文档库 最新最全的文档下载
当前位置:文档库 › 能量色散和波长色散X荧光光谱仪的区别

能量色散和波长色散X荧光光谱仪的区别

能量色散和波长色散X荧光光谱仪的区别
能量色散和波长色散X荧光光谱仪的区别

一.X射线荧光分析仪简介

X射线荧光分析仪是一种比较新型的可以对多元素进行快速同事测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)。是用晶体分光而后由探测器接受经过衍射的特征X射线信号。如果分光晶体和控测器做同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行特定分析和定量分析。该种仪器产生于50年代,由于可以对复杂体进行多组同事测定,受到关注,特别在地质部门,先后配置了这种仪器,分析速度显著提高,起了重要作用。随着科学技术的进步在60年代初发明了半导体探测仪器后,对X荧光进行能谱分析成为可能。能谱色散型X射线荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)这节进入SI(LI)探测器,便可以据此进行定性分析和定量分析,第一胎ED-XRF是1969年问世的。近几年来,由于商品ED-XRF仪器及仪表计算机软件的发展,功能完善,应用领域拓宽,其特点,优越性日益搜到认识,发展迅猛。

二.波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别

虽然光波色散型(W D-XRF)X射线荧光光谱仪与能量色散型(ED-XRF)X射线荧光光谱仪同属于X射线荧光分析仪,它产生信号的方法相同,最后得到的波谱也极为相似,单由于采集数据的方式不同,WD-XRF(波谱)与WD-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。

(一)原理区别

X射线荧光光谱法,是用X射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。波长色散型荧光光仪(WD-XRF)是用分光晶体将荧光光束色散后,测定各种元素的特征X射线波长和强度,从而测定各种元素的含量。而能量色散型荧光光仪(ED-XRF)是借组高分辨率敏感半导体检查仪器与多道分析器将未色散的X射线荧光按光子能量分离X色线光谱线,根据各元素能量的高低来测定各元素的量,由于原理的不同,故仪器结构也不同。

(二)结构区别

波长色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管),样品室,分光晶体和检测系统等组成。为了准且测量衍射光束与入射光束的夹角,分光晶体系安装在一个精密的测角仪上,还需要一庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X射线管的功率要大,一般为2-3千瓦,单X射线管的效率极低,只有1%的功率转化为X射线辐射功率,大部分电能均转化为而能产生高温,所以X射线管需要专门的冷却装置(水冷

或油冷),因此波谱仪的价格往往比能谱仪高。

能量色散型荧光光谱仪(DE-XRF),一般由光源(X-线管),样品室各检测系统等组成,与波长色散型荧光光仪的区别在于他不用分光晶体,由于这一特点,是能量色散型荧光光仪具有如下的优点:

1. 仪器结构简单,省略了晶体的精密运动装置,也无需精确调整。还避免了晶体衍射所照成的前度损失,光源使用的X射线管功率低,一般在100W一下,不需要昂贵的高压发生器和冷却系统,空气冷却即刻,节省电力。

2. 能量色散型荧光光仪的光源,样品,检测器彼此靠得越近,X射线的利用率很高,不需要光学聚集,在累计整个光谱时,对样品位置变化不象波长色散型荧光光仪那样敏感,对样品形状也无特殊要求。

3. 在能量色散谱仪中,样品发出的全部特征X射线光子同时进入检测器,这样奠定了使用多道分析器和荧光同时累计和现实全部能谱(包括背景)睇基础,也能清楚地表明背景和干扰线。因此,半导体检测器X射线光谱仪能比晶体X 射线光谱仪快而方便地完成定性分析工作。

4. 能量色散发的一个附带有点事测量整个分析线冲高度分部的积分程度,而不是封顶强度。因此,减小了化学状态引起的分析线波长的漂移影响。由于同时累积还减少了一起的漂移影响,提高净计算的统计精度,可迅速而方便地用各种方法处理光谱。同时累积观察和测量所有元素,而不是按特定谱线分析特定元素。因此,减少偶然错误判断某元素的可能性。

(三)功能区别

考虑到各种情况,能量色散型荧光仪和波长色散型荧光仪的检测限基本相同。但在(高能光子)范围内能量色散的分辨率好些,在长波(低能光子)范围内,波长色散的分辨率好些。就定性分析而言,在分析多种元素时能量色散优于单道晶体谱仪。就测量个别分析元素而言,波长色散好些。如果分析的元素事先不知道,用能量色散较好,而分析元素已知则用多道晶体色散仪好。对易受放射性损伤的样品,如果液体,有机物(可能发生辐射分解),玻璃品,工艺品(可能发生褪色)等,用能量色散型荧光散型荧光仪分析特别有利。能量色散型荧光仪很适合动态系统的研究。如在催化,腐蚀,老化,磨损,改性和能量转换等与表面化学过程有关的研究。

总之,能量色散型荧光和波长色散型荧光折两种仪器,各有所有点和不足,它们只能互补,而不能替代。

三,WD-XRF与ED-XRF的简明比较

项目波长色散型能量色散性

原理X荧光经晶体分光,在不同

衍射角测量不同元素的特

征线

X荧光直接进入检测器,经

电子学系统处理得到不同

元素(不同能量)的X荧

光能谱

结构未满足全波段需要,配置多

块晶体,根据单道扫描和多

道同时测定的需要,设置扫

描机构和若干固定通道

无扫描机构,只用一个检查

器和多道脉冲分析器,结构

简单得多,无转动件,可靠

性高

X-光管高功率,要高容量冷却系

统,管寿命短

低功率,不许冷却水,管寿

命水

检测器正比计数器,和λ,晶体,

检测器有关

SI(LI),用LN冷却

灵敏度μɡ∕ɡ级轻基体μɡ∕ɡ级,其他10-102μɡ∕ɡ级

准确度取决于表样取决于表样

精密度很好低浓度时不如WD

需作周期性漂移校正,定期

系统稳定性工作曲线好,工作曲线可长时间使用方便性一般好

分析速度单道慢,多道快快

人员要求较高一般

样品表面要求平坦要求不高

价格$18-45万/台(其中单道扫

描$18-25万/台)

