文档库 最新最全的文档下载
当前位置:文档库 › Milling of rice grains- Effects of starch -flour structures on gelatinization and pasting properties

Milling of rice grains- Effects of starch -flour structures on gelatinization and pasting properties

Milling of rice grains- Effects of starch -flour structures on gelatinization and pasting properties
Milling of rice grains- Effects of starch -flour structures on gelatinization and pasting properties

Carbohydrate Polymers 92 (2013) 682–690

Contents lists available at SciVerse ScienceDirect

Carbohydrate

Polymers

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c a r b p o

l

Milling of rice grains:Effects of starch/?our structures on gelatinization and pasting properties

Jovin Hasjim a ,?,Enpeng Li a ,Sushil Dhital a ,b

a The University of Queensland,Centre for Nutrition and Food Sciences,Queensland Alliance for Agriculture and Food Innovation,Brisbane,QLD 4072,Australia b

The University of Queensland,ARC Centre of Excellence in Plant Cell Walls,Brisbane,QLD 4072,Australia

a r t i c l e

i n f o

Article history:

Received 26July 2012Received in revised form 10September 2012

Accepted 11September 2012

Available online 16 September 2012

Keywords:Rice

Starch structure

Molecular size distribution Granule damage

Gelatinization properties Pasting properties

a b s t r a c t

Starch gelatinization and ?our pasting properties were determined and correlated with four different levels of starch structures in rice ?our,i.e.?our particle size,degree of damaged starch granules,whole molecular size,and molecular branching structure.Onset starch-gelatinization temperatures were not signi?cantly different among all ?our samples,but peak and conclusion starch-gelatinization tempera-tures were signi?cantly different and were strongly correlated with the ?our particle size,indicating that rice ?our with larger particle size has a greater barrier for heat transfer.There were slight differences in the enthalpy of starch gelatinization,which are likely associated with the disruption of crystalline structure in starch granules by the milling processes.Flours with volume-median diameter ≥56?m did not show a de?ned peak viscosity in the RVA viscogram,possibly due to the presence of native protein and/or cell-wall structure stabilizing the swollen starch granules against the rupture caused by shear during heating.Furthermore,RVA ?nal viscosity of ?our was strongly correlated with the degree of dam-age to starch granules,suggesting the contribution of granular structure,possibly in swollen form.The results from this study allow the improvement in the manufacture and the selection criteria of rice ?our with desirable gelatinization and pasting properties.

? 2012 Elsevier Ltd. All rights reserved.

1.Introduction

Rice (Oryza sativa L.)is one of the most widely grown cereal crops for food.Rice heads are mostly consumed as cooked pol-ished grains for staple food in many countries,whereas broken rice grains are commonly milled or ground into ?our and used as an ingredient in baby foods,noodles,puddings,and many Asian

Abbreviations:ANOVA,Analysis of variance;AUC,Area under the curve;CM10C2,Rice ?our produced by two cycles of 10-min cryogenic milling;CM10C3,Rice ?our produced by three cycles of 10-min cryogenic milling;CM10C4,Rice ?our produced by four cycles of 10-min cryogenic milling;CM5C1,Rice ?our produced by one cycle of 5-min cryogenic milling;CM5C2,Rice ?our produced by two cycles of 5-min cryogenic milling;DP,Degree of polymerization;DSC,Differential scan-ning calorimetry/calorimeter; H ,Enthalpy of starch gelatinization;HM1000P1,Rice ?our produced by one pass through a hammer mill with 1000-?m screen;HM1500P1,Rice ?our produced by one pass through a hammer mill with 1500-?m screen;HM500P1,Rice ?our produced by one pass through a hammer mill with 500-?m screen;HM500P2,Rice ?our produced by two passes through a hammer mill with 500-?m screen;HM500P3,Rice ?our produced by three passes through a

hammer mill with 500-?m screen;N de (ˉX

),SEC number molecular size distribution of debranched starch;R ,Correlation coef?cient;ˉR

h ,Average hydrodynamic radius;RVA,Rapid visco analyser;SEC,Size exclusion chromatography;T c ,Conclusion starch-gelatinization temperature;T o ,Onset starch-gelatinization temperature;T p ,

Peak starch-gelatinization temperature;ˉX

,Average DP.?Corresponding author.Tel.:+61733651865;fax:+61733651188.E-mail address:j.hasjim@https://www.wendangku.net/doc/6614114882.html,.au (J.Hasjim).

cuisines.The largest component in rice grains is starch (>80%,dry weight basis),which is an important factor determining the quality of rice products.The structures of starch in rice grains can be simpli?ed into six hierarchical levels (Dona,Pages,Gilbert,&Kuchel,2010;Tran et al.,2011):individual linear branches of starch molecules (Level 1),macromolecular branched structure (Level 2),alternating crystalline and amorphous lamellae (Level 3),growth rings (Level 4),individual starch granules (Level 5),and a whole grain (Level 6).Although a whole rice grain contains not only starch granules,but also non-starch components,including lipids,proteins,and non-starch polysaccharides,it is included as one of the starch structural levels in the present study due to the fact that the interactions between starch and non-starch compo-nents,such as entrapment by cell-wall or protein matrices and starch–lipid complex,can affect the structures and properties of starch.Levels 1and 2are the molecular structure and comprise mainly two types of glucose polymers,namely highly branched amylopectin with a larger number of short branches and smaller amylose with few long branches.Furthermore,these six levels are not the only levels of starch structures in the grains.There are other levels,including superhelical (Oostergetel &van Bruggen,1993)and blocklet structures (Gallant,Bouchet,&Baldwin,1997),which are excluded here as they are not commonly studied and might complicate the discussion of the results from the present study.

