文档库 最新最全的文档下载
当前位置:文档库 › 动态内存分配函数

动态内存分配函数

第11章动态数据结构的C语言实现第8章数组第11章动态数据结构的C语言实现

内存映像

两种基本方式

向系统申请大小为size 的内存块,

系统找到一块未占用的内存,将其标记为已占用,

然后把首地址返回,若申请不成功则返回NULL

#include

?问题1:怎么申请一块可存放10个整型变量的内存?

#include

?问题2:void * 是什么?

?void*型指针不指定其指向哪一种类型,可指向任意类型的变量,是一种

?使用时,需强转(Type*)为其他类型

p = malloc( n * sizeof(int) );

#include

?问题2:void * 是什么?

?void*型指针不指定其指向哪一种类型,可指向任意类型的变量,是一种

?使用时,需强转(Type*)为其他类型

p = (int*)malloc( n * sizeof(int) );

int*p1 = NULL;

void *p2;

←空指针p1,与void*类型指针p2不同

p1 值为NULL的指针,即无效指针

p2 可指向任意类型

既然0(NULL)用来表示空指针,那么空指针就是指向地址为0的单元的指针吗?

不一定. 每个C编译器都被允许用不同的方式来表示空指针

空指针与无类型的指针

?空指针的用途

●定义指针时进行初始化,避免对未赋值指针的引用

●在程序中常作为状态比较

动态内存分配函数

#include

calloc()

动态内存分配函数----realloc()

←realloc()用于改变原来分配的存储空间的大小:void *realloc( void *p, unsigned int size);

将指针p所指向的存储空间的大小改为size个字节

函数返回值是新分配的存储空间的首地址

与原来分配的首地址不一定相同

动态内存分配函数

释放(deallocating)内存的方法:

void free(void*p);

?释放由malloc()和calloc()申请的内存块

?p是指向此块内存的指针

?free时系统将此块内存标记为未占用,可被重新分配

主存空间的分配与回收—首次适应法

主存空间的分配与回收— 首次适应法 This manuscript was revised by the office on December 10, 2020.

南通大学操作系统实验课 实验报告 学生姓名 所在院系 专业 学号 指导教师 南通大学 2014年 5 月 16 日主存空间的分配与回收 ——首次适应法 一、实验目的 主存是中央处理机能直接存取指令和数据的存储器,能否合理而有效地使用它,在很大程度上将影响整个计算机系统的性能。 本实验主要熟悉主存的管理方法以及相应的分配与回收算法。所谓分配,就是解决多道程序或多进程如何共享主存空间的问题,以便各个进程能获得所希望的主存空间,正确运行。所谓回收,就是当进程运行完成时,将其所占用的主存空间归还给系统。 二、实验要求 采用空闲区链法管理空闲区,并增加已分配区表。分配算法采用首次适应法。 三、设计思路: (1)采用空闲区链法管理空闲区,并增加已分配区表。分配算法采用首次适应法(内存空闲区的地址按照从小到大的自然顺序排列),实现内存的分配与回收。 (2)设计一个进程申请序列以及进程完成后的释放顺序,实现主存的分配与回收。

(3)进行分配时应该考虑这样3种情况:进程申请的空间小于、等于或大于系统空闲区的大小。回收时应该考虑这样4种情况:释放区上邻、下邻、上下都邻和都不邻接空闲区。 (4)每次的分配与回收都要求把记录内存使用情况的各种数据结构的变化情况以及各进程的申请、释放情况显示出来。 四、主要思想 (1)输入主存空间的最大长度n创建最大长度总和为n的若干空闲区的主存空闲区链; (2)输入待存作业的长度x,从链头开始找第一个合适作业的空闲区:分区长度小于x时,指针后移,继续寻找;分区长度等于x时,分配空间, 修改作业分区;分区长度大于x时,分配空间,修改分区数据。 五、流程图 1.空闲区链的首次适应算法分配流程图 2.空闲区链的首次适应算法回收流程图 六、调试结果 1.内存的分配 2.内存的回收 3.内存清空 七、总结与感悟 说实话我操作系统学得不是很好,一开始看到题目觉得自己要完成这个实验有些难度。好在老师提醒书上有另一道类似题目的程序代码,另外书上也有首次适应法的流程图,可以给我们一些提示。之后我也参考了网上的相关资料,看看别人是如何实现的,他们都是怎么样的思路和方法,与我一开始的想法相比,比我精妙在哪里。最后自己调试时,遇到了许许多多问题和错误,请教了学得比较好的同学、经过不断的修改和完善之后,终于做完实验。 这次的实验使我了解到,平时对知识的积累相当重要,同时也要注重课上老师的讲解,老师在课上的延伸是课本上所没有的,这些知识对于我们对程序的编写有很大的作用,同时,编程也要求我们有足够的耐心,细细推敲。越着急可能就越无法得到我们想要的结果,遇到不会的问题要多多请教,知识是在实践与向别人请教的过程中积累的,所以问是至关重要的,只要肯下功夫很多东西都是可以完成的。操作系统这门课不但重要而且十分有用,我一定要下功夫把这门课学好。