$6-11万/台(其中娇小型

的$6-7万/台)

测定元素范围Z≥5,B-U Z≥11,Na-U,特殊薄窗时可Z≥8,O-U

日立LAB-X5000能量色散X射线荧光光谱仪操作规程

日立LAB-X5000能量色散X射线荧光光谱仪操作规程 1 适用范围 1.1 本操作规程适用于日立仪器公司LAB-X5000能量色散X射线荧光测定仪的操作。 1.2 本操作规程适用于石油产品硫含量的测定。 1.3 本仪器所用分析方法符合方法标准GB/T 17040《石油和石油产品硫含量的测定能量色散X射线荧光光谱法》;ASTM D4294《能量色散X射线荧光光谱法测定石油及石油产品中的硫含量》。 2 仪器操作步骤 2.1 日常样品分析操作步骤 2.1.1 仪器开机:将仪器左侧的电源键开关切换到[丨]“开启”位置,并将钥匙插入仪器右侧的圆形锁中,转到“启用X射线”位置。 2.1.2 点触屏幕下方的“”按键,进入PIN码输入界面。输入标准的操作员PIN码“0000”之后,即出现“就绪”屏幕。这表示仪器已准备好执行分析。 2.1.3 用手指在屏幕上,从上往下滑,唤出主界面。在下拉菜单中,点触“方法”按钮。在跳转的子界面内,点触“选择校正”。 2.1.4 该仪器已建立了“0-150ppm”、“0-1000ppm”、“0.1-5%”三条标准工作曲线,根据预估样品硫含量,选择合适的标准工作曲线。 2.1.5 点触“”以接受输入,并返回“方法”菜单。然后在点触屏幕下方“”,即出现“就绪”屏幕。 2.1.6 打开样品端口上的玻璃盖,并检查辅助安全窗膜是否干净、平坦、无破损。 2.1.7 将装好样品的样品杯插入仪器顶部的样品端口中,盖上样品端口玻璃盖, 按下发光环为绿色的按钮。在跳转的界面中输入样品名称,点触“”,仪器开始分析。 2.1.8 样品旋转离开样品端口并进入X射线的照射路径,开始按钮周围的发光环将熄灭,取消按钮红色发光环亮起,表示仪器正在分析样品。若有必要,按“取消”按钮即可随时停止分析。

火花直读光谱仪的误差分析和应用技巧

火花直读光谱仪的误差分析和应用技巧 摘要:本文重点介绍了火花直读光谱仪的工作原理,分析了各种误差产生的原因,提出了消除各种误差的相应方法,阐述了火花直读光谱仪使用时的注意事项,为广大使用者提供了火花直读光谱仪的误差分析和应用技巧。 关键词:火花直读光谱仪;误差分析;应用技巧 由于科学技术的发展,工业企业对材料化学成分的控制要求越来越高,而传统化学分析方法速度慢,分析范围小,极大地制约了工业企业的发展,而火花直读光谱仪具有速度快、准确度高、操作简单、分析范围广等优点,是化学分析方法无法比拟的,可以实现及时准确分析,在满足生产要求的同时保证产品质量。因此,逐渐受到广大用户的欢迎。火花直读光谱仪的测量误差受很多因素的影响,下面简单介绍其工作原理和应用技巧,并对测量误差进行详细分析,以使广大使用者更好、更准确地使用火花直读光谱仪。 一、工作原理 火花直读光谱仪采用的是原子发射光谱分析法,工作原理是用电火花的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征谱线,每种元素的发射光谱谱线强度正比于样品中该元素的含量,用光栅分光后,成为按波长排列的光谱,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模数转换,然后由计算机处理,并打印出各元素的百分含量。 二、误差分析 火花直读光谱仪虽然本身测量准确度很高,但测定试样中元素含量时,所得结果与真实含量通常不一致,存在一定误差,并且受许多因素的影响,下面就误差的种类、来源和避免误差的技巧进行分析。根据误差的性质及产生原因,误差可分为系统误差、偶然误差、过失误差和其他误差等。 1.系统误差的来源及消除方法 (1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误差。 (2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别,从而产生系统误差。 (3)浇注状态的钢样与经过退火、淬火、回火、热轧、锻压状态的钢样金属组织结构不相同时,测出的数据会有所差别。 (4)未知元素谱线的重叠干扰。如熔炼过程中加入脱氧剂、除硫磷剂时,

EDX系列能量色散光谱仪操作规程

一. 目的:为更好的了解、使用、保养此仪器,能更精准的得到金属材料化学成分测试的结果并对 此进行分析,特制订此规程。 二. 范围:本规范规定了仪器的基本操作、仪器的维护和保养、安全注意事项及常见故障处理。 三. 仪器的整机外观及安装环境要求: 3.1 整机外观 1、正面图: 1)样品腔罩:样品腔上盖,握住把手可自由合开。 2)液晶屏:显示仪器管押,管流,真空度等参数。 3)样品平台:放置待检测的样品,其中心位置为测量窗口。 4)高压指示灯:显示X光管高压状态。亮:工作状态;暗:未开启高压。 5)电源指示灯:显示仪器电源状态。亮:开机状态;暗:关机状态。 2、背面图:

USB接口1:通过USB数据线连接电脑主机,以使用仪器内建的摄像头。 USB接口2:通过USB数据线连接电脑主机,以实现仪器和电脑之间的通信。 电源开关:开启与关闭仪器电源。ON:开机;OFF:关机。 电源接口1/电源接口2:连接电源线(根据电源线插头类型选择其一)。 风扇1/风扇2:仪器散热。 抽真空接口:通过螺纹管连接抽真空泵。 3.2 安装环境要求 仪器安装前请仔细阅读以下注意事项: 1.确保充足的安装环境,仪器每一侧距墙、门或其他物器的距离应保持在30cm以上,以便 操作时不受限制。 2.房间要进行特别的防X射线装置处理(如采用防辐射墙料和门窗); 3.房间内要配备冷暖空调/电脑/打印机等设备。 4.房间不宜有水源、热源、明火、强电磁干扰、易挥发物、易燃物、大量积尘及阳光直射。 5.避免将本机安装在温度极低、温度极高或过热的位置。 6.切勿将本机安装在不平稳的台面、柔软表层(如沙发、地毯等)或易受震动的位置。 四.作业内容: 4.1 基本操作 4.1.1 开关机 开机前请先确保电源、计算机、打印机与仪器间已正常连线。开机步骤为: 1.打开总电源开关; 2.打开仪器电源开关; 3.打开打印机开关; 4.打开计算机主机电源。 注意: ?仪器应配有交流净化稳压电源,以保证电压稳定。 ?请不要在电源插头周围对方物品,以免紧急情况下快速拔出插头。 ?如发现本品有冒烟、发热、异味或异常噪音等,请立即关闭电源开关、拔出电源插头、切勿使用本机。 4.1.2 取放样品 请按以下方法取放样品: 1.握住样品腔罩把手开启样品腔; 2.将待检测的样品放在样品台上; 3.关闭样品腔罩,即可进行检测;

各种光谱仪的区别及应用

各种光谱仪的区别及应用 ICP光谱仪, 火花直读光谱仪, 光电直读光谱仪, 原子发射光谱仪, 原子吸收光谱仪, 手持式光谱仪, 便携式光谱仪, 能量色散光谱仪, 真空直读光谱仪? 随着ICP-AES的流行使很多实验室面临着再增购一台ICP-AE S,还是停留在原来使用AAS上的抉择。现在一个新技术ICP-MS 又出现了,虽然价格较高,但ICP-MS具有ICP-AES的优点及比石墨炉原子吸收(GF-AAS)更低的检出限的优势。因此,如何根据分析任务来判断其适用性呢? ICP-MS是一个以质谱仪作为检测器的等离子体,ICP-AES和I CP-MS的进样部分及等离子体是极其相似的。ICP-AES测量的是光学光谱(120nm~800nm),ICP-MS测量的是离子质谱,提供在3~250amu范围内每一个原子质量单位(amu)的信息。还可测量同位素测定。尤其是其检出限给人极深刻的印象,其溶液的检出限大部份

为ppt级,石墨炉AAS的检出限为亚ppb级,ICP-AES大部份元素的检出限为1~10ppb,一些元素也可得到亚ppb级的检出限。但由于ICP-MS的耐盐量较差,ICP-MS的检出限实际上会变差多达50倍,一些轻元素(如S、Ca、Fe、K、Se)在ICP-MS中有严重的干扰,其实际检出限也很差。下面列出这几种方法的检出限的比较:这几种分析技术的分析性能可以从下面几个方面进行比较: ★★容易使用程度★★ 在日常工作中,从自动化来讲,ICP-AES是最成熟的,可由技术不熟练的人员来应用ICP-AES专家制定的方法进行工作。ICP-MS 的操作直到现在仍较为复杂,尽管近年来在计算机控制和智能化软件方面有很大的进步,但在常规分析前仍需由技术人员进行精密调整,ICP-MS的方法研究也是很复杂及耗时的工作。GF-AAS的常规工作虽然是比较容易的,但制定方法仍需要相当熟练的技术。 ★★分析试液中的总固体溶解量(TDS)★★ 在常规工作中,ICP-AES可分析10%TDS的溶液,甚至可以高至30%的盐溶液。在短时期内ICP-MS可分析0.5%的溶液,但在大多情况下采用不大于0.2%TDS的溶液为佳。当原始样品是固体时,与ICP-AES,GP-AAS相比,ICP-MS需要更高的稀释倍数,折算到原始固体样品中的检出限就显示不出很大的优势了。 ★★线性动态范围(LDR)★★ ICP-MS具有超过105的LDR,各种方法可使其LDR开展至1 08。但不管如何,对ICP-MS来说:高基体浓度会使分析出现问题,

实验室常用光谱仪及其它们各自的原理

实验室常用光谱仪及其它们各自的原理 光谱仪,又称分光仪。以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 下面就介绍几种实验室常用的光谱仪的工作原理,它们分别是:荧光直读光谱仪、红外光谱仪、直读光谱仪、成像光谱仪。 荧光直读光谱仪的原理: 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态 跃迁到能量低的状态.这个过程称为发射过程.发射过程既可以是非辐射跃迁,也可以是辐射跃迁. 当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子.它的能量是特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X 射线荧光,其能量等于两能级之间的能量差.因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系. K层电子被逐出后,其空穴可以被外层中任一电子所填充,ad4yjmk从而可产生一系列的谱线,称为K系谱线: 由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线同样,L层电子被逐出可以产生L系辐射.如果入射的X 射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα 射线,同样还可以产生Kβ射线,L系射线等. 莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础.此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析. 红外光谱仪的原理: 红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。

