文档库 最新最全的文档下载
当前位置:文档库 › 第六章光线的光路计算及像差理论

第六章光线的光路计算及像差理论

第六章光线的光路计算及像差理论
第六章光线的光路计算及像差理论

[考试要求]

要求考生了解光线的光路计算公式、影响成像质量的七大几何像差和波像差。 [考试内容]

像差的定义、分类、概念,像差对系统像质所产生的影响及校正的方法,波像差的概念及其表示。 [作业]

P128:3、4、7、8、9、10

第六章 光线的光路计算及像差理论

§6-1 概述

一、 基本概念

实际的光学系统都是以一定的宽度的光束对具有一定大小的物体进行成像,由于只有近轴区才具有理想光学系统性质,故不能成完善像,就存在一定的像差。 1、像差定义:实际像与理想像之间的差异。 2、 几何像差的分类:

单色像差:光学系统对单色光成像时所产生的像差。 球差、彗差、像散、场曲、畸变 色差:不同波长成像的位置及大小都有所不同。

色差 位置色差:体现不同色光的成像位置的差异 倍率色差:体现不同色光的成像大小的差异。 3、 像差产生的原因

在第一章我们曾讲过近轴光/实际光的光路计算公式。

????

?????

+=-+==-=)''

1(''''

'u i r l i i u u i

n n i u

r r l i )sin 'sin 1(sin sin sin U I r L I I U U I n n

I r h

I '

+=''-+=''='= 并且说明这二组公式最大的区别是对于近轴光:是用弧度值取代正弦值而得 到的。即I I ≈sin

但实际上这一取代并不是完全精确的,它存在着一定的误差量值,因为它们仅仅是近似相等,从而导致实际与理想之间存在差异。这就是像差产生的原因。

二、像差谱线的选择――主要取决于接收器的光谱特性

进行像差校正时,只能校正某一波长的单色像差,对于不同的接收器件像差谱线的选择有很大的区别。

1、目视光学系统:一般选择D光或e光校正单色像差,对C

F,光校正色差。2、普通照相系统:一般对F光校正单色像差,对'

D校正色差。

,G

3、近红外和近紫外光学系统:一般对C光校正单色像差,对'

,A

d校正色差。4、对特殊光学系统:只对使用波长校正单色像差。

§6-2 光路计算

一、 子午面内的光线的计算 子午面:轴外点与光轴构成的平面。 (一) 近轴光计算

1、轴上点近轴光的光路计算

对于单个折射面,当物在有限远时,我们采用的公式如下:

?

???

??

???

+=-+==-=)''1(''''

'u i r l i i u u i

n n i u r r l i 以上式子为单个折射面有限远情况,若为远限远,则有:

-∞=l ,此时r h i r h I u /,sin ,01

1

11==

= 这是单个折射面的计算公式,由于系统由多个折射面构成,要想计算出最终的结果还必须用到由前一折射面到后一折射面的过渡公式。

??????

?

-'=-'=-'='='='='='='='='='=-----1122311

21231

21231212312,,,,,,,,,,k k

k k

k k

k k

k d l l d l l d l l y y y y y y u u u u u u n n n n n n ΛΛΛΛΛΛΛΛ

2、轴外点的近轴光计算:

第二近轴光:指由物体边缘发出,并通过入瞳中心的光线。

仍用近轴光路公式计算,只不过为了区别起见,所有的量都应注下角标z ,以表示是轴外点近轴光而不是第一近轴光。实际上一般对5个视场(入瞳中心与物点的连线与光轴的夹角)的物点进行计算,分别为:1,85.0,707.0,5.0,3.0。 (二) 实际光线的光路计算

1、轴上点公式(也分有限远及无限远):

)sin '

sin 1(sin sin sin U I r L I I U U I

n n

I r h

I '

+

=''-+=''

='=

以上式子为单个折射面有限远情况,若为远限远,则有:

-∞=L ,此时1

1

11sin ,0r h I U =

= 其它公式形式如上,此外也有实际光的过渡公式:

??

??

???