操作系统内存管理复习过程

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和 DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内

存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎

动态内存分配和回收

实验五可变分区存储管理方式的内存分配和回收 一.实验目的 通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉可变分区存储管理的内存分配和回收。 二.实验属性 设计 三.实验内容 1.确定内存空间分配表; 2.采用最优适应算法完成内存空间的分配和回收; 3.编写主函数对所做工作进行测试。 四.实验背景材料 实现可变分区的分配和回收,主要考虑的问题有三个:第一,设计记录内存使用情况的数据表格,用来记录空闲区和作业占用的区域;第二,在设计的数据表格基础上设计内存分配算法;第三,在设计的数据表格基础上设计内存回收算法。 首先,考虑第一个问题,设计记录内存使用情况的数据表格,用来记录空间区和作业占用的区域。 由于可变分区的大小是由作业需求量决定的,故分区的长度是预先不固定的,且分区的个数也随内存分配和回收变动。总之,所有分区情况随时可能发生变化,数据表格的设计必须和这个特点相适应。由于分区长度不同,因此设计的表格应该包括分区在内存中的起始地址和长度。由于分配时空闲区有时会变成两个分区:空闲区和已分分区,回收内存分区时,可能会合并空闲分区,这样如果整个内存采用一张表格记录己分分区和空闲区,就会使表格操作繁琐。分配内存时查找空闲区进行分配,然后填写己分配区表,主要操作在空闲区;某个作业执行完后,将该分区变成空闲区,并将其与相邻的空闲区合并,主要操作也在空闲区。由此可见,内存的分配和回收主要是对空闲区的操作。这样为了便于对内存空间的分配和回收,就建立两张分区表记录内存使用情况,一张表格记录作业占用分区的“己分分区表”;一张是记录空闲区的“空闲区表”。这两张表的实现方法一般有两种:一种是链表形式,一种是顺序表形式。在实验中,采用顺序表形式,用数组模拟。由于顺序表的长度必须提前固定,所以无论是“已分分区表”还是“空闲区表”都必须事先确定长度。它们的长度必须是系统可能的最大项数。 “已分分区表”的结构定义 #define n 10 //假定系统允许的最大作业数量为n struct { float address; //已分分区起始地址 float length; //已分分区长度、单位为字节 int flag; //已分分区表登记栏标志,“0”表示空栏目,实验中只支持一个字符的作业名 }used_table[n]; //已分分区表 “空闲区表”的结构定义 #define m 10 //假定系统允许的空闲区最大为m struct

C语言中多维数组的内存分配和释放

写代码的时候会碰到多维数组的内存分配和释放问题,在分配和释放过程中很容易出现错误。下面贴上一些示例代码,以供参考。 如果要给二维数组(m*n)分配空间,代码可以写成下面: char **a, i; // 先分配m个指针单元,注意是指针单元 // 所以每个单元的大小是sizeof(char *) a = (char **)malloc(m * sizeof(char *)); // 再分配n个字符单元, // 上面的m个指针单元指向这n个字符单元首地址 for(i = 0; i < m; i++) a[i] = (char *)malloc(n * sizeof(char)); (注意红色部分) 释放应该是: int i; for(i=0;i

a = (char ***)malloc(m * sizeof(char **)); for(i = 0; i < m; ++i) a[i] = (char **)malloc(n * sizeof(char *)); for(i = 0; i < m; ++i) for(j = 0; j < n; ++j) a[i][j] = (char *)malloc(p * sizeof(char)); 释放代码为逆过程,具体代码为: int i,j,; for(i = 0; i < m; ++i) for(j = 0; j < n; ++j) free((void *)a[i][j]); for(i = 0; i < m; ++i) free((void *)a[i]); free((void *)a); 三维以上的多维数组的分配和释放,原理与上面的一样。 (转) C中如何为第二维长度固定的二维数组分配内存