0144-8617/$–see front matter ? 2012 Elsevier Ltd. All rights reserved.https://www.wendangku.net/doc/6614114882.html,/10.1016/j.carbpol.2012.09.023

J.Hasjim et al./Carbohydrate Polymers92 (2013) 682–690683

Milling or grinding to break cereal grains(Level6starch struc-ture)into?our can cause damage to starch granules(Level5 structure)(Dhital,Shrestha,&Gidley,2010a;Hasjim,Srichuwong, Scott,&Jane,2009;Tran et al.,2011),disruption of starch crystalline lamellae(Level3structure)(Dhital,Shrestha,Flanagan,Hasjim,& Gidley,2011;Morrison,Tester,&Gidley,1994),and degradation of starch molecules(Levels1and2structures)(Dhital et al.,2011; Morrison&Tester,1994;Tran et al.,2011;Yin&Stark,1988). It is well documented that grinding of isolated starch granules alters starch gelatinization and pasting properties.Gelatinization temperature,enthalpy of gelatinization,and RVA pasting viscos-ity decrease with the increase of grinding time(Chen,Lii,&Lu, 2003;Dhital et al.,2010a,2011;Han,Campanella,Mix,&Hamaker, 2002;Morrison et al.,1994),which is associated with the damage to starch granules(Level5structure)and/or the disruption of starch crystalline lamellae(Level3structure).Grinding of isolated starch granules,although it allows the study of grinding effects on starch structures and properties without the interference from the non-starch components in cereal grains,is not a common practice in food industry and does not replicate the grinding of cereal grains, where the protein and cell-wall matrices in the grains may provide protection to starch granules against structural degradation during grinding,and the size of grains(mm)is much larger than the size of isolated starch granules(?m).Furthermore,the use of ground isolated starch granules neglects the effects of?our particle size (Level6starch structure)on starch gelatinization and pasting prop-erties,which is important in understanding the cooking quality of ?our.Hence,it is crucial to study the effects of grinding on starch gelatinization and pasting properties using?our because of the complexity in the starch structures in grains and?our compared with those of isolated starch granules.

Many studies have shown the effects of?our particle size (Level6starch structure)(Mahasukhonthachat,Sopade,&Gidley, 2010;Marshall,1992),damaged starch granules(Level5structure) (Dhital et al.,2011,2010a;Morrison et al.,1994),and molec-ular structure(Levels1and2structures)(Srichuwong,Sunarti, Mishima,Isono,&Hisamatsu,2005a,2005b;Vandeputte,Derycke, Geeroms,&Delcour,2003)separately on starch gelatinization properties and starch or?our pasting properties.However,exist-ing literatures to date have not addressed the starch structure–gelatinization/pasting property relationships at four different lev-els of starch structures in a single study.Furthermore,it is not well understood whether the effects of the?our particle size is(par-tially or completely)contributed by the damage to starch granules and/or the degradation of starch molecular structure.The objective of this study is to understand which level of starch structures is the dominant factor determining the starch gelatinization properties of rice?our and?our pasting properties.This will provide a better insight in the effects of?our particle size,damaged starch granules, and molecular degradation,as separate entities,on the properties of rice?our.

In a previous study(Tran et al.,2011),a series of rice?ours were produced from rice grains using cryogenic milling and ham-mer milling.The resulting?ours had different?our particle sizes, degrees of damaged starch granules,and degrees of molecular degradation as summarized in Table1.The hammer-milling pro-cess resulted in a greater damage to starch granules(Level5 structure)than the cryogenic-milling process when the grains were ground to a similar volume-median?our particle diameter(Level 6structure).Starch molecular structure(Levels1and2structures) was little or not affected by the cryogenic-milling process,whereas the degradation of both amylopectin and amylose molecules was clearly observed in the hammer-milled?ours as analyzed using size exclusion chromatography(SEC)(Supplementary Data Figure S1). The preferential cleavage of longer branch chains with degree of polymerization(DP)>10,000,such as those of amylose,during the grinding of rice grains,especially by the hammer-milling process, was shown using the method of Vilaplana and Gilbert(2010),which reduces the SEC number molecular size distribution of debranched starch(individual branches,Level1structure)to a single param-eter.These rice?ours were used in the present study to provide variations in starch structures at four different levels in order to achieve the aforementioned objective of the study.