-'=-'=-'='='='='='='='='='=-----11223111

2123121231212312,,,,,,,,,,k k k k k k k k k d L L d L L d L L y y y y y y U U U U U U n n n n n n ΛΛΛΛΛΛΛΛ 以上介绍了实际光轴上点的计算公式,对于光轴上的点而言,由于其出射光束的对称性,对称于光轴,故只需计算光轴上面的某些光线或计算光轴下面的某些光线即可。这些需要计算的特殊口径分别为: 1,85.0,707.0,5.0,3.0。 2、对于轴外点:

当物位于无限远时,至少要计算三条光线,分别为:上光线,主光线,下光线,如图:

图6—1 物体位于无限远时光线计算 z z L U ,

上光线的 z z a z a tgU h

L L U U +

==, 下光线的 z

z b z b tgU h

L L U U -==,

(z

z a z z a z a z tgU h

L L tgU h L L L L h tgU +=??-=+-??+-=)

当物位于有限远时,h 为入瞳半高度;y 为物高。

图6—2 物体位于有限远时光线计算设主光线的初始数值:z

z

z

L

L

L

y

tgU,

-

=

上光线的

a

z

a

z

a tgU

h

L

L

L

L

h

y

tgU+

=

-

-

=,

下光线的

b

z

b

z

b tgU

h

L

L

L

L

h

y

tgU-

=

-

+

=,

由于轴外点发出的光不是相对于光轴对称的,所以主光线上、下的光线并不相对光轴对称(相交于一点),所以上下光线必须分别计算:至少应计算11条光线:0,1

,

85

.0

,

707

.0

,5.0

,3.0±

±

±

±

±

二、光线经过平面时的光路计算

'

'

tgU

LtgU

L=

这就是像距的计算公式,此外'

'

,U

I

U

I-

=

-

=,故而总的公式为:

'

/

'

'

'

sin

'

'

sin

tgU

LtgU

L

I

U

I

n

n

I

U

I

=

-

=

=

-

=

――这是实际光的计算公式对于近轴光也有相应的公式:

'

'

tgu

ltgu

l=

n

l n'

=

第07章 光线的光路计算

第二篇像差理论 由球面和平面系统的光路特征和成像特性,可见,只有平面反射镜是唯一能对物体成完善像的光学元件。单个球面透镜或任意组合的光学系统,只能对近轴物点以细光束成完善像。随着视场和孔径的增大,成像的光束的同心性将遭到破坏,产生各种成像缺陷,使像的形状与物不再相似。这些成像缺陷可用若干种像差来描述。 如果只考虑单色光成像,光学系统可能产生五种性质不同的像差,即球差、慧差、像散、像面弯曲和畸变,统称为单色像差。但是,绝大多数光学系统是用白光或复色光成像,由于色散存在,会使其中不同的色光有不同的传播光路,由于这种光路差别而引起的像差称为色差,包括位置色差和倍率色差。实际上,用白光成像时,由于其所包含的各种单色光有各自的传播光路,它们的单色像差也是各不相同的。为了便于分析,将其分成单色像差和色像差两类。其中,单色像差是对光能接收器最灵敏的色光而言的,色差是对接收器的有效波段内接近边缘的两种色光来考虑的。 事实上我们不可能获得对整个空间都能良好成像的万能光学系统,只能为适应某种单一用途而设计专门的光学系统;同时,即使这样的光学系统,也不能将各种像差完全校正和消除。但是由于人眼和所有其他的光能接收器也具有一定的缺陷,只要将像差校正到某一限度以内,人眼和其他接收器就觉察和反映不出其成像的缺陷,这样的光学系统从实用意义上来说即可认为是完善的。 第七章光线的光路计算 在设计光学系统时,为了获得像差的最佳校正和平衡,要不断地修改结构参数,包括表面的曲率半径、间隔和透镜的材料等。每修改一次,都必须计算出有关像差,以便进行综合的分析和评价,确定是否需要进一步修改及修改方向。光学自动设计或称优化设计只是借助于计算机来完成这些繁复的运算与分析,其基本过程并无本质的区别。所以设计光学系统需要反复作大量光线的光路计算。通常需作如下四类光线的光路计算: 作近轴光线的光路计算,以确定像的理想状态; 作含轴面内光线的光路计算,以求得大部分像差; 作沿主光线的细光束像点的计算,以求得细光束像差; 作空间光线的光路计算,以全面了解系统的像质。 为作各类光线的光路计算,除需给出光学系统的结构参数外,还要知道物体的位置和大小以及孔径光阑的位置和大小。光线的光路计算,通常要经历下面4个步骤: 1.起始计算:在给出光学系统结构参数的基础上,使光线能够进入系统,给出光线的初始位置和方向。 2.折射计算:确定光线经过表面折射(或反射)后的方向和位置。 3.转面计算:完成到下一个表面的数据转换,以便继续光线的光路计算。 4.终结计算与处理:确定光线的最后截点长度或高度有时还需要计算像差值。 在上述步骤中,折射计算和转面计算是要重复进行的,即,对系统内的每个表面都要计算一次。而起始和终结计算仅在开始和结束的时候才各计算一次。 光线的光路计算最终要解决的问题是给定一个光学系统的结构参数,如半径、厚度或间隔、折射率等,再给出入射到光学系统的光线方向和空间位置,最后求出光线通过该系统后的方向和空间位置。 在光学计算中,通常要求保留6位有效数字的精度,这取决于光学系统的复杂程度、仪器精度和应用的领域。三角函数应在小数点后面取6位数,这相当于0.2弧秒。