操作系统内存动态分配模拟算法

实验四存分配算法 1.实验目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请主存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现是与主存储器的管理方式有关的,通过本实验帮助学生理解在动态分区管理方式下应怎样实现主存空间的分配和回收。 背景知识: 可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离、主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。 2.实验容 采用首次适应算法或循环首次算法或最佳适应算法分配主存空间。 由于本实验是模拟主存的分配,所以当把主存区分配给作业后并不实际启动装入程序装入作业,而用输出“分配情况”来代替。(即输出当时的空闲区说明表及其存分配表) 利用VC++6.0实现上述程序设计和调试操作。 3.实验代码 #include #include using namespace std; //定义存的大小 const int SIZE=64; //作业结构体,保存作业信息 struct Project{ int number; int length; }; //存块结构体,保存存块信息 struct Block{

内存中的各区域的分配

程序中用来存放数据的内存分为四块,其实另有一块用于存放代码,这里我们不讨论,这四块分别是: 1、全局区(静态区)(static):全局变量和静态变量都存储在这块区域,与其他变量的明显区别就是生命周期不同,在程序结束时,系统会释放这块资源 2、文字常量区:常量字符串就是放在这块区域,即是我们常说起的常量池。这块也是在程序结束时由系统释放。 3、栈区(stack):存放函数的参数值,局部变量的值等。这块的数据大家就很熟悉了,在进入作用域时分配占用内存,离开作用域时释放占用内存 4、堆区(heap):一般由程序员分配释放,若程序员不释放,程序结束时可能由系统回收。由于这个原因,在C和C++中就有能产生大量程序员分配但忘记释放的堆区内存,造成可使用内存越来越少,这个被称之为内存泄露。而在java中,因为有了垃圾收集机制,这样的内存会被自动处理掉,所以在java中,反倒不需要程序员去释放内存了。 那么栈和堆的区别到底在哪里呢? 1、内存分配方面: 堆:一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。 栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、申请方式方面: 堆:需要程序员自己申请,并指明大小。在c中malloc函数如p1 = (char *)malloc(10);在C++,java中用new运算符,但是注意p1、p2本身是在栈中的。因为他们还是可以认为是局部变量。 栈:由系统自动分配。例如,声明在函数中一个局部变量int b;系统自动在栈中为b 开辟空间。 3、系统响应方面: 堆:操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样代码中的delete语句才能正确的释放本内存空间。另外由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。 栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。 4、大小限制方面: 堆:是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。 栈:在Windows下, 栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是固定的(是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。 5、效率方面: 堆:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方

动态内存分配

浅析动态内存分配及Malloc/free的实现2011-03-18 22:47一、概述: 动态内存分配,特别是开发者经常接触的Malloc/Free接口的实现,对许多开发者来说,是一个永远的话题,而且有时候也是一个比较迷惑的问题,本文根据自己的理解,尝试简单的探究一下在嵌入式系统中,两类典型系统中动态内存分配以及Malloc/Free的实现机制。 二、内存分配方式 Malloc/Free主要实现的是动态内存分配,要理解它们的工作机制,就必须先了解操作系统内存分配的基本原理。 在操作系统中,内存分配主要以下面三种方式存在: (1)静态存储区域分配。内存在程序编译的时候或者在操作系统初始化的时候就已经分配好,这块内存在程序的整个运行期间都存在,而且其大小不会改变,也不会被重新分配。例如全局变量,static变量等。 (2)栈上的内存分配。栈是系统数据结构,对于进程/线程是唯一的,它的分配与释放由操作系统来维护,不需要开发者来 [url=javascript:;]管理[/url] 。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时,这些存储单元会被自动释放。栈内存分配运算内置于处理器的指令集中,效率很高,不同的操作系统对栈都有一定的限制。 (3)堆上的内存分配,亦称动态内存分配。程序在运行的期间用malloc申请的内存,这部分内存由程序员自己负责管理,其生存期由开发者决定:在何时分配,分配多少,并在何时用free来释放该内存。这是唯一可以由开发者参与管理的内存。使用的好坏直接决定系统的性能和稳定。 三、动态内存分配概述 首先,对于支持虚拟内存的操作系统,动态内存分配(包括内核加载,用户进程加载,动态库加载等等)都是建立在操作系统的虚拟内存分配之上的,虚拟内存分配主要包括: 1、进程使用的内存地址是虚拟的(每个进程感觉自己拥有所有的内存资源),需要经过页表的映射才能最终指向系统实际的物理地址。 2、主内存和磁盘采用页交换的方式加载进程和相关数据,而且数据何时加载到主内存,何时缓存到磁盘是OS调度的,对应用程序是透明的。 3、虚拟存储器给用户程序提供了一个基于页面的内存大小,在32位系统中,用户可以页面大小为单位,分配到最大可以到4G(内核要使用1G或2G等内存地址)字节的虚拟内存。 4、对于虚拟内存的分配,操作系统一般先分配出应用要求大小的虚拟内存,只有当应用实际使用时,才会调用相应的操作系统接口,为此应用程序分配大小以页面为单位的实际物理内存。 5、不是所有计算机系统都有虚拟内存机制,一般在有MMU硬件支持的系统中才有虚拟内存的实现。许多嵌入式操作系统中是没有虚拟内存机制的,程序的动态分配实际是直接针对物理内存进行操作的。许多典型的实时嵌入式系统如Vxworks、Uc/OS 等就是这样。 四、动态内存分配的实现 由于频繁的进行动态内存分配会造成内存碎片的产生,影响系统性能,所以在不同的系统中,对于动态内存管理,开发了许多不同的算法(具体的算法实现不想在这里做详细的介绍,有兴趣的读者可以参考Glib C 的源代码和附录中的资料)。不同的操作系统有不同的实现方式,为了程序的可移植性,一般在开发语言的库中都提供了统一接口。对于C语言,在标准C库和Glib 中,都实现了以malloc/free为接口的动态内存分配功能。也就是说,malloc/free库函索包装了不同操作系统对动态内存管理的不同实现,为开发者提供了一个统一的开发环境。对于我们前面提到的一些嵌入式操作系统,因为实时系统的特殊要求(实