2.Materials and methods

2.1.Materials

Polished long-grain rice grains were purchased from a local gro-cery store.The starch content of the rice grains was83%(w/w, dry?our basis)as determined by Total Starch(AA/AMG)assay kit (Megazyme International Ltd.,Co.Wicklow,Ireland).The amylose content was15%(w/w,dry starch basis)as determined from the ratio of the area under the curve(AUC)of amylose branches to the total AUC of both amylose and amylopectin branches in the SEC weight molecular size distribution of enzymatically debranched starch(Supplementary Data Figure S1A).The grains were ground into?our using cryogenic or hammer milling as described by Tran et al.(2011).The cryogenic milling of rice grains was performed using a Freezer/Mill6870(SPEX CertiPrep,Metuchen,NJ,USA)at 10s?1in liquid nitrogen bath in cycles of5-and10-min to total cryogenic milling times of5,10,20,30,and40min.The hammer milling of rice grains was performed by passing the rice grains through a hammer mill(Janke&Kunkel,IKA-Labortechnik,Staufen, Germany)with500-,1000-,or1500-?m screen at ambient temper-ature.The temperature of the rice?our immediately after passing through the hammer mill with500-?m screen was about40–45?C, which should minimize any heat damage by hammer milling on?our/starch structures.The cryogenic-and hammer-milling treatments are summarized in Table1along with the structural attributes of the resulting rice?ours as determined in the previous study(Tran et al.,2011):volume-median diameter of?our parti-cles(Level6starch structure)analyzed using a Mastersizer2000 with Hydro MU(Malvern Instruments Ltd.,Malvern,UK),damage to starch granules(Level5starch structure)analyzed using Starch Damage assay kit(Megazyme International Ltd.),average hydro-dynamic radius(ˉR h)of whole(fully branched)starch molecules (Level2starch structure)calculated from the SEC weight molec-ular size distribution,and slope of the SEC number molecular size distribution of longer(amylose)branches with DP between5×103 and20×103determined by plotting the SEC number molecular size distribution of debranched starch(Level1starch structure)as ln(N de(X)/X)against DP X.Higher slope represents fewer longer branches.The SEC weight molecular size distributions of whole (fully branched)starch and the SEC number molecular size distri-butions of debranched starch from all rice?our samples are shown in Supplementary Data?gure S1B and C,respectively.The starch contents of all rice?our samples did not vary signi?cantly(Tran et al.,2011),implying that the grain composition was not signif-icantly affected by the cryogenic-and hammer-milling processes. Since commercial starch granules and laboratory-isolated starch granules inevitably contain some degree of damage(Dhital et al., 2010a;Hasjim et al.,2009),it is not possible to obtain undam-aged starch control for comparison with the samples in the present study.

2.2.Isolation of starch granules from rice?our

Starch granules were isolated from rice?our by laboratory-scale wet milling following the method of Syahariza,Li,and Hasjim (2010).A screen with53-?m openings was used to?lter the?our

684J.Hasjim et al./Carbohydrate Polymers92 (2013) 682–690 Table1

Grinding treatments of rice grains and starch structures of the resulting rice?ours.a

Flour sample Treatment description Starch structures

Level6:volume-median particle diameter of?our(?m)a Level5:degree of damaged

starch granules(%)a

Molecular structures

Level2:average

hydrodynamic

radius(ˉR h,nm)a

Level1:slope of

amylose branches

(5000

CM5C11cycle of5-min cryogenic

milling

149 4.219.1 4.61×10?4

CM5C22cycles of5-min cryogenic

milling

115 5.421.8 4.66×10?4

CM10C22cycles of10-min

cryogenic milling

3411.621.6 4.61×10?4

CM10C33cycles of10-min

cryogenic milling

3212.019.8 4.44×10?4

CM10C44cycles of10-min

cryogenic milling

3014.923.6 4.45×10?4

HM1500P11pass through hammer

mill with1500-?m screen

564 4.4–b 4.88×10?4

HM1000P11pass through hammer

mill with1000-?m screen

478 5.620.9 5.02×10?4

HM500P11pass through hammer

mill with500-?m screen

15817.016.6 5.57×10?4

HM500P22passes through hammer

mill with500-?m screen

5625.215.6 5.42×10?4

HM500P33passes through hammer

mill with500-?m screen

4226.117.4 5.54×10?4

a The volume-median particle diameter of?our was analyzed using a Mastersizer2000with Hydro MU(Malvern Instruments Ltd.,Malvern,UK),the degree of damaged starch granules was analyzed using Starch Damage assay kit(Megazyme International Ltd.,Co.Wicklow,Ireland),theˉR h of whole(fully branched)starch molecules was obtained from SEC weight molecular size distribution,and the slope of amylose branches(DP of between5000<ˉX<20,000)was determined by plotting SEC number molecular size distribution as ln(N de(ˉX)/ˉX)against DPˉX.Adapted from Hasjim et al.(2012)and Tran et al.(2011).

b Not included because of incomplete starch extraction/dissolution,underestimating the actual theˉR h of whole(fully branched)starch molecules.

particles after being milled in sodium bisul?te solution using a domestic blender for5min.The?our particles that remained on the screen were returned into the blender for a second milling and?l-tered through the53-?m screen.The two fractions of?ltrate were combined and the proteins and lipids in the?ltrate were removed using0.1M NaCl solution(90%)and toluene(10%)until the toluene layer was clear of protein residues,followed by several washings with water and ethanol.