第二章 光束传播法基本原理

第四章光束传播法基础 第一节数值计算方法 1.电磁场数值计算 它是一种基于麦克斯韦方程组,建立逼近实际工程电磁场问题的连续型的数学模型,(合理的假设)然后采用相应的数值计算方法,经离散化处理,(合适的方法,使离散化的模型既能反映连续型模型的特性,又便于计算机分析)把连续型数学模型转化为等价的离散型数学模型,计算出待求离散数学模型的离散解(数值解),从而获得相应结果的一种方法。 2.数值方法分类: 时域分析、频域分析。 时域分析:模拟光在波导中的传播过程 频域分析:求解波导模式 时域分析逼真:把原来因为速度太快、结构太小、不可见的现象模拟出来,能够直观地展示。求解:波导连接、耦合、非线性特性、波导模式。 频域分析:光场分布、给定具体结构波导的模式的有效折射率(色散、偏振)、损耗(材料吸收、结构本身导致)等。 问题: 频域结果能否推得时域信息? 反之? 3.常用数值方法简介 (1)有限差分法(频域有限差分法) (20世纪50年代出现)利用划分网格的方法将定解区域离散化为网格离散节点的集合,然后基于差分原理,以各离散点上函数的差商来近似替代该点上的偏导数,这样待求的偏微分方程定解问题可转化为一组相应的差分方程的问题。根据差分方程组,解出各离散点上的待求函数值,即为所求定解问题的离散解,再应用插值方法便可从离散解得到定解问题在整个场域上的近似解。

原理:偏导→差分 方法特点:原理简单、通用性好;对复杂结构,计算量大(矩阵运算)。(频域分析) 适用范围:计算光波导的模式求解。 现状:适用于较简单结构的分析。但有限差分(偏导→差分)法广泛应用于数值方法中 (2) 有限元法 20世纪40年代提出,其在电磁问题方面的应用有约40多年历史。 以变分原理为基础,把所要求解的微分方程转化为相应的变分问题,即泛函求极值问题。常见方法为把要分析的区域划分为很多三角形(每个三角形成为一个基元),每个基元内的场用多项式来表达,然后加入不同基元间场的连续条件,就可得到整个横截面的场分布。 特点:较复杂---需要前处理(三角化,剖分);后处理:(场分布,伪解剔除)(通用性强,精度高)根据该方法对于各种各样的电磁计算问题具有较强的适应能力性,所形成的代数方程矩阵求解容易、收敛性好。 主要缺点: 对于形状和分布复杂的三维问题,由于其变量多和剖分要求细,往往因计算机内存而受到限制。程序设计复杂、计算量较大。 适用范围:求解光波导的模式(有效折射率、色散、双折射、传输损耗等)。 现状:功能最强大的数值方法之一。特别是上世纪90年代出现的矢量有限元方法,完全解决了有限元方法出现的伪解问题,大大降低了有限元法的后处理过程。 有限元光束传播法。 (3)时域有限差分法 时域有限差分法是近年来开始流行的一种数值模拟方法,它通过将麦克斯韦方程在时间空间上离散化的方法实现对电磁波传播的模拟。它能够得到电磁波传输的瞬态(即时域)信息,通过傅里叶变换即可得到相应的频域信息。

光波导理论与技术 大学课件

光波导理论与技术大学课件 06 年复习题 x E y x t Ay cos t1. 已知一平面电磁波的电场表达式为 c , 写出与之相联系的磁场表达式。(提示:利用麦克斯韦尔方程,注意平面波的特点) 2E 1 2E2. 证明平面电磁波公式 E A cost kx 是波动微分方程 0 的解。 x 2 v 2 t 23. 在直角坐标系任意方向上以角频率传播的平面波为 E A exp j t k r ,根据波动方程 2 2E ,导出用角频率、电容率、导磁率0 表示平面波的传 E 0 2 0 播常数 k。 t4. ?璧ド矫娌ㄓ?E A exp j t kz 表示,求用电容率、导磁率0 表 示的该平面波传播速度。(提示:考虑等相位面的传播速度)5. 用文字和公式说明电磁场的边界条件。6. 设时变电磁场为 A xt A x sin ωt ,写出该电磁场的复振 幅表示式,它是时间的函数还是空间的函数,7. 分别写出麦克斯韦尔方程组和波动方程的时域与频域的表达式。8. 说明平面波的特点和产生的条件。9. 写出平面波在下列情况下的传播常数或传播速度表示式: 1 沿任意方向的传播速度; 2 在折射率为 n 的介质中的传播常数; 3 波矢方向与直角坐标系 z 轴一致的传播常数。10. 平面波波动方程的解如下式,说明等式右边两项中正负号和参数 k 的物理意义。 E x z , t E e j t kz E e j t kz11. 说明制成波片材料的结构特点,如何使波片成为 1/4 波片和 1/2 波片12. 如果要将偏光轴偏离 x 轴度的线偏振光转变 成 x 偏振光,应将/2 波片的主轴设定为偏离 x 轴多大角度13. 什么是布儒斯特 起偏角,产生的条件是什么14. 光波在界面反射时,什么情况下会产生半波损失15. 如何利用全反射使线偏振光变成园偏振光,16. 什么是消逝波,产生消逝波的条件是什么,17. 什么是相位梯度,它与光波的传输方向以及介质折射率是什么关系,18. 在非均匀介质中如何表示折射率与光线传播方向的关系,19. 光纤的数值孔径表示 什么,如何确定它的大小20. 在下列情况下,计算光纤数值孔径和允许的最大入射 角(光纤端面外介质折射率n1.00): 1 阶跃折射率塑料光纤,其纤芯折射率 n1