操作系统实验内存分配

西安邮电大学 (计算机学院) 课内实验报告 实验名称:内存管理 专业名称:软件工程 班级: 学生姓名: 学号(8位): 指导教师: 实验日期:

实验五:进程 1.实验目的 通过深入理解区管理的三种算法,定义相应的数据结构,编写具体代码。充分模拟三种算法的实现过程,并通过对比,分析三种算法的优劣。 (1)掌握内存分配FF,BF,WF策略及实现的思路; (2)掌握内存回收过程及实现思路; (3)参考给出的代码思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。 3.实验过程: 创建进程:

删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式:

wf最差匹配算法排列方式: 4.实验心得: 这次实验实验时间比较长,而且实验指导书中对内存的管理讲的很详细,老师上课的时候也有讲的很详细,但是代码比较长,刚开始的时候也是不太懂,但是后面经过和同学一起商讨,明白几种算法的含义: ①首次适应算法。在采用空闲分区链作为数据结构时,该算法要求空闲分区链表以地址递增的次序链接。在进行内存分配时,从链首开始顺序查找,直至找到一个能满足进程大小要求的空闲分区为止。然后,再按照进程请求内存的大小,从该分区中划出一块内存空间分配给请求进程,余下的空闲分区仍留在空闲链中。 ②循环首次适应算法。该算法是由首次适应算法演变而形成的,在为进程分配内存空间时,从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,并从中划出一块与请求的大小相等的内存空间分配给进程。 ③最佳适应算法将空闲分区链表按分区大小由小到大排序,在链表中查找第一个满足要求的分区。 ④最差匹配算法将空闲分区链表按分区大小由大到小排序,在链表中找到第一个满足要求的空闲分区。 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include

《动态分配内存与数据结构》课后习题

《动态分配内存与数据结构》习题 学号姓名 一、选择题 1、是一种限制存取位置的线性表,元素的存取必须服从先进先出的规则。 A.顺序表B.链表C.栈D.队列 2、是一种限制存取位置的线性表,元素的存取必须服从先进后出的规则。 A.顺序表B.链表C.栈D.队列 3、与顺序表相比,链表不具有的特点是。 A.能够分散存储数据,无需连续内存空间 B.插入和删除无需移动数据 C.能够根据下标随机访问 D.只要内存足够,没有最大长度的限制 4、如果通过new运算符动态分配失败,返回结果是。 A.-1 B.0 C.1D.不确定 5、实现深复制中,不是必须自定义的。 A.构造函数B.复制构造函数 C.析构函数D.复制赋值操作符函数 6、分析下列代码是否存在问题,选择合适的选项:。 int main(void) { int *p = new int [10]; p = new int [10]; delete [] p; p = NULL; return 0; } A.没有问题 B.有内存泄漏 C.存在空悬指针 D.存在重复释放同一空间 7、通过new运算符动态分配的对象,存储于内存中的。 A.全局变量与静态变量区 B.代码区 C.栈区 D.堆区 8、下列函数中,可以是虚函数。 A.构造函数 B.析构函数 C.静态成员函数 D.友元函数 9、关于通过new运算符动态创建的对象数组,下列判断中是错误的。 A. 动态创建的对象数组只能调用默认构造函数 B. 动态创建的对象数组必须调用delete []动态撤销 C. 动态创建的对象数组的大小必须是常数或常变量 D. 动态创建的对象数组没有数组名 10、顺序表不具有的特点是 A. 元素的存储地址连续 B. 存储空间根据需要动态开辟,不会溢出 C. 可以直接随机访问元素 D. 插入和删除元素的时间开销与位置有关 11、假设一个对象Ob1的数据成员是指向动态对象的指针,如果采用浅复制的方式复制该对象得到对象Ob2,那么在析构对象Ob1和对象Ob2时会的问题。 A. 有重复释放 B. 没有 C. 内存泄漏 D. 动态分配失败 12、假设对5个元素A、B、C、D、E进行压栈或出栈的操作,压栈的先后顺序是ABCDE,则出栈的先后顺序不可能是。 A. ABCDE B. EDCBA C. EDBCA D. BCADE 13、假设对4个元素A、B、C、D、E进行压栈或出栈的操作,压栈的先后顺序是ABCD,则出栈的先后顺序不可能是。 A. ABCD B. DCBA C. BCAD D. DCAB 14、通过new运算符动态创建的对象的存放在中。 A. 代码区 B. 栈区 C. 自由存储区 D. 全局数据区 15、链表不具有的特点是。 A. 元素的存储地址可以不连续 B. 存储空间根据需要动态开辟,不会溢出 C. 可以直接随机访问元素 D. 插入和删除元素的时间开销与位置无关 16、有关内存分配和释放的说法,下面当中错误的是 A.new运算符的结果只能赋值给指针变量 B.动态创建的对象数组必须调用delete []动态撤销 C.用new分配的空间位置是在内存的栈区 D.动态创建的对象数组没有数组名 17、关于栈,下列哪项不是基本操作 A.删除栈顶元素 B.删除栈底元素 C.判断栈是否为空 D.把栈置空 18、关于链表,说法错误的是