2.3.Gelatinization properties of starch

Starch gelatinization properties were analyzed in triplicate using a differential scanning calorimeter(DSC,DSC1,Mettler Toledo,Schwerzenbach,Switzerland)following the method of Li, Hasjim,Dhital,Godwin,and Gilbert(2011)with modi?cation as fol-lows.Rice?our or isolated rice starch granules(~3mg,dry weight basis)was placed in a40-?L aluminum pan,and water was added to give a sample-to-water weight ratio of1to3.The pan was sealed, and the sample was allowed to equilibrate overnight in a refrig-erator at4?C.In the DSC,the sample was held at10?C for1min followed by heating from10to95?C at a rate of5?C/min.Indium was used for calibration,and an empty aluminum pan was used as reference.Onset temperature(T o),peak temperature(T p),con-clusion temperature(T c),and enthalpy of gelatinization( H)were determined from the endotherm of starch gelatinization using the built-in software(STARe system,Mettler Toledo).

2.4.Pasting properties of?our

Flour pasting properties were analyzed in triplicate using a Rapid Visco Analyser(RVA,RVA model4,Newport Scienti?c Pty. Ltd.,Warriewood,NSW,Australia)following the method of Li et al. (2011)with modi?cation as follows.Rice?our(2.0g,dry weight basis)was mixed with distilled water(a total weight of25g)in an RVA canister.Two heating pro?les were used,which had total heating times of23and30min.For the23-min heating pro?le,the ?our suspension was held in the RVA at50?C for1min,heated from 50to95?C at a rate of6?C/min,held at95?C for5min,cooled from 95to50?C at a rate of6?C/min,and held at50?C for2min.For the30-min heating pro?le,the?our suspension was treated the same way as in the23-min heating pro?le,except the?our sus-pension was held at95?C for10min instead of5min and held at 50?C for4min after cooling instead of2min.The heating process was accompanied by a constant shear at960rpm for the?rst10s followed by a constant shear at160rpm until the end of the analy-sis.Pasting temperature(temperature at where viscosity starts to develop),peak viscosity(maximum viscosity during heating and holding at95?C),trough(the minimum viscosity between peak viscosity and?nal viscosity),breakdown(difference between peak viscosity and trough),?nal viscosity(maximum viscosity during holding at50?C after cooling),and setback(difference between ?nal viscosity and trough)were identi?ed from the RVA viscogram using the Thermocline Version2.2software(Newport Scienti?c).

2.5.Statistical analysis

The mean values of the gelatinization and pasting properties were analyzed by Minitab16(Minitab Inc.,State College,PA,USA) using analysis of variance(ANOVA).The General Linear Model and Tukey’s Pairwise Comparisons with con?dence level at95.0%were used in performing the ANOVA.The correlation coef?cients(R) between the(gelatinization and pasting)properties and four differ-ent levels of starch structures(Levels1,2,5,and6structures)were also analyzed using Minitab16.TheˉR h of whole(fully branched) starch molecules from the rice?our produced by hammer milling with1500-?m screen(HM1500P1)was excluded from the corre-lation test because of its large?our particle size(volume-median particle diameter of149?m,Table1),inhibiting the complete

J.Hasjim et al./Carbohydrate Polymers 92 (2013) 682–690

685

starch extraction/dissolution for an accurate molecular structure

characterization and underestimating the actual ˉR

h (Tran et al.,2011).

3.Results and discussion

In a previous study,the same rice ?our samples were suc-cessfully used to understand the roles of starch structures in the solubility and swelling properties of rice ?ours (Hasjim,Li,&Dhital,2012).The results showed that the molecular degradation caused by grinding techniques was not the precondition for increased starch solubility in cold and hot water (at 30and 90?C,respec-tively)with increasing damage to starch granules,as previously suggested (Morrison &Tester,1994;Stark &Yin,1986;Yin &Stark,1988).In the present study,the gelatinization and pasting proper-ties were correlated separately for the ?rst time with four different levels of starch structures in rice ?our:volume-median particle

diameter of ?our,degree of damaged starch granules,ˉR

h of whole starch molecules,and slope of amylose branches (Levels 6,5,2,and 1structures,respectively).This was not attainable in the past,but recent developments,including the technique to extract starch from ?our without introducing artifacts to the starch structures (Syahariza et al.,2010)and the method to reduce molecular size distributions of starch to single parameters (Vilaplana &Gilbert,2010),have made this possible.

3.1.Gelatinization properties of starch

Starch gelatinization is the transition of the semi-crystalline structure (Level 3starch structure)in native starch granules to an amorphous structure (Cooke &Gidley,1992).Starch gelatiniza-tion properties were analyzed both from the rice ?our samples and from the starch granules isolated from selected rice ?our sam-ples using laboratory-scale wet milling.The comparison between the starch gelatinization properties of the ?our samples and those of the isolated starch granule samples shows whether ?our par-ticle size (Level 6starch structure)or starch granular/molecular structures (Levels 1,2,and 5structures)are the dominant factor(s)determining starch gelatinization properties.