光波导的理论以及制备方法介绍

光波导的理论以及制备方法介绍 摘要 由光透明介质(如石英玻璃)构成的传输光频电磁波的导行结构。光波导的传输原理是在不同折射率的介质分界面上,电磁波的全反射现象使光波局限在波导及其周围有限区域内传播。 光波导的研究条件与当前科技的飞速发展是密不可分的,随着技术的发展,新的制备方法不断产生,从而形成了各种各样的制备方法,如离子注入法、外延生长法、化学气相沉淀法、溅射法、溶胶凝胶法等。重点介绍离子注入法。 光波导简介如图所示为光波导结构 图表1光波导结构 如图中共有三层平面相层叠的光学介质,其对应折射率n0,n1,n2。其中白色曲折线表示光的传播路径形式。可以看出,这是依靠全反射原理使光线限制在一层薄薄的介质中传播,这就是光波导的基本原理。为了形成全反射,图中要求n1>n0,n2。 一般来讲,被限制的方向微米量级的尺度。 图表2光波导模型 如图2所示,选择适当的角度θ(为了有更好的选择空间,一般可以通过调整三层介质的折射率来取得合适的取值),则可以将光线限制在波导区域传播。 光波导具有的特点光波导可以用于限制光线传播光路,由于本身其尺寸在微米量级,就使得其有很多较好的特点: (1)光密度大大增强 光波导的尺寸量级是微米量级,这样就使得光斑从平方毫米尺度到平方微米尺度光密度增大104—106倍。 (2)光的衍射被限制 从前面可以看出,图示的光波导已经将光波限制在平面区域内,后面会提到稍微变动一下技

术就可以做成条形光波导了,这样就把光波限制在一维条形区域传播,这就限制了光波的衍射,有一维限制(一个方向),二维限制(两个方向)区分(注:此处“一维”与“二维”的说法并不是专业术语,仅仅指光的传播方向的空间自由度,不与此研究专业领域的说法相混同)。 (3)微型元件集成化 微米量级的尺寸集成度高,相应的成本降低 (4)某些特性最优化 非线性倍频阈值降低,波导激光阈值降低 综上所述,光波导本身的尺寸优势使得其有很好的研究前景以及广泛的应用范围。 光波导的分类一般来讲,光波导可以分为以下几个大类别: 图表3平面波导(planar) 图表4光纤(fiber)