频繁分配释放内存导致的性能问题分析

内核态与用户态是操作系统的两种运行级别,intel cpu提供Ring0-Ring3三种级别的运行模式。Ring0级别最高,Ring3最低。 当一个任务(进程)执行系统调用而陷入内核代码中执行时,我们就称进程处于内核运行态(或简称为内核态)。此时处理器处于特权级最高的(0级) 内核代码中执行。当进程处于内核态时,执行的内核代码会使用当前进程的内核栈。每个进程都有自己的内核栈。当进程在执行用户自己的代码时,则称其处于用户运行态(用户态)。即此时处理器在特权级最低的(3级)用户代码中运行。 在内核态下CPU可执行任何指令,在用户态下CPU只能执行非特权指令。当CPU处于内核态,可以随意进入用户态;而当CPU处于用户态时,用户从用户态切换到内核态只有在系统调用和中断两种情况下发生,一般程序一开始都是运行于用户态,当程序需要使用系统资源时,就必须通过调用软中断进入内核态。 现象 1 压力测试过程中,发现被测对象性能不够理想,具体表现为: 进程的系统态CPU消耗20,用户态CPU消耗10,系统idle大约70 2 用ps -o majflt,minflt -C program命令查看,发现majflt每秒增量为0,而minflt每秒增量大于10000。 初步分析 majflt代表major fault,中文名叫大错误,minflt代表minor fault,中文名叫小错误。 这两个数值表示一个进程自启动以来所发生的缺页中断的次数。 当一个进程发生缺页中断的时候,进程会陷入内核态,执行以下操作: 检查要访问的虚拟地址是否合法 查找/分配一个物理页 填充物理页内容(读取磁盘,或者直接置0,或者啥也不干) 建立映射关系(虚拟地址到物理地址) 重新执行发生缺页中断的那条指令 如果第3步,需要读取磁盘,那么这次缺页中断就是majflt,否则就是minflt。 此进程minflt如此之高,一秒10000多次,不得不怀疑它跟进程内核态cpu消耗大有很大关系。 分析代码 查看代码,发现是这么写的:一个请求来,用malloc分配2M内存,请求结束后free这块内存。看日志,发现分配内存语句耗时10us,平均一条请求处理耗时1000us 。原因已找到! 虽然分配内存语句的耗时在一条处理请求中耗时比重不大,但是这条语句严重影响了性能。要解释清楚原因,需要先了解一下内存分配的原理。 内存分配的原理 从操作系统角度来看,进程分配内存有两种方式,分别由两个系统调用完成:brk和mmap (不考虑共享内存)。brk是将数据段(.data)的最高地址指针_edata往高地址推,mmap是在进程的虚拟地址空间中(一般是堆和栈中间)找一块空闲的。这两种方式分配的都是虚拟内存,没有分配物理内存。在第一次访问已分配的虚拟地址空间的时候,发生缺页中断,操作系统负责分配物理内存,然后建立虚拟内存和物理内存之间的映射关系。