X射线荧光光谱仪(EDX-LE能量色散)操作规程

X射线荧光光谱仪(EDX-LE)操作规程 1.接通电源,启动筛选分析条件:双击桌面上的PCEDX Navi 软件,启动软件。 2.初始化仪器,单击初始化。 3.打开X射线管电源,单击[Xray ON]。 3.1.显示面板的X-RAYS ON灯和X射线显示灯点亮。 3.2.仪器稳定大约需要花费15分钟。 3.3.显示[管理分析]页面后,完成启动。 4.仪器校正 4.1.按开盖按钮,将校正样品放置测试窗。关上样品室盖。 4.2.进行能量检查:放入A750标准样品,单击能量检查下的[测试]按钮,进行能量检查,读取能量数值(单位:cps/uA) 4.3.进行管理分析:放入7元素标准样品,单击管理分析下的[测试]按钮,进行管理分析,读取7元素标样数值(单位:ppm)。4.4.取出校正样品:取出校正样品后,单击[正常分析],完成分析准备。 5.测试 5.1.放置样品,关上样品室盖:按开盖按钮,将样品放置在测试窗上。确认画面上显示样品图像。 5.2.输入样品信息:选择分析条件后输入样品名称、注释、操作者等信息。 5.3.开始分析:单击[开始],开始分析。分析结束后,发出结束

音,显示分析结果。 5.4.进行预测试:预测试的目的是仪器自动选定分析条件。大约需15s。 5.5.测试并显示测试结果:测试并出结果,依照材料不同,大约需3~15分钟。 6.关机 6.1.退出仪器,关闭X射线管:从[维护]菜单选择[关闭X-ray];单击[OK]。 6.2.退出程序:筛选分析结束。选[关机],退出程序。 6.3.切断各电源:按照图中的号码顺序切断电源。关闭X射线后,需要冷却X射线管。等待5~10分后,关闭仪器的电源。

光电直读光谱仪原理

光电直读光谱仪原理、简介分类、维护及故障排除: 一、原理简介: 光电直读光谱仪为发射光谱仪,主要通过测量样品被激发时发出代表各元素的特征光谱光(发射光谱)的强度而对样品进行定量分析的仪器。 目前无论国内还是国外的光电直读光谱仪,基本可按照功能分为4个模块,即: 1、激发系统:任务是通过各种方式使固态样品充分原子化,并放出各元素的发射光谱光。 2、光学系统:对激发系统产生出的复杂光信号进行处理(整理、分离、筛选、捕捉)。 3、测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。控制整个仪器正常运作 4、计算机中的软件数据处理系统:对电脑接收到的各通道的光强数据,进行各种算法运算,得到稳定,准确的样品含量。 二、光电直读光谱仪4个模块的种类和特点: 1、激发系统: (1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响 (2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定 (3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力 (4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。 (5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出最佳的激发状态进行激发,并仅采集这几个元素。把各元素的激发状态按照试验情况进行分类讨论) 2、光学系统: (1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。 (2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高

偏振能量色散型X-射线荧光光谱仪的主要特点解析

偏振能量色散型X-射线荧光光谱仪的主要特点 1.采用世界上最新的、最先进的偏振X射线荧光激发技术, 区别于其他X射线 荧光仪, 仪器的背景最低, 信噪比最佳, 检出限最低. 2.采用多靶转换技术, 对不同的分析元素采用不同的次级靶, 保证对元素周期表 中Na – U的所有元素均有最佳的激发效果。其中仪器所采用的晶体靶, 由于X射线衍射的原因, 其激发强度不仅不会下降, 反而会产生单色平行X光束, 大大提高激发元素的效率。 3.由于偏振X射线本身所具有的偏振性及单色性, 因此仪器无需选择滤光片。 避免了烦杂的滤光片的选择, 简化分析操作, 减少了X光的损失, 节约了分析时间。可实现真正意义上的Na-U的全分析。 4.XEPOS型仪器配有无需液态氮冷却的Si计数器, 计数率高达100,000pcs. 可 有效防止计数溢出。不会产生Si(Li)计数器所发生的在无需液氮冷却的情况下, 所产生的分辨率降低, 背景升高, 信噪比变差的情况。 5.仪器采用的方式于世界上最强的X射线发生源-同步加速器所采用的光源 机制相似,X光极为纯净,减少了杂散光对分析结果的影响。 6.仪器可选择配置TURBOQUANT快速定性, 半定量(定量)程序。可对任何完全 未知的样品进行‘解刨’分析。与其他X荧光仪器相比,TURBOQUANT 更为接近(符合)实际,在此程序中采用了数十种国际标准样品,实测结果并予以固化。 7.仪器在Windows操作系统上建立斯派克的分析软件,操作极为方便。采用 人机功效学原理,谱图汇编,自动识别。定性、定量功能强大。仪器采用分级密码,重要的数据得到保护。 8.仪器具有多达十几种校正模式(数学模型)(方法),在定量分析中可充分应 用,已取得最佳的分析结果。方法包括: 基本参数法、康普顿散射内标法、卢卡斯法、α经验系数法、质量吸收系数法、平均原子量法等等。

直读光谱仪哪个品牌好

直读光谱仪,即原子发射光谱仪。二战后,由于欧洲重建,市场对钢铁检测有巨大的需求,也促进了相关检测仪器的发展。六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展,由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。下面就让合肥卓越分析仪器有限责任公司为您简单介绍一下,希望可以帮助到您! 直读光谱仪品种分为火花直读光谱仪,光电直读光谱仪,原子发射光谱仪,原子吸收光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空直读光谱仪,直读光谱仪分为台式机和立式机。

直读光谱仪广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位。 工作原理分类 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪. 经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光. 分光原理分类 根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪, 衍射光栅光谱仪和干涉光谱仪.