第二章光纤传输与导光原理

第二章光纤传输与导光原理 2.1 光波的本质 狭义地说,光是波长在380-780nm范围的可见光,但是,它又包含有红外线、紫外线,因此没有严格的界限。广义地讲,光是波长较电波短,频率较电波高的一种电磁波的总称。目前通信用光波是在近红外波和可见的红光波段,工作波长在λ=0.80~1.65μm之间,或者说通信用光波的频率更高f=1014~1015Hz。 所谓可见光是指人的眼睛可见的电磁波。人的眼睛可以感受到较长波长的光,如七色光—红橙黄绿青蓝紫,在可见光中,人眼最易感受的是555nm的黄绿光。绿色光的波长约为500nm,红色光的波长在700nm,紫色光的波长约为400nm,可见光波的范围在400nm—700nm 之间,波长小于380nm或大于780nm的光,无论光强度有多强,人的肉眼几乎不可能看得到。红外线是比可见红光的波长更长,比电波波长更短的光之总称。按照到可见光的排列顺序,可分为近红外线、红外线、远红外线三种。近红外线是人眼不可见光中最常用的光,它的性质同可见光几乎无大的区别。借助半导体材料(InGaAsP)、某些气体材料(CO2)或红宝石(α-Al2O3)可有效地发光、感光,广泛用于光通信领域;波长稍长的红外线,热作用最高,若利用黑体辐射,从远红外区到红外区范围的红外光将呈峰值效应,这种光对物质具有很强的穿透力,因此,多用于微波炉、取暖器等;远红外线到电波范围,电磁波中包含有许多分子的旋转运动、振动所对应的频率,这对材料结构与性能分析非常有用。紫外线是比可见光中的紫光波长更短的波,是不可见光,具有很强的杀菌作用。 2.1.1光的波粒二象性 光具有波粒二象性,即:波动性和粒子性。如上所述,光的干涉、衍射现象说明光具有波动性,但黑体辐射、光电效应则证明光具有粒子性,所以既可以将光看成是一种电磁波,又可以将光看成是由光子组成的粒子流。 1.光的波动性 光波在均匀透明介质中传播的电磁场分布形式可用麦克斯韦波动方程的弱导近似式波动方程描述: ▽2H=[1/υ2][?2H/2?2t] (2-1-1)▽2E=[1/υ2][?2E/2?2t] 式中:E—电场强度; H—磁场强度; υ—均匀介质的波数,υ=1/(nε0μ)1/2=1/(nк0)1/2 ▽2—二阶拉普拉斯算符。 2.光的粒子性 光是一种电磁波,用波动理论的观点可以正确地解释许多光学现象。但是像“光电效应”这种光学现象就不能用波动理论去解释。为了正确地解释光电效应现象,1905年爱因斯坦提出了光子假说并得到证实:光是一种以光速运动的粒子流,这些粒子称为光子,或称为光量子。如果电子或原子从一个较高的能级E2跃迁到一个低能级E1时,两个能级间将存在着一个能量差Eg=E2-E1,这个能量差将以量子的能量形式释放,一个量子的能量称为光子。像所有运动的粒子一样,光也可以产生压力和引起粒子旋转。所以光可以用粒子数来描述。光的能量集中在光子之中。光子具有一定的频率,单频率光称为单色光,单色光的最小单位是光子。一个光子的能量可以用波尔能量方程描述: ?(2-1-3)Eg=hν

第二章 光纤的基本理论(附件)

一、三种基本类型光纤的折射率分布 (a) 突变型多模光纤; (b) 渐变型多模光纤; (c ) 单模光纤 二、ITU-T 建议规范的单模光纤(主要为前四种:G .652、G .653、G .654和G .655) (a) (b)(c)

三、光纤的导光原理 1.折射和折射率 光线在不同的介质中以不同的速度传播,描述介质的这一特征的参数就是折射率,或称折射指数。折射率可由下式确定: n = c/v 其中ν是光在某种介质中的速度,с是光在真空中的速度。 在折射率为n的介质中,光传播速度变为c/n,光波长变为λ0/n(λ0表示 当一条光线照射到两种介质相接的边界时,入射光线分成两束:反射光线和折射光线 光的折射光的反射 斯涅耳定律给出了定义这些光线方向的规则:θ1 = θ3 n1sin θ1 = n2sin θ2 全反射是光信号在光纤中传播的必要条件。 2.光的偏振 光波属于横波,即光的电磁场振动方向与传播方向垂直。如果光波的振动方向始终不变,只是光波的振幅随相位改变,这样的光称为线偏振光,如下图(c)和(d)所示。 从普通光源发出的光不是偏振光,而是自然光,如下图(a)所示。 自然光在传播的过程中,由于外界的影响在各个振动方向的光强不相同,某一个振动方向的光强比其他方向占优势,这种光称为部分偏振光,如下图(b)所示。 光的偏振

3.光的色散 如下图所示,当日光通过棱镜或水雾时会呈现按红橙黄绿青蓝紫顺序排列的彩色光谱。这是由于棱镜材料(玻璃)或水对不同波长(对应于不同的颜色)的光呈现的折射率n不同,从而使光的传播速度不同和折射角度不同,最终使不同颜色的光在空间上散开。 自然光的色散 四、光纤的几何特性 光纤的几何特性包括芯直径、包层直径、纤芯/包层同心度、不圆度等。1.芯直径 芯直径主要是对多模光纤的要求。ITU-T规定,多模光纤的芯直径为50±3μm。 2.包层直径 包层直径指光纤的外径,ITU-T规定,多模及单模光纤的包层直径均要求为125±3μm。 目前,光纤生产制造商已将光纤外径规格从125.0±3μm提高到125.0±1μm。 3.纤芯/包层同心度和不圆度 纤芯/包层同心度是指纤芯在光纤内所处的中心程度。 目前光纤制造商已将纤芯/包层同心度从≤0.8μm的规格提高到≤0.5μm的规格。 不圆度包括芯径的不圆度和包层的不圆度。 ITU-T规定,芯径不圆度≤6%,包层不圆度(包括单模)<2%。 4. 模场直径和有效面积 模场直径是指描述单模光纤中光能集中程度的参量。 有效面积与模场直径的物理意义相同,通过模场直径可以利用圆面积公式计算出有效面积。 模场直径越小,通过光纤横截面的能量密度就越大。当通过光纤的能量密度过大时,会引起光纤的非线性效应,造成光纤通信系统的光信噪比降低,影响系统性能。 因此,对于传输光纤而言,模场直径(或有效面积)越大越好。 下图为模场直径示意图。