计算机操作系统内存分配实验报告记录

计算机操作系统内存分配实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

一、实验目的 熟悉主存的分配与回收。理解在不同的存储管理方式下,如何实现主存空间的分配与回收。掌握动态分区分配方式中的数据结构和分配算法及动态分区存储管理方式及其实现过程。 二、实验内容和要求 主存的分配和回收的实现是与主存储器的管理方式有关的。所谓分配,就是解决多道作业或多进程如何共享主存空间的问题。所谓回收,就是当作业运行完成时将作业或进程所占的主存空间归还给系统。 可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并且分区个数是可以调整的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。 实验要求使用可变分区存储管理方式,分区分配中所用的数据结构采用空闲分区表和空闲分区链来进行,分区分配中所用的算法采用首次适应算法、最佳适应算法、最差适应算法三种算法来实现主存的分配与回收。同时,要求设计一个实用友好的用户界面,并显示分配与回收的过程。同时要求设计一个实用友好的用户界面,并显示分配与回收的过程。 三、实验主要仪器设备和材料 实验环境 硬件环境:PC或兼容机 软件环境:VC++ 6.0 四、实验原理及设计分析 某系统采用可变分区存储管理,在系统运行当然开始,假设初始状态下,可用的内存空间为640KB,存储器区被分为操作系统分区(40KB)和可给用户的空间区(600KB)。 (作业1 申请130KB、作业2 申请60KB、作业3 申请100KB 、作业2 释放 60KB 、作业4 申请 200KB、作业3释放100KB、作业1 释放130KB 、作业5申请140KB 、作业6申请60KB 、作业7申请50KB) 当作业1进入内存后,分给作业1(130KB),随着作业1、2、3的进入,分别分配60KB、100KB,经过一段时间的运行后,作业2运行完毕,释放所占内存。此时,作业4进入系统,要求分配200KB内存。作业3、1运行完毕,释放所占内存。此时又有作业5申请140KB,作业6申请60KB,作业7申请50KB。为它们进行主存分配和回收。 1、采用可变分区存储管理,使用空闲分区链实现主存分配和回收。 空闲分区链:使用链指针把所有的空闲分区链成一条链,为了实现对空闲分区的分配和链接,在每个分区的起始部分设置状态位、分区的大小和链接各个分区的前向指针,由状态位指示该分区是否分配出去了;同时,在分区尾部还设置有一后向指针,用来链接后面的分区;分区中间部分是用来存放作业的空闲内存空间,当该分区分配出去后,状态位就由“0”置为“1”。 设置一个内存空闲分区链,内存空间分区通过空闲分区链来管理,在进行内存分配时,系统优先使用空闲低端的空间。 设计一个空闲分区说明链,设计一个某时刻主存空间占用情况表,作为主存当前使用基础。初始化空间区和已分配区说明链的值,设计作业申请队列以及作业完成后释放顺序,实现主存的分配和回收。要求每次分配和回收后显示出空闲内存分区链的情况。把空闲区说明

WINCE驱动开发中几个内存分配函数比较

【转】LocalAlloc,VirtualAlloc,malloc,new的异同首先明白几个概念:虚拟内存是从硬盘置换出来的,堆本身就是内存,程序运行时,可用内存=物理内存+虚拟内存。虚拟内存一般用文件来保存数据,虚拟内存的出现主要是因为以前内存不够(16M的内存刚出来的时候可是天价啊),磁盘相对便宜一些,所以聪明的系统设计者就把设计了虚拟内存,在程序运行的时候把那些很久没有被访问过的(可能以后也不会用到)内存映射到文件里面去(以后需要的时候再读进内存),把内存腾出来给真正需要执行的代码和数据,这样看起来可用内存就比物理内存多了。 HeapAlloc()是堆分配内存函数,查看c,c++的malloc,new函数的代码,可以看到就是对HeapAlloc()函数的封装,在堆上可以动态分配内存。 1. 首先我们来看HeapAlloc: MSDN上的解释为:HeapALloc是从堆上分配一块内存,且分配的内存是不可移动的(即如果没有连续的空间能满足分配的大小,程序不能将其他零散的空间利用起来,从而导致分配失败),该分配方法是从一指定地址开始分配,而不像GloabalAlloc是从全局堆上分配,这个有可能是全局,也有可能是局部。函数原型为: LPVOID HeapAlloc( HANDLE hHeap, DWORD dwFlags, SIZE_T dwBytes ); hHeap是进程堆内存开始位置。 dwFlags是分配堆内存的标志。包括HEAP_ZERO_MEMORY,即使分配的空间清零。 dwBytes是分配堆内存的大小。 其对应的释放空间函数为HeapFree。 2. 再看GlobalAlloc:该函数用于从全局堆中分配出内存供程序使用,函数原型为: HGLOBAL GlobalAlloc( UINT uFlags, SIZE_T dwBytes ); uFlags参数含义 GHND GMEM_MOVEABLE和GMEM_ZEROINIT的组合 GMEM_FIXED 分配固定内存,返回值是一个指针 GMEM_MOVEABLE 分配活动内存,在Win32中,内存块不能在物理内存中移动,但能在默认的堆中移动。返回值是内存对象的句柄,用函数GlobalLock可将句柄转化为指针 GMEM_ZEROINIT 将内存内容初始化为零 GPTR GMEM_FIXED和GMEM_ZEROINIT的组合