合肥卓越分析仪器有限责任公司是一家生产销售红外碳硫,直读光谱,智能元素分析仪,分光光度计专业化公司,公司数年来生产化学分析仪器,直读光谱分析仪,理化实验室工程,理化分析检测人员培训服务遍及全国各省市地区。 公司多年来对耐磨材料、耐热材料、球墨铸铁、球铁灰铁分析检测,分析研究投入大量人力、财力,总结丰富经验。为用户提供了可靠可行分析方案。公司产品遍布全国各省市地区,出口俄罗斯、蒙古国、吉尔吉斯斯坦、巴基斯坦、缅甸、越南、南非等数十个国家。 公司以三耐材料(耐磨,耐热,耐蚀)分析,矿山分析高中低合金铸造分析见长,为客户实现精确,快速分析提供最佳方案,特别针对原材料:锰铁、硅铁、镍铁等铁合金分析有独到之处。 公司承建的大中型及小型理化中心或化学实验室,从设计开始,设备及器材配置,专业人才培训满足不同层次客户的实际要求,深受海内外用户青睐。欢迎来电咨询合作。

能量色散和波长色散X荧光光谱仪的区别

一.X射线荧光分析仪简介 X射线荧光分析仪是一种比较新型的可以对多元素进行快速同事测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)。是用晶体分光而后由探测器接受经过衍射的特征X射线信号。如果分光晶体和控测器做同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X射线的波长及各个波长X射线的强度,可以据此进行特定分析和定量分析。该种仪器产生于50年代,由于可以对复杂体进行多组同事测定,受到关注,特别在地质部门,先后配置了这种仪器,分析速度显著提高,起了重要作用。随着科学技术的进步在60年代初发明了半导体探测仪器后,对X荧光进行能谱分析成为可能。能谱色散型X射线荧光光谱仪(ED-XRF),用X射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)这节进入SI(LI)探测器,便可以据此进行定性分析和定量分析,第一胎ED-XRF是1969年问世的。近几年来,由于商品ED-XRF仪器及仪表计算机软件的发展,功能完善,应用领域拓宽,其特点,优越性日益搜到认识,发展迅猛。 二.波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别 虽然光波色散型(W D-XRF)X射线荧光光谱仪与能量色散型(ED-XRF)X射线荧光光谱仪同属于X射线荧光分析仪,它产生信号的方法相同,最后得到的波谱也极为相似,单由于采集数据的方式不同,WD-XRF(波谱)与WD-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。 (一)原理区别 X射线荧光光谱法,是用X射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。波长色散型荧光光仪(WD-XRF)是用分光晶体将荧光光束色散后,测定各种元素的特征X射线波长和强度,从而测定各种元素的含量。而能量色散型荧光光仪(ED-XRF)是借组高分辨率敏感半导体检查仪器与多道分析器将未色散的X射线荧光按光子能量分离X色线光谱线,根据各元素能量的高低来测定各元素的量,由于原理的不同,故仪器结构也不同。 (二)结构区别 波长色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管),样品室,分光晶体和检测系统等组成。为了准且测量衍射光束与入射光束的夹角,分光晶体系安装在一个精密的测角仪上,还需要一庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X射线管的功率要大,一般为2-3千瓦,单X射线管的效率极低,只有1%的功率转化为X射线辐射功率,大部分电能均转化为而能产生高温,所以X射线管需要专门的冷却装置(水冷

能量色散型X射线荧光光谱仪

能量色散型X射线荧光光谱仪——演讲稿 什么是能谱仪? 它是一种可以利用X射线对同时多元素进行快速测定的仪器,可以确定其成份和含量。 帕纳科Epsilon 3XLE能谱仪的介绍 Epsilon 3XLE 是一种台式能量色散X 射线荧光(EDXRF) 光谱仪,仪器将最新的激发和探测技术与顶尖的分析软件结合到了一起。最新的硅漂移探测器以及紧凑的光路设计相结合,具有改进的和扩展的轻元素功能(C - Am(锕系95号镅)),可对从C 到Am 的元素进行分析。而一般的能量色散型X射线分析仪的分析范围为从Na到U. 仪器特点 技术先进: 普通能谱仪采用硅掺锂探测器,它采用最新的硅漂移探测技术。而且它的分析软件也是领先的。 测量元素范围广: 具有改进的和扩展的轻元素功能(C - Am(锕系95号镅)),可对从C 到Am 的元素进行分析,而一般的能量色散型X射线分析仪的分析范围为从Na到U.但对于轻元素的测量不太灵敏。 易于操作,可靠且高度灵活: 他不需要事先标样,对样品直接可以测定。操作步骤简单固定。 连续测试重复性极强,测试数据稳定可靠: 测试结果与各元素的特征X射线能量标准参照表非常接近,可重复测量,所得的结果都是一样的。 …… 工作原理 组织结构 X射线荧光激发源——硅漂移探测器——信号放大器——多道脉冲高度分析器X射线荧光激发源: 激发源采用高性能金属陶瓷X 射线管。有不同的电压和电流设置,可产生不同的X射线,用于照射待测样品。 硅漂移探测器: 主要用于探测样品发出的特征X射线。 信号放大器:

用于脉冲信号的放大 多道脉冲高度分析器 它和相应的分析软件相结合,用于确定样品中各元素的种类和含量。 充液氮的作用: 为了使硅中锂稳定和降低晶体管的热噪声 激发源 什么是X射线荧光 简单来说,就是由X射线照射原子所激发的X射线。 X射线荧光的产生原理: 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,就能驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X 射线荧光,其能量等于两能级之间的能量差。因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系。 硅漂移探测器—一种通过光电效应探测光信号的器件 响应速度: 是指由X射线荧光所产生的电子移向探测器正极的速度。移动速度越快,测试越灵敏。怎么提高它的移动速度呢? 在PN型二极管中存在耗尽层,其产生的内电场使光生电子具有漂移速度,大于耗尽层外的扩散速度。所以让光生电子空穴对的过程尽量发生在耗尽层内,并加反向偏置电压。来增强内电场,加快光生电子的移动。 以上所介绍的是普通的探测器所采用的办法,而硅漂移探测器则利用了侧向耗尽原理。它对二极管的结构进行了改造。相当于两块二极管N段相并,在一段的边缘镀上n+欧姆接触,并加高压,使n型硅晶片被耗尽,也就是形成完全耗尽层(空间电荷区)在中间就可以形成电子电势低谷,这样光生电子或热电子在该电场的作用下,向收集电极漂移,将电信号传给后面的信号放大器。 硅漂移探测器与普通探测器的区别: 不需要液氮制冷,可以在常温下工作; 其电容小,脉冲成形时间也很短(通常简称其容纳电荷的本领为电容)漂移时间虽然较长,但它的计数率(用计数管测定时,将单位时间内X射线通过计数管窗口的光子数)比一般的半导体探测器高几十倍,灵敏度大大提高。 莫塞莱定律:√v=K(Z-α) K为与靶中元素有关的常数 α为屏蔽常数,与电子所在的壳层有关

光谱仪

光谱仪 光谱仪,又称分光仪,广泛为认知的为直读光谱仪。以光电倍增管等光探测器测量谱线不同波长位置强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪.经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光的,它采用圆孔进光. 根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪.光学多道分析仪OMA(OpticalMulti-channelAnalyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理, 存储诸功能于一体.由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率;使用OMA分析光谱,测量准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,

特别适应于对微弱信号,瞬变信号的检测. 一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分: 1.入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。 2.准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。 3.色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。 4.聚焦元件: 聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。 5.探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。 光谱仪应用很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、喇曼光谱、半导体工业、成分检测、颜色混合及匹配、生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等领域应用广泛。

能量色散X荧光光谱仪

能量色散X荧光光谱仪Energy Dispersive X-Ray Fluorescence Spectrometer SKYRAY---EDX 1800 报 价 系 统 Product Quotation System ●本报价系统的解释权属天瑞仪器有限公司● This quotation system is to be explained by Skyray Instrument Inc. All rights reserved. 目录Contents

1. 产品名称及技术指标Product Name and Specifications 2. 仪器硬件部分主要配置Main Hardware Configuration of EDX 1800 2.1 硅针半导体探测器及放大电路Silicon Pin Semiconductor Detector and Amplifier Circuit 2.2 X光管X-Ray Tube 2.3 高、低压电源High/Low Voltage Power Supply 2.4 多道脉冲幅度分析器Multi-Channel Pulse Amplitude Analyzer 2.5 高精密摄像头High-Resolution Camera 2.6 移动平台Movable Platform 2.7 超大样品腔big Sample Chamber 2.8 准直器自动切换装置Automatic Switching Device for Collimators 2.9 滤光片自动切换装置Automatic Switching Device for Filters 2.10 准直器和滤光片自由组合Free Combinations Between Collimators and Filters 3. 仪器外围设备Peripherals of EDX 1800 3.1 计算机Computer 3.2 喷墨打印机Color Ink-Jet Printer 4. 仪器软件配置Software Configuration of EDX 1800 4.1 RoHS 分析软件(可选) RoHS Analysis Software 4.2 镀层测厚分析软件(可选)Plating Thickness Analysis Software (Optional) 4.3 全元素分析软件(可选)Full Element Analysis Software (Optional) 5. 样品配置Configuration of Samples 5.1 样品腔Sample Chamber 5.2 标样Standard Samples 6. 准直器Collimators 7. 其他主要配件Other Main Accessories 8. 仪器随机提供的必要技术资料Necessary Technical Documents Enclosed 9. 产品保修及售后服务Warranty and After Sale Service 1.产品名称及机型指标介绍:Product Name and Specifications 1.1. 产品名称及型号:(天瑞)能量色散X射线荧光光谱仪-------EDX 1800 型 Name and model of the product: Skyray Energy Dispersive X-Ray Fluorescence Spectrometer - EDX 1800 1.2. 制造商:天瑞仪器有限责任公司制造 Manufacturer: Skyray Instrument Inc.