The T o of all rice four samples were about 63?C (Table 2),which were not signi?cantly different despite the various grinding treat-ments (Table 1).Except for the ˉR

h of whole starch molecules in the cryogenically milled rice ?ours,no signi?cant correlations were observed between the T o with the volume-median particle diame-ter of ?our,the degree of damaged starch granules,the ˉR

h of whole starch molecules,and the slope of amylose branches (Levels 6,5,2,and 1structures,respectively)among all rice ?our samples as a whole and among the cryogenically milled or the hammer-milled rice ?ours separately (Table 3and Supplementary Data Figure S2).It was reported that T o was slightly or not signi?cantly affected by the particle sizes of rice ?ours (Marshall,1992)and those of the cryogenically milled and hammer-milled sorghum ?ours (Mahasukhonthachat et al.,2010).Signi?cantly lower T o ,however,were observed among some of the starch granule samples isolated from the rice ?ours by laboratory-scale wet milling (Table 4and Fig.1).Furthermore,the T o of the rice ?our samples were 4–15?C higher than those of their respective isolated starch granule sam-ples (Tables 2and 4,respectively),which is likely attributed to the presence of non-starch components in the rice ?ours,such as pro-tein and cell-wall materials (Ghiasi,Hoseney,&Varriano-Marston,1983;Marshall,1992),affecting the heat transfer for starch gela-tinization.

The T o of the isolated starch granule samples from the hammer-milled rice ?ours were,in general,lower than those of the isolated starch granule samples from the cryogenically milled rice ?ours,because the starch granules (Level 5structure)in the

T a b l e 2S t a r c h g e l a t i n i z a t i o n a n d ?o u r p a s t i n g p r o p e r t i e s o f c r y o g e n i c a l l y m i l l e d r i c e ?o u r s a n d h a m m e r -m i l l e d r i c e ?o u r s .a

F l o u r s a m p l e

S t a r c h g e l a t i n i z a t i o n p r o p e r t i e s

F l o u r p a s t i n g p r o p e r t i e s

T o (?C )

T p (?C )T c (?C )

H (J /g d r y s t a r c h )

P a s t i n g t e m p e r a t u r e (?C )

P e a k v i s c o s i t y (c P )

T r o u g h (c P )

B r e a k d o w n (c P )F i n a l v i s c o s i t y (c P )

S e t b a c k (c P )

C M 5C 163.6±0.3a 68.9±0.5b –d 73.9±0.2d e 11.35±0.67a b 91.6±0.5b N

D b

N D N D 2333±45b N D C M 5C 263.2±0.1a 68.4±0.2c –e 74.2±0.3d 14.40±0.26a 90.6±0.1b N D N D N D 2236±15b N D C M 10C 263.2±0.3a 67.6±0.5e 72.3±0.5e f 7.36±3.54b 89.9±0.3b 1182±13a 997±3a 184±14a 1960±5c 962±7a C M 10C 363.4±0.2a 68.0±0.1d e 72.2±0.2f 8.07±0.92b 90.1±0.1b 1139±31a 939±22b 200±15a 1891±39c d 952±25a C M 10C 462.8±0.1a 67.9±0.1d e 72.5±0.1e f 9.60±1.01a b 90.7±0.8b

1050±35b

849±2c 201±34a 1810±21d 961±19a

H M 1500P 162.7±0.7a 69.9±0.3a 82.8±0.1a 10.79±3.40a b 94.5±0.6a N D N D N D 2448±17a N D H M 1000P 163.0±0.4a 69.7±0.4a b 80.8±1.4b 10.67±0.53a b 91.5±0.3b N D N D N D 2332±58b N D H M 500P 163.0±0.0a 68.4±0.3c -e 74.9±0.8c d 7.37±1.79b 90.8±1.0b N D N D N D 1701±30e N D H M 500P 263.3±0.4a 69.1±0.4a –c 76.0±0.2c 7.42±0.84b 91.5±1.4b N D N D N D 1293±57f N D H M 500P 363.1±0.2a 68.9±0.1b –d 75.0±0.7c d 7.07±0.64b 90.3±0.3b 921±19c 822±9c

99±10b

1637±24e 815±15b

a

M e a n ±s t a n d a r d d e v i a t i o n f r o m t r i p l i c a t e .V a l u e s i n t h e s a m e c o l u m n w i t h d i f f e r e n t l e t t e r s a r e s i g n i ?c a n t l y d i f f e r e n t a t p <0.05.b

N o t d e t e c t e d a s t h e r e i s n o d e ?n e d p e a k v i s c o s i t y d u r i n g h e a t i n g a n d h o l d i n g a t 95?C .