内存的申请与释放

实习四 主存储器空间的分配和回收 一、实习内容 主存储器空间的分配和回收。 二、实习目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现虽与主存储器的管理方式有关的,通过本实习帮助学生理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。 三、实习题目 本实习模拟在两种存储管理方式下的主存分配和回收。 第一题:在可变分区管理方式下采用最先适应算法实现主存分配和实现主存回收。 [提示]: 可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离,主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。例如: 为了 说明哪些区是空闲的,可以用来装入新作业,必须要有一张空闲区说明表,格式如下: 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区;另一种是“空表目”状态,表示表中对应的登记项目是空白(无效),可用

来登记新的空闲区(例如,作业撤离后,它所占的区域就成了空闲区,应找一个“空表目”栏登记归还区的起址和长度且修改状态)。由于分区的个数不定,所以空闲区说明表中应有适量的状态为“空表目”的登记栏目,否则造成表格“溢出”无法登记。 上述的这张说明表的登记情况是按提示(1)中的例所装入的三个作业占用的主存区域后填写的。 (2) 当有一个新作业要求装入主存时,必须查空闲区说明表,从中找出一个足够大的空闲区。有时找到的空闲区可能大于作业需要量,这时应把原来的空闲区变成两部分:一部分分给作业占用;另一部分又成为一个较小的空闲区。为了尽量减少由于分割造成的空闲区,而尽量保存高地址部分有较大的连续空闲区域,以利于大型作业的装入。为此,在空闲区说明表中,把每个空闲区按其地址顺序登记,即每个后继的空闲区其起始地址总是比前者大。为了方便查找还可使表格“紧缩”,总是让“空表目”栏集中在表格的后部。 (3) 采用最先适应算法(顺序分配算法)分配主存空间。 按照作业的需要量,查空闲区说明表,顺序查看登记栏,找到第一个能满足要求的空闲区。当空闲区大于需要量时,一部分用来装入作业,另一部分仍为空闲区登记在空闲区说明表中。 由于本实习是模拟主存的分配,所以把主存区分配给作业后并不实际启动装入程序装入作业,而用输出“分配情况”来代替。最先适应分配算法如图4-1。 (4) 当一个作业执行结束撤离时,作业所占的区域应该归还,归还的区域如果与其它空闲区相邻,则应合成一个较大的空闲区,登记在空闲区说明表中。例如,在提示(1)中列举的情况下,如果作业2撤离,归还所占主存区域时,应与上、下相邻的空闲区一起合成一个大的空闲区登记在空闲区说明表中。归还主存时的回收算法如图4-2。 (5) 请按最先适应算法设计主存分配和回收的程序。然后按(1)中假设主存中已装入三个作业,且形成两个空闲区,确定空闲区说明表的初值。现有一个需要主存量为6K的作业4申请装入主存;然后作业3撤离;再作业2撤离。请你为它们进行主存分配和回收,把空闲区说明表的初值以及每次分配或回收后的变化显示出来或打印出来。 第二题:在分页式管理方式下采用位示图来表示主存分配情况,实现主存空间的分配和回收。 [提示]: (1) 分页式存储器把主存分成大小相等的若干块,作业的信息也按块的大小分页,作业装入主存时可把作业的信息按页分散存放在主存的空闲块中,为了说明主存中哪些块已经被占用,哪些块是尚未分配的空闲块,可用一张位示图来指出。位示图可由若干存储单元来构成,其中每一位与一个物理块对应,用0/1表示对应块为空闲/已占用。 (2) 假设某系统的主存被分成大小相等的64块,则位示图可用8个字节来构成,另用一单元记录当前空闲块数。如果已有第0,1,4,5,6,9,11,13,24,31,共10个主存

操作系统实验内存分配

精心整理西安邮电大学 (计算机学院) 课内实验报告 1. (1 (2 (3 原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。

3.实验过程: 创建进程: 删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式: wf最差匹配算法排列方式: 4.实验心得: 明 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include #include