岛津直读光谱仪技术操作规程

PDA直读光谱仪技术操作规程 岛津PDA系列直读光谱仪是应用原子发射光谱分析原理,快速定量分析块状金属样品的化学成分的光电光谱仪。 1.分析原理 样品在激发光源下被激发,其原子和离子跃迁发射出光,进入光学系统被色散成元素的光谱线。对选定的内标线和分析线的强度进行测量,根据元素谱线强度与被测元素的浓度的相互关系,采用持久曲线法和控制试样法得到试样中被测元素的含量。 2.术语 2.1光谱:光谱是指电磁辐射按照波长(或频率)顺序排列形成的图谱。 2.2标准试样法:此方法是在每次分析样品前激发一系列标准样品(要求标样与试样具有相同的冶炼过程和晶体结构)制作校准曲线。根据元素谱线强度与被测元素的浓度的相互关系拟合并存贮工作曲线,然后激发待测试样,从工作曲线上计算出待测元素浓度。 2.3持久曲线法:此方法是预先用标准试样法制作持久校准曲线,每次分析时仅激发待测试样,从持久曲线上计算出待测元素浓度。由于环境变化和仪器内部器件的各种变化均会使校准曲线发生漂移,为此在实际分析中,每天(每班)必须用标准化样品对校准曲线的漂移进行修正,即校准曲线标准化。 2.4控制试样法:由于分析试样和制作工作曲线的光谱标样在冶金过程和物理状态存在差异,使分析结果与实际含量有偏差。在日常分析中,将控样与试样同时分析,通过控样分析值修正试样分析值,得到试样的分析结果。 2.5标样:标样要求质地均匀,稳定,有准确化学成分。光谱标样是为日常分析绘制校准曲线所需要的有证参比物质,所选用的标准样品中各分析元素含量须有适当的梯度。 2.6标准化样:由于仪器状态的变化,导致测定结果偏离,为直接利用原始校准曲线,求出准确结果,使用该样品对仪器进行标准化,使系统恢复到原始工作曲线状态。标准化样应与标准材质接近,具有良好的均匀性。两点标准化的元素含量分别选在校正曲线的上限和下限附近。 2.7 控样:控样是指从日常生产分析中取得,与试样材质相同、冶炼、轧制过程基本相同,有准确的化学成分的内部标样。使用控样可修正试样分析值。

能量色散X射线荧光光谱法分析镀液中金离子的质量浓度

?44?Mar.2010Electroplating&PollutionControlV01.30No.2?分析? 能量色散X射线荧光光谱法分析 镀液中金离子的质量浓度 AnalysisofGoldIon MassConcentrationinPlatingSolutionby Energy‘_DispersiveX--RayFluorescenceSpectrometry 孙雪萍 (上海无线电设备研究所,上海200090) SUNXue-ping (ShanghaiWirelessEquipmentInstitute,Shanghai200090,China) 摘要:采用能量色散X射线荧光光谱法(EDXRF)对镀液中金离子的质量浓度进行定量分析,介绍了标样的配制方法和镀液的分析方法,并与化学分析法的测定结果进行了对比。结果表明:该方法具有较高的准确度和精密度,操作方便,为检测镀液中金离子的质量浓度提供了新的手段。 关键词:能量色散x射线荧光光谱法f定量分析;镀液;金离子 Abstract:Theenergy-dispersiveX-rayfluorescencespectrometrymethod(EDXRF)isappliedforquantitativeanalysisofthegoldion[nassconcentrationinplatingsolution.Theprepartionmethodofstandardsampleandanalysismethodofplatingsolutionareintroduced,andtheanalysisresultsarecomparedwithchemicalanalysismethod.Theexperimentalresultsshowthatthismethodisaccurate,preciseandconvenient,whichprovidesanewmethodforanalysisofgoldionmassconcentrationinplatingsolution. Keywords:energy-dispersiveX-rayfluorescencespectrometry;quantitativeanalysis;platingsolution;goldion 中图分类号:TQ153文献标识码:A文章编号:1000-4742(2010)02-0044—03 0前言 镀液中金离子的质量浓度直接影响着镀金件的表面质量,由于电镀过程中金离子不断消耗,需要定期检测镀液中的金离子的质量浓度。目前多数实验室采用传统的容量法定量分析镀液中金离子的质量浓度[1‘3],该方法存在着以下缺点:(1)每次分析,贵金属浪费较大;(2)分析时间长,分析人员劳动强度高,人为的偶然误差较大;(3)分析时挥发出大量氮氧化物、氰化氢气体,不仅污染环境,而且损害人体健康。部分实验室采用波长色散X射线荧光光谱仪进行分析,但该仪器价格昂贵,配套设施多,维修成本高‘“。 本方法选用能量色散X射线荧光光谱仪对镀液中金离子的质量浓度进行定量分析,有效克服了化学分析方法的不足,并且在仪器价格上仅为波长色散X射线荧光光谱分析仪的1/4""1/2,维护和使用方便[5_6]。本方法使用自配的标准溶液进行校正,有效满足了测量精度要求;采用软件自动去除镀液中水质背景的干扰,过滤不相关元素K,Co等,最大限度地降低杂质对测量的影响;通过试验确定了最佳的测量工艺参数。实践应用表明:该方法快速、无毒、成本低,完全能达到生产上要求的准确度和精密度,是一种较为理想的快速分析方法。 1分析原理 能量色散X射线荧光光谱法通过分析样品被激发出的特征X射线,得到样品中特定元素的质量浓度,可执行周期表从铝元素到铀元素的非破坏性分析。其可分析的样品种类从固体到液体、粉末、微粒以及薄膜,具有多元素同时测定、分析速度快、重现性好、成本低和非破坏测定等优点。其分析镀液的方法是:将待测镀液置于仪器专用附件中,并用X射线照射待测镀液。此时,镀液将产生特定的X射线荧光,检测系统将其接收,并转换为相应的电脉冲信号记录下来,即:形成所谓的光谱图,如图1所示。通过对光谱图进行运算,计算特征X射线的强度,并与标准特征强度相比较,即可得到镀液中相应元素的质量浓度。 镀液中待测元素的质量浓度是4种因子的函数[43,即: Ci—KiIiMISi(1) 万方数据