686J.Hasjim et al./Carbohydrate Polymers 92 (2013) 682–690

Table 3

Correlation coef?cients between (gelatinization and pasting)properties and starch structures in rice ?ours.a

Property

Volume-median particle diameter (Level 6)

Degree of damaged starch granules (Level 5)

Average hydrodynamic radius (Level 2)

Slope of amylose branches (Level 1)

All

CM only

HM only

All

CM only

HM only All

CM only

HM only

All

CM only

HM only

Starch gelatinization T o ?0.4830.549?0.795?0.018?0.6490.783?0.286?0.992**?0.577?0.1930.2880.661T p 0.832**0.941*0.840?0.204?0.855?0.739?0.409?0.5440.7420.3940.393?0.964**T c 0.943**0.934*0.965**?0.298?0.908*?0.903*?0.236?0.2260.8850.3230.721?0.997** H

0.382

0.769

0.982**

?0.760*

?0.727

?0.948*

0.515

0.032

0.915

?0.458

0.559

?0.978**Flour pasting

Pasting temperature 0.823**0.8120.778?0.382?0.624?0.698?0.316?0.3350.2300.0910.233?0.837Final viscosity

0.671*

0.976**

0.963**

?0.948**

?0.993**

?0.950*

0.597

?0.543

0.971*

?0.516

0.792

?0.875

All,cryogenically milled and hammer-milled ?our samples as a whole;CM,cryogenically milled ?our samples;HM,hammer-milled ?our samples.a

Correlation values with *and **are signi?cant at p <0.05and 0.01,respectively.

Table 4

Gelatinization properties of starch granules isolated from selected cryogenically milled rice ?ours and hammer-milled rice ?ours.a

Starch sample

T o (?C)

T p (?C)

T c (?C)

H (J/g dry starch)

CM5C1starch 58.5±0.6ab 63.9±0.3a 70.2±0.6a 11.07±2.31a CM10C2starch 58.9±0.3a 64.4±0.4a 70.3±0.6a 12.54±0.88a CM10C4starch

59.1±0.3a

64.6±0.4a

70.5±0.7a

12.54±0.99a

HM1500P1starch 57.8±0.8b 64.2±0.2a 70.7±0.5a 13.24±1.06a HM500P1starch 47.8±0.5c 64.2±0.5a 69.7±0.4a 6.36±1.32b HM500P3starch

57.7±0.5b

64.0±0.3a

69.8±0.3a

10.12±1.25a

a

Mean ±standard deviation from triplicate.Values in the same column with different letters are signi?cantly different at p <0.05.

hammer-milled rice ?ours were more severely damaged (Chen et al.,2003;Morrison et al.,1994).The T o of isolated starch gran-ules re?ects the heat stability of starch crystalline structure (Level 3structure),i.e.length of double helices of amylopectin branches that form the crystalline lamellae (Srichuwong et al.,2010,2005a ),and the damage to starch granules (Level 5structure)has been reported to be accompanied by the disruption of starch crystalline structure (Level 3structure)(Chen et al.,2003;Dhital et al.,2011;Morrison et al.,1994).

An additional smaller starch-gelatinization endotherm at lower temperature was observed from the starch granules isolated from the rice ?our produced by one pass through the hammer mill with 500-?m screen (HM500P1)overlapping with the main gelatiniza-tion endotherm (Table 4and Fig.1),which was reproducible in three measurements and was not observed in other isolated starch granule samples,implying that there might be two populations of starch granules in the HM500P1?our.The damage to starch gran-ules (Level 5structure)in rice ?our is not uniform within a single

40

45 50 55 60 65 70 75 80

Tem perature (C)

ch ch 1 star ch ch ch

Fig.1.DSC thermograms of starch granules isolated from selected cryogenically

milled rice ?ours and hammer-milled rice ?ours.

?our particle (Level 6structure)as damaged starch granules are mostly,if not all,located at the surface of the ?our particle which comes in contact with the grinding force,and the starch granules in the inner part of the ?our particle are relatively intact.Damaged starch granules,containing (partially)disrupted crystalline struc-ture,have a lower gelatinization temperature than intact starch granules (Chen et al.,2003;Dhital et al.,2011;Morrison et al.,1994).The additional endotherm was not observed in the starch granules isolated from the rice ?our produced by three passes through the hammer mill with the same 500-?m screen (HM500P3)although the starch granules of the HM500P3?our were more severely damaged than those of the HM500P1?our (Table 1),suggesting an artifact caused by the laboratory-scale wet-milling process in isolating the starch granules from the rice ?our.Damaged starch granules have smaller size than intact starch granules (Dhital et al.,2010a;Hasjim et al.,2009),hence they have slower sedimentation rate (Dhital,Shrestha,&Gidley,2010b )and are likely removed with the non-starch components during wet-milling process.The results suggest that wet milling might not be an appropriate method to isolate starch granules from milled ?our for accurate structure and property characterization.

In contrast to T o ,the T p and T c among the rice ?our samples (Table 2)were signi?cantly affected by the grinding treatments (Table 1)with greater differences among the hammer-milled rice ?ours than among the cryogenically milled ?ours.The ranges of T p and T c for the ?our samples were 67.6–69.9?C and 72.2–82.8?C,respectively.Signi?cant positive correlations were observed between the T p and the volume-median particle diam-eter of ?our (Level 6structure)of all rice ?our samples as a whole and of only the cryogenically milled rice ?our samples and signif-icant negative correlation was observed between the T p and the slope of amylose branches (Level 1structure)of only the hammer-milled rice ?our samples (Table 3and Supplementary Data Figure S3).The T c and the volume-median diameter of ?our particles (Level 6structure)were signi?cantly and positively correlated for all rice ?our samples as a whole and for the cryogenically milled and the hammer-milled rice ?our samples separately (Table 3and Supplementary Data Figure S4).Signi?cant negative correlations between the T c and the degree of damaged starch granules (Level