第六章光线的光路计算及像差理论

[考试要求] 要求考生了解光线的光路计算公式、影响成像质量的七大几何像差和波像差。 [考试内容] 像差的定义、分类、概念,像差对系统像质所产生的影响及校正的方法,波像差的概念及其表示。 [作业] P128:3、4、7、8、9、10 第六章 光线的光路计算及像差理论 §6-1 概述 一、 基本概念 实际的光学系统都是以一定的宽度的光束对具有一定大小的物体进行成像,由于只有近轴区才具有理想光学系统性质,故不能成完善像,就存在一定的像差。 1、像差定义:实际像与理想像之间的差异。 2、 几何像差的分类: 单色像差:光学系统对单色光成像时所产生的像差。 球差、彗差、像散、场曲、畸变 色差:不同波长成像的位置及大小都有所不同。 色差 位置色差:体现不同色光的成像位置的差异 倍率色差:体现不同色光的成像大小的差异。 3、 像差产生的原因 在第一章我们曾讲过近轴光/实际光的光路计算公式。 ???? ????? +=-+==-=)'' 1('''' 'u i r l i i u u i n n i u r r l i )sin 'sin 1(sin sin sin U I r L I I U U I n n I r h I ' +=''-+=''='= 并且说明这二组公式最大的区别是对于近轴光:是用弧度值取代正弦值而得 到的。即I I ≈sin

但实际上这一取代并不是完全精确的,它存在着一定的误差量值,因为它们仅仅是近似相等,从而导致实际与理想之间存在差异。这就是像差产生的原因。 二、像差谱线的选择――主要取决于接收器的光谱特性 进行像差校正时,只能校正某一波长的单色像差,对于不同的接收器件像差谱线的选择有很大的区别。 1、目视光学系统:一般选择D光或e光校正单色像差,对C F,光校正色差。2、普通照相系统:一般对F光校正单色像差,对' D校正色差。 ,G 3、近红外和近紫外光学系统:一般对C光校正单色像差,对' ,A d校正色差。4、对特殊光学系统:只对使用波长校正单色像差。

第二章 光纤的基本理论

第二章光纤的基本理论 2.1 光纤结构和类型 2.1.1 光纤结构 一、光纤概念:是一种丝状的圆柱光波导,它将光封闭在其内进行传递;通信用的光纤多为石英材料做成的横截面很小的双层同心圆柱体。 二、光纤结构: 图2-1 光纤的结构图 (1)纤芯:纤芯位于光纤的中心部位。 直径d1=4μm~50μm,单模光纤的纤芯为4μm~10μm,多模光纤的纤芯为50μm。 纤芯的成分是高纯度SiO2,掺有极少量的掺杂剂(如GeO2,P2O5),作用是提高纤芯对光的折射率(n1),以传输光信号。 (2)包层:包层位于纤芯的周围。 直径d2=125μm,其成分也是含有极少量掺杂剂的高纯度SiO2。而掺杂剂(如B2O3)的作用则是适当降低包层对光的折射率(n2),使之略低于纤芯的折射率,即n1>n2,它使得光信号封闭在纤芯中传输。 (3)涂覆层:光纤的最外层为涂覆层,包括一次涂覆层,缓冲层和二次涂覆层。 一次涂覆层一般使用丙烯酸酯、有机硅或硅橡胶材料;缓冲层一般为性能良好的填充油膏;二次涂覆层一般多用聚丙烯或尼龙等高聚物。 涂覆的作用是保护光纤不受水汽侵蚀和机械擦伤,同时又增加了光纤的机械强度与可弯曲性,起着延长光纤寿命的作用。涂覆后的光纤其外径约1.5mm。通常所说的光纤为此种光纤。 2.1.2 光纤分类 一、按光波模式分布:

1.多模光纤(Multi-mode, MMF):纤芯内传输多个模式的光波,纤芯直径较大(50μm左右),适合于中容量、中距离通信。 2.单模光纤(Single-Mode Fiber, SMF):纤芯内只传输一个最低模式的光波,纤芯直径很小(几个μm),适用于大容量、长距离通信。 (注:多模光纤又分为阶跃多模光纤和渐变多模光纤,光线在其中的传输情况分为为图2-2(b)和2-2(c);而单模光纤的光线传播应该为2-2(b),图2-2(a)是一种近似情况。) a.光在单模光纤中的传播 b.光在阶跃折射率多模光纤中的传播 c.光在渐变折射率多模光纤中的传播 图2-2光在几种光纤中的传播 二、按折射率分布: 1.阶跃光纤(Step-Index Fiber, SIF):纤芯和包层的折射率分别为不同的常数,在交界面上呈台阶型突变。 2.渐变光纤(Graded-Index Fiber, GIF):又称为梯度光纤,纤芯折射率随纤芯半径变化的关系呈渐变分布的曲线形状。包层折射率为常数。 图2-3 光纤折射率分布 3.其它折射率分布光纤(特种单模光纤): (1)双包层光纤: ①色散平坦光纤(Dispersion Flattened Fiber, DFF) 为了挖掘光纤的潜力,充分利用光纤的有效带宽,最好使光纤在整个光纤通信的长波段(1.3~1.6μm)都保持低损耗和低色散,即研制了一种新型光纤——色散平坦光纤(DFF);为了实现在一个比较宽的波段内得到平坦的低色散特性,采用的方法是利用光纤的不同折射率分布来达到目的。(如图2-4)

第6章 像差与成像质量评价(修改)

第六章像差与成像质量评价 在几何光学中,我们从理想光学系统的观点讨论了光学系统的成像原理。但是,实际光学系统只在近轴区才具有理想光学系统的性质,即只有当孔径和视场很小的情况下才能成完善像,而这样的光学系统实际应用意义不大。

第一节:概述 通过前面的学习,我们了解到:除平面反射镜外,其他的光学系统都不能成完善像,即系统存在像差。像差是指实际光学系统的成像与理想光学系统成像之间的差异。实践和理论都可证明要完全消除像差也是不能的。 但是从另一方面看,由于人眼和其他光接收器本身都具有一定的缺陷,所以也就没有必要把光学系统的像差完全消除。实际上,只要把影响像质的几个主要像差减小到某种容限范围内,即接收器不能察觉时,就可认为光学系统得到了满意的成像效果。 像差,透镜或反射镜所呈的像与原物面貌并非完全相同的现象。造成球面像差的原因:是由于一点光源发散的光线被分聚在不同的点上的缘故。

理想光学系统 *如果通过光学系统后仍然是同心光束,则在会聚点成像:完善像点。*物面上所有点发出的光束都在像方成完善像点:则系统成完善像。*不考虑像差的成像关系即是理想光学系统。 完善成像的物理条件由于物点发出的是球面波,而其完善像点由会聚的球面波形成,而球面波面之间的光程是相等的,所以,完善成像的物理条件是:物点和像点之间所有光线的传播等光程。

完善成像的条件是苛刻的 在实际工程中,满足等光程、满足完善成像条件是很困难的。数学推导得出光学透镜表面是一个4次曲线方程,将该曲线绕光轴旋转得到卵形曲面。它的加工是十分困难的。 在非完善成像的情况下,成像光束不再是同心光束,得到的像点为一个弥散斑。

第二章 激光准直原理

第二章 激光准直原理 第一节 光的衍射现象 一切波动都能绕过障碍物向背后传播的性质。 例如:户外的声波可绕过树木,墙壁等障碍物而传到室内,无线电波能绕过楼房,高山等障碍物传到收音机、电视里等。 波遇到障碍物时偏离原来直线传播的方向的现象称为波的衍射 日常生活中的光的衍射现象不明显的原因??? 3 10a λ 衍射现象不明显 1 -2 -1010 a →≈λ 衍射现象显著 110 a 1 -→≈λ 逐渐过渡为散射 首先我们来做一个实验,让一单色强光源(激光)发出的光波,通过半径为ρ且连续可调的小圆孔后,则在小圆孔后的屏上将发现:当ρ足够大时,在原屏上看到的是一个均与照明的光斑,光斑的大小为圆孔的几何投影。这与光的直线传播想一致。如图: 随着ρ的逐渐变小,屏上的光斑也逐渐减小,但当圆孔减小到一定程度时,屏上的光斑将逐渐扩展,弥漫。 光强出现分布不均匀,呈现出明暗相间的同心圆环,且圆环中心出现时亮时暗的变化。