#define PROCESS_NAME_LEN 32 //进程名长度 #define MIN_SLICE 10 //最小碎片的大小#define DEFAULT_MEM_SIZE 1024 //内存大小 #define DEFAULT_MEM_START 0 //起始位置 /*内存分配算法*/ #define MA_FF 1 #define MA_BF 2 #define MA_WF 3 /*描述每一个空闲块的数据结构*/ struct free_block_type { }; /* /* { }; /* /* void display_menu(); int set_mem_size(); void set_algorithm(); void rearrange(int algorithm); int rearrange_WF(); int rearrange_BF(); int rearrange_FF(); int new_process(); int allocate_mem(struct allocated_block *ab);

C语言内存分配函数

SDRAM_BANK2地址分配: /********************************固定部分*************************************/ 屏幕层1(1280*800) 0xD0000000 - - 0xD01F4000 一层屏幕占0x1F4000 屏幕层2(1280*800) 0xD01F4000 - - 0xD03E8000 一层屏幕占0x1F4000 108音符+刷新(36*36) 0xD0400000 - - 0xD0445154 一个音符占0xA24 10根手指+按下(110*100) 0xD0445154 - - 0xD04B0864 一根手指占0x55F4 除拇指外四指覆盖层(50*50) 0xD04B0864 - - 0xD04B5694 一个覆盖层占0x138C 手腕连同背景(300*200) 0xD04B5694 - - 0xD04F001C 一个背景占0x3A988 按键图标背景(1280*60) 0xD04F001C - - 0xD0515820 一个背景占0x25804 AB点循环+取消循环图标(96*41) 0xD0515820 - - 0xD05195A8 一个图标占0x1EC4 AB断点图标(41*30) 0xD05195A8 - - 0xD051A8E8 一个图标占0x09A0 其他按键图标(48*41) 0xD051A8E8 - - 0xD052DCB8 一个图标占0xF64 沙漏(150*120) 0xD052DCB8 - - 0xD053695C 一个沙漏占0x8CA4 卷轴(480*30) 0xD053695C - - 0xD053D9E0 一个卷轴占0x7084 倒计时(30*30) 0xD053D9E0 - - 0xD0542E70 一个倒计时图标占0x70C xpt一行变两行xpesqe (5000) 0xD0542E70 - - 0xD05789D0 一个结构体占0x2C xpt排序xptall (5000) 0xD05789D0 - - 0xD05E4090 一个结构体占0x58 /********************************变动部分*************************************/ 初始化选歌曲目(96*64) 0xD05F0000 - - 0xD06740B0 一首选歌曲目占0x3004 初始化界面图标(1280*60) 0xD06740B0 - - 0xD06998B4 一个图标占0x25804 乐谱上、下部分(640*219) 0xD06998B4 - - 0xD0E15D24 一个结构体占0x44704 乐谱中间部分(640*42) 0xD0E15D24 - - 0xD0ECD95C 一个结构体占0xD024 歌曲名(1280*60) 0xD0ECD95C - - 0xD0EF3160 一个歌曲名占0x25804

动态内存申请与释放

动态内存申请与释放 (1)malloc方式 申请一维内存时,格式为: 类型表示符*变量名; 变量名= (类型标识符*)malloc(sizeof(类型标识符)*数组大小); 在使用完该方式申请的内存后,必须用free()函数及时释放,格式为:free(变量名) 变量名= NULL; 当申请二维内存时,格式为: 类型标识符**变量名; 变量名= (类型标识符**)malloc(sizeof(类型标识符*)*数组行大小); for(int i=0;i<数组行大小;i++) 变量名[i] = (类型标识符*)malloc(sizeof(类型标识符)*数组列大小);释放格式: free(变量名); 变量名= NULL; (2)new方式 当申请一维内存时,格式为: 类型标识符*变量名; 变量名= new 类型标识符[数组大小];

使用该方式申请的内存后,必须用delete()函数及时释放格式: delete[] 变量名; 变量名= NULL; 当申请二维内存时,格式为: 类型标识符**变量名; 变量名= new 类型标识符*[数组行大小]; for(int i=0;i<数组行大小;i++) 变量名[i] = new 类型标识符[数组列大小]; 释放格式: delete[] 变量名; 变量名= NULL; 例子: 申请二维内存 代码: 1 #include 2 #include 3 using namespace std; 4 5 int main() 6 { 7 int row;

8 int col = 2; 9 cout<<"please input row:"<>row; 11 int **memo; 12 memo = (int **)malloc(sizeof(int*)*row); 13 for(int k=0;k>memo[i][j]; 19 } 20 cout<<"标号——————————————值"<

相关文档