J.Hasjim et al./Carbohydrate Polymers92 (2013) 682–690687

5structure)were only observed among the cryogenically milled or the hammer-milled rice?our samples separately,but not among all rice?our samples as a whole.Furthermore,signi?cant negative correlation was observed between the T c and the slope of amy-lose branches(Level1structure)of only the hammer-milled rice ?our samples.There were,however,no signi?cant differences in the T p and T c among the isolated starch granule samples(Table4 and Fig.1).This indicates that the differences in the T p and T c among the rice?our samples(Table2)were associated with the parti-cle size of the?ours(volume-median particle diameter,Level6 structure),which showed the strongest correlations with the T p or T c(Table3and Supplementary Data Figures S3and S4),simi-lar to the observations reported by Marshall(1992).The apparent signi?cant correlations observed at starch branching and granular structures(Levels1and5structures,respectively)were likely due to the changes at these levels of starch structures occurring with the particle size reduction of rice grains(Level6structure),especially by the hammer-milling process(Tran et al.,2011).Similar to T o,the T p and T c of the rice?our samples were3–6?C and2–12?C,respec-tively,higher than those of their respective isolated starch granule samples(Tables2and4),which were attributed to the effects of non-starch components in the rice?our on starch gelatinization properties(Ghiasi et al.,1983;Marshall,1992).

The higher T p and T c of the rice?our samples(Table2),espe-cially those with larger volume-median particle diameter(Level6 structure)(Table1),can be attributed to the greater physical bar-rier for heat transfer to gelatinize the starch granules in the inner part of the?our particles(Karlsson&Eliasson,2003),resulting in an apparent greater heat stability.Whereas,the similar T o among all rice?our samples(Table2)re?ect the heat stability of the starch granules near the surface of?our particles that are more accessible to heat.Water diffusion or penetration has also been postulated to alter the starch gelatinization temperature of grains and?our (Marshall,1992).This was not the case in the present study as the?our particles were equilibrated with excess water overnight before the thermal analysis using DSC,allowing enough time for water diffusion and penetration into the?our particles.The results show that,although gelatinization properties are associated with the crystalline structure of starch granules,the presence of non-starch components in grains or?our can evidently affect starch gelatinization temperature.

Enthalpy change( H)during starch gelatinization is the amount of energy needed to convert the crystalline structure(Level 3structure)in native starch granules to an amorphous structure, thus it re?ects the degree of crystallinity of the starch granules (Cooke&Gidley,1992;Dhital et al.,2011;Morrison et al.,1994). The H of the rice?our samples ranged from7.4to14.4and from7.1to10.8J/g dry starch for the cryogenically milled and the hammer-milled rice?ours,respectively(Table2).There were no signi?cant differences in the H among all rice?our samples, except the H of the rice?our produced by two cycles of5-min cryogenic milling(CM5C2).Similarly,there were no signi?cant cor-relations observed between the H and the four different levels of starch structures in the cryogenically milled rice?ours(Table3 and Supplementary Data Figure S5),and there were no signi?cant differences in the H of the isolated starch granule samples from the cryogenically milled rice?ours(Table4and Fig.1).Signi?-cant correlations,however,were observed between the H and three different levels of starch structures in the hammer-milled rice?ours:positively with the volume-median particle diameter of?our,negatively with the degree of damaged starch granules, and negatively with the slope of amylose branches(Levels6,5,and 1,respectively)(Table3and Supplementary Data Figure S5).The apparent correlations were likely due to the disruption to starch crystalline structure(Level3structure),which occurred with the damage to starch granules during hammer milling(Chen et al.,2003;Dhital et al.,2011;Morrison et al.,1994).Furthermore,the starch granules isolated from the HM500P1?our had signi?cantly lower H than other isolated starch granule samples and showed an additional smaller gelatinization endotherm at lower tempera-ture(Table4and Fig.1),indicating that the hammer-milling process caused a greater disruption to starch crystalline structure(Level3 structure)than the cryogenic-milling process.Similar to the T o,the H of the isolated starch granules from the HM500P3?our was not signi?cantly different from those of the isolated starch granules from the HM1500P1?our and from the cryogenically milled rice ?ours,which again implies that the laboratory-scale wet milling used to isolate starch granules from the HM500P3?our might have removed the severely damaged starch granules along with the non-starch components.

3.2.Pasting properties of?our

RVA measures the changes in the apparent viscosity of a sam-ple during heating and cooling in suf?cient water,which are then interpreted as pasting properties.The increase in the apparent viscosity is due to the ability of?our particles to absorb water and to swell,?lling up the space in the RVA canister.Although starch gelatinization might be the major factor contributing to the swelling of rice?our particles as amorphous starch can absorb more water than semi-crystalline starch,and the rice?ours used in the present study contain83%starch,DSC and RVA in practice mea-sure completely different quantities,that are thermal transition and apparent viscosity,respectively.Furthermore,on the contrary to starch gelatinization,which is only associated with starch crys-talline structure(Level3structure),the swelling of?our particles is contributed not only by starch but also by other components in the?our,such as proteins and non-starch polysaccharides,which structures might be altered by the grinding processes.Hence,there is no unique relationship between pasting and starch gelatiniza-tion properties of a?our sample and they should be treated as independent groups of properties.