直读光谱仪原理

第一章直读光谱仪的概况 国内外光电直读光谱仪的发展 光谱起源于17世纪,1666年物理学家牛顿第一次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。到1802年英国化学家沃拉斯顿发现太阳光谱不是一道完美无缺的彩虹,而是被一些黑线所割裂。 1814年德国光学仪器专家夫琅和费研究太阳光谱中的黑斑的相对位置时.把那些主要黑线绘出光谱图。 1826年泰尔博特研究钠盐、钾盐在酒精灯上光谱时指出,发射光谱是化学分析的基础、钾盐的红色光谱和钠盐的黄色光谱都是这个元素的特性。 到1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上第一台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。 从1860年到1907年之间、用火焰和电火花放电发现碱金属元素铯Cs、1861年又发现铷Rb和铊Tl,1868年又发现铟In和氦He。1869年又发现氮N。1875~1907年又相继发现镓Ga,钾K,铥Tm,镨Pr,钋Pe,钐Sm,钇y,镥Lu等。 1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。凹面光栅实际上是光学仪器成象系统元件的合为一体的高效元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。 波耳的理论在光谱分析中起了作用,其对光谱的激发过程、光谱线强度等提出比较满意的解释。 从测定光谱线的绝对强度转到测量谱线的相对强度的应用,使光谱分析方法从定性分析发展到定量分析创造基础。从而使光谱分析方法逐渐走出实验室,在工业部门中应用了。 1928年以后,由于光谱分析成了工业的分析方法,光谱仪器得到迅速的发展,一方面改善激发光源的稳定性,另一方面提高光谱仪器本身性能。 最早的光源是火焰激发光谱;后来又发展应用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。工业生产的发晨,光谱学的进步,促使光学仪器进一步得到改善,而后者又反作用于前者,促进了光谱学的发展和工业生产的发展。 六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展。由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。 解放后,我国的光谱仪器工业从无到有,由小到大,得到飞跃的发展,且具有一定的规模,与世界先进技术竞争中求生存,社会商品竞赛中得到发展。 1958年开始试制光谱仪器,生产了我国第一台中型石英摄谱仪,大型摄谱仪,单色仪等。中科院光机所开始研究刻制光栅,59年上海光学仪器厂,63年北京光学仪器厂开始研究刻制光栅,63年研制光刻成功。1966—1968年北京光学仪器厂和上海光学仪器厂先后研制成功中型平面光栅摄谱仪和一米平面光栅摄谱仪及光电直读头。1971—1972年由北京第二光学仪器厂研究成功国内第一台WZG—200平面光栅光量计,结束了我国不能生产光电直读光谱仪的历史。 八十年代以来,我国铸造行业开始引进光电直读光谱仪作为熔炼过程中化学成份控制的分析手段,并逐步取代了我国传统的湿法化学分析法,至今已发展到中小企业也逐步采用光谱法配合作炉前分析。

波长色散与能量色散X射线荧光光谱仪原理分析3

【阿里巴巴化工】摘要:波长色散X射线谱法是用X射线光谱仪进行微区化学成分分析的方法。从谱峰波长可确定试样所含元素,从谱峰强度可计算元素的含量。 一、X-射线荧光分析仪(XRF)简介 X-射线荧光分析仪(XRF)是一种较新型的可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X-荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X射线荧光光谱仪(WD-XRF)是用晶体分光而后由探测器接收经过衍射的特征X-射线信号。如果分光晶体和探测器作同步运动,不断地改变衍射角,便可获得样品内各种元素所产生的特征X-射线的波长及各个波长X-射线的强度。可以据此进行定性分析和定量分析。该种仪器产生于50年代,由于可以对复杂体系进行多组分同时测定,受到关注,特别在地质部门,先后配置这种仪器,分析速度显著提高,起了重要作用。随着科学技术的进步,在60年代初发明了半导体探测器以后,对X-荧光进行能谱分析成为可能。能谱色散型X-射线荧光光谱仪(ED-XRF),用X 射线管产生原级X射线照射到样品上,所产生的特征X射线(荧光)直接进入Si(Li)探测器,便可以据此进行定性分析和定量分析。第一台ED-XRF是1969年问世锝近几年来,由于商品ED-XRF仪器及计算机软件的发展,功能完善,应用领域拓宽,其特点、优越性日益受到认识,发展迅猛。 二、波长色散型X射线荧光光谱仪与能量色散型X射线荧光光谱仪的区别 虽然波长色散型(ED-XRF)X射线荧光光谱仪与能量色散型(WD-XRF)X射线荧光光谱仪同属X射线荧光分析仪,它们产生信号的方法相同,最后得到的波谱或者能谱也极为相似,但由于采集数据的方式不同,ED-XRF(波谱)与WD-XRF(能谱)在原理和仪器结构上有所不同,功能也有区别。 (一)原理区别 X-射线荧光光谱法,是用X-射线管发出的初级线束辐照样品,激发各化学元素发出二次谱线(X-荧光)。波长色散型荧光光仪(WD-XRF)是分光晶体将荧光光束色散后,测定各种元素的含量。而能量色散型X射线荧光光仪(WD-XRF)是借助高分辨率敏感半导体检测器与多道分析器将未色散的X-射线按光子能量分离X-射线光谱线,根据各元素能量的高低来测定各元素的量。由于原理不同,故仪器结构也不同。 (二)结构区别 波长色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管)、样品室、分光晶体和检测系统等组成。为了准确测量衍射光束与入射光束的夹角,分光晶体系安装在一个精密的测角仪上,还需要一庞大而精密并复杂的机械运动装置。由于晶体的衍射,造成强度的损失,要求作为光源的X-射线管的功率要大,一般为2~3千瓦。但X-射线管的效率极低,只有1%的电功率转化为X-射线辐射功率,大部分电能均转化为热能产生高温,所以X-射线管需要专门的冷却装置(水冷或油冷),因此波谱仪的价格往往比能谱仪高。能量色散型荧光光谱仪(WD-XRF),一般由光源(X-射线管)、样品室和检测系统等组成,与波长色散型荧光光谱仪的区别在于它用不分光晶体。由于这一特点,使能量色散型荧光光仪具有如下优点:

相关文档
相关文档 最新文档