于一身,能自主管理的开发和使用具有巨大意义。 此次选题是打算对智能压力传感器系统理论及其压力测量方面的应用进行深入研究,提出对智能压力传感器的设计开发和设计。利用集成程度高,功能强大的新型微处理器控制压力传感器,微处理器内部集成大量模拟和数字外围模块,会具有很强大的数据处理能力。 此次论文将在对智能压力传感器系统的智能化功能深入研究的基础上,设计了较为完善的智能化软件,实现了自动增益控制、温度补偿、自动校准、总线数字通讯等多种智能化特性,使传感器具有较高的智能化程度。提出了利用传感元件自身特性实现温度补偿的算法以及对系统非线性补偿的算法。并对传感器系统进行了较全面的抗干扰和系统故障自诊断设计,保证了系统的稳定性和可靠性。提出一种带有程序判断的智能数字滤波算法,它既具有较好的平滑能力,又具有较快的响应速度。 本系统在软件上运用C语言编程,系统采用与PC机通信,完成数据转换、数据处理以及实时数据显示等功能,便于实现系统集中监控。 本研究设计的智能压力传感器系统具有体积小、成本低、可靠性好、响应速度快、智能化程度高等特点,通过仿真对软、硬件进行了充分的调试,效果良好,在众多压力测控系统中有着广阔的应用前景。 二、国内外研究现状及发展趋势(含文献综述) 传感器技术是现代测量和自动化技术的重要技术之一。从宇宙探索到海洋开发,从生产过程的控制到现代文明生活,几乎每一项现代科学技术都离不开传感器。在工业、农业、国防、科技等各个领域,传感器技术都得到了广泛的应用,并展现出极其广阔的前景。因此。许多国家对传感器技术的发展十分重视。例如在日本传感器技术被列为六大核心技术(计算机、通信、激光、半导体、超导和传感器)之一?“,并且是将传感器列为十大技术之首;美国将90年代看作是传感器时代,将传感器技术列为90年代22项关键技术之一”“。我国对传感器的研究也有二十多年的历史并取得了很大的成就“?。目前,在“科学技术就是第一生产力”的思想指引下,各项科学技术取得了突飞猛进的发展,传感器技术也越来越受到各方面的重视,虽然在某些方面已赶上或者接近世晃先进水平。但是从总体来看,与国外传感器技术的发展相比,我国对传感器技术的研究和生产还比较落后,现正处于方兴未艾的阶段。 据了解,1994年世界传感器市场总的交易额高达260亿美元,并且在2000年以的前,世界传感器市场规模年增幅为7%以上,其中高档的传感器增幅可达18%以上,而那些采用微机械加工技术和微系统技术等高新技术制造的各类型新型智能传感器.其年增长率可达30%以上。从市场销售情况来看,压力传感器占第一位。利用硅材料制作的半导体传感器除具有固体传感器的一般优点以外,还可以把一些集成电路与传感器制作在一起从而构成集成化传感器。集成电路部分若制作了微处理机,则形成智能化传感器。到目前为止,高精确度、高可靠性、小型化、低成本的智能传感器已成为世界传感器市场的主流。

相关文档
相关文档 最新文档