光斑的扩展弥漫,说明光线偏离了原来的直线传播,绕过障碍物,这种现象称为光的衍射。 再来做一个实验,用一束激光照射宽度连续可调的竖直狭缝,并在数米外放置接受屏,也可以得到衍射图样。 逐渐减狭缝的宽度,屏上亮纹也逐渐减小,当狭缝的宽度小到一定程度,亮纹将沿于狭缝垂直的水平方向扩展。同时出现明暗相间的衍射图样,中央亮纹强度最大,两侧递减,衍射效应明显,缝宽越窄,对入射光束的波限制越厉害,则衍射图样扩展的越大,衍射效应越显著。 一、光的衍射定义: 光绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象 二、产生条件: 障碍物的线度和光的波长可以比拟的时候 三、衍射规律: 1.光在均匀的自由空间传播时,因光波波面未受到限制,则光沿直线传播。当遇 到障碍物时,光波面受限,造成光强扩展,弥漫,分布不均匀,并偏离直线传 播而出现衍射现象。 2.光波面受限越厉害,衍射图样扩展越显著。光波面在衍射屏上哪个方向受限, 接受屏上的衍射图样就在哪个方向扩展。 第二节惠更斯——菲涅耳原理 一、惠更斯原理 1.波面:等相位面 2. 任何时刻波面上的每一点都可作为次波的波源,

光波导练习题

光波导练习题 1. 光波导的光场纵向分量与横向分量具有如下关系,试用纵向场分量表示横向场分量,并证明光波导中不存在TEM 模。(P7和P13) ???? ????? -=?+??=?+??-=??=??t t t t 0t t t t 0t t j ?j ? j j E H z H H E z E E H H E ωε??ωμ??ωεωμz z z z z z 2. 从Maxwell 方程得出Helmholtz 方程。P6 3. 在什么情况下,不宜使用高斯近似法?这时可选用的方法有哪些?P107 4. 用高斯近似法,从公式()0d d 1d d 2222222=??????--++y y y e r m r n k r e r r e β 出发,导出平方律圆非均匀光波导基模模式场的模斑尺寸。 其折射率的分布为()()[]???≥≤?+=a r n a r r f n r n a a 222 21 其中 ()22202a a n n n -=?,()21?? ? ??-=a r r f p109 5. 试说明正规光波导模式的含义及其特点。P8,9什么是模式?模式共分几种?P12为什么正规光波导中才存在模式的概念? 6. 正规光波导中模式的传输常数实质指什么?P10 7. 试说明正规光波导辐射模的含义及其特点。P123 8. 简述矢量法求解模式场的思路。P35 9. 什么是简并度?P3(自己找的百度) 10. 什么是模式截止?模式截止的条件是什么?什么是单模传输?P26圆光纤中TE 01和TM 01模式的截止频率是多少?P40 11. 请简述两层圆均匀阶跃光波导中单模传输条件是什么?P43单模传输时光波导中有几个模式? 12. 若一个二层圆均匀光波导,它的芯半径为m 5μ=a ,46.12=n ,如果单模传输的截止波长为m 29.1μλ=,求它的最大的相对折射率差。P43

光波导理论与技术

光波导 1.集成光学:1)按集成的方式划分:个数集成和功能集成;2)按集成的类型划分:光子集成回路(PIC )和光电子集成回路(OEIC );3)按集成的技术途径划分:单片集成和混合集成;按研究内容划分:导波光学和集成光路。 2.纤维光学(圆波导)和集成光学(平板波导、条形波导)是导波光学的两大分支。 3.传播常数β和有效折射率N=β/k 0=n 1sinθ是研究平板波导的重要参数。 4.平板波导的两种基本模式:TE 模:E y ,H x ,H z ;TM 模:H y ,E x ,E z 。 5.对称平板光波导中,基模无论如何都不截止;非对称的基模可能截止。 6.对于非对称波导,随着波长的增大,波导层厚度的减小,同阶数的TM 模先截止;对于对称波导,同阶数的TE 和TM 模一起截止。 7、一个平板光波导的波导层、衬底层和覆盖层折射率分别为1n 、2n 和3n ,若在波长λ下保持单模传输,波导层的厚度d 应在什么范围内选取? 答案:单模传输的前提条件是非对称波导。 截止厚度计算式()()TE TE c TM TM c m d n n m d n n 22122212arctan 2arctan 2παλππαλπ???+???=?-?????+? ??=?-? 其中TE TM n n n n n n n n n n 2223221242223122312αα?-=?-????-?= ??-??? 所以TE c n n n n d n n 0222322122212arctan 2λπ??- ? ?-??=-,TE c n n n n d n n 1222322122212 arctan 2λππ????-??+ ? ?-??????=-, TM c n n n n n n d n n 0222231223122212 arctan 2λπ????-?? ?-??????=- 单模传输条件TE TE c c TM c d d d d d 01 0?<

相关文档
相关文档 最新文档