Two RVA heating pro?les with total heating times of23and 30min were tested with the HM1500P1?our and the rice?our produced by hammer milling with1000-?m screen(HM1000P1), which had the largest particle sizes among all rice?our samples (Table1).The differences between the two heating pro?les are longer holding time at95?C(10vs.5min)and longer holding time at50?C after cooling(4vs.2min)in the30-min heating pro?le compared with the23-min heating pro?le.The viscograms from the two heating pro?les were similar for the HM1500P1and HM1000P1?ours,except the longer holding time at95?C allowed the viscogram to reach a plateau before the viscosity increased during cooling,and the longer holding time at50?C after cool-ing showed a more de?ned peak of?nal viscosity(Fig.2A).Batey and Curtin(2000)also reported that increasing the holding time at95?C longer than4min caused only small changes in the trough and the?nal viscosity of wheat-?our viscogram.Therefore,the30-min heating pro?le was used to compare the pasting properties of rice?ours in the present study.

The viscograms of the cryogenically milled and the hammer-milled rice?ours are shown in Fig.2B and C,respectively. Rice?our samples with volume-median particle diameters ≥56?m(CM5C1,CM5C2,HM1500P1,HM1000P1,HM500P1,and HM500P2)(Table1)did not show de?ned peak viscosity during heating and holding at95?C,hence the trough,breakdown,and setback were not able to be determined from these?ours.Further-more,except for the rice?our produced by hammer milling with 500-?m screen for two passes(HM500P2),rice?our sample with larger volume-median particle diameter,in general,had higher vis-cosity during cooling from95to50?C and higher?nal viscosity during holding at50?C after cooling.Cellulase treatment on the

688J.Hasjim et al./Carbohydrate Polymers 92 (2013) 682–690

20

406080100

050010001500200025003000

5

10152025

30

T e m p e r a t u r e (°C )

V i s c o s i t y (c P )

Time (min)

HM1500P1 23 min HM1500P1 30 min HM1000P1 23 min HM1000P1 30 min Temp 23 min Temp 30 min

20

406080100

50010001500200025003000

5

10152025

30

T e m p e r a t u r e (°C )

V i s c o s i t y (c P )

Time (min)

CM5C1CM10C3CM5C2CM10C4CM10C2Temperature

20

406080100

050010001500200025003000

5

1015202530

T e m p e r a t u r e (°C )

V i s c o s i t y (c P )

Time (min)

HM1500P1HM500P2HM1000P1HM500P3HM500P1Temperature

C

B

A

Fig.2.(A)RVA viscograms of shorter (23min,solid line)and longer (30min,dashed line)pasting pro?les.RVA viscograms of (B)cryogenically milled rice ?ours and (C)hammer-milled rice ?ours.

?our from aged rice grains was reported to produce a more de?ned peak viscosity during holding at 95?C than the ?our without cel-lulase treatment (Zhou,Robards,Helliwell,&Blanchard,2003).Furthermore,chemical and enzymatic degradations of protein in rice ?our were reported to lower overall pasting viscosity (peak viscosity,trough,and ?nal viscosity),whereas the same treatments did not show any effects on the pasting properties of isolated starch (Fitzgerald,Martin,Ward,Park,&Shead,2003;Hamaker &Grif?n,1990).Hence,the lack of de?ned peak viscosity during heating and holding at 95?C and the higher viscosity during cooling and holding at 50?C after cooling of rice ?our with larger particle size could be attributed to the greater amount of native protein and/or cell-wall structure,stabilizing the starch paste and preventing the rupture of swollen starch granules by shear during heating in the RVA.The native protein and cell-wall structures might be disrupted when the grains were subjected to greater grinding force or longer grinding time to produce ?our with smaller particle size,weaken-ing the effects of protein and cell-wall structures on ?our pasting properties.The HM500P3?our,however,had an RVA viscogram similar to that of the HM500P1?our,which overall pasting viscos-ity was higher than that of the HM500P2?our (Fig.2C).Although protein can stabilize starch paste and increase the overall pasting viscosity,protein matrix can restrict the swelling of starch granules during heating (Zhou et al.,2003).Passing the rice ?our through the hammer mill with 500-?m screen for the third time might have caused a greater disruption of protein structure,allowing the starch granules to swell to a greater extent during heating.Further study is needed to obtain a better understanding in the changes of the protein and cell-wall structures of rice grains caused by grinding.

The pasting properties of all rice ?our samples are summarized in Table 2.There are signi?cant differences in the peak viscosity,trough,breakdown,?nal viscosity,and setback among some rice ?our samples,indicating that the ?our pasting properties were affected by the milling treatments (Table 1).On the other hand,only the HM1500P1?our showed a signi?cantly higher pasting temper-ature than other rice ?our samples,which were not signi?cantly different among themselves.Although the pasting temperature of the rice ?our samples might seem to follow the same trend as their T o (Table 2),which is little or no effect with the milling treatments,the two properties measure completely different quantities.The pasting temperature is the temperature at where viscosity starts to develop during heating in the RVA,whereas the T o is the onset temperature of the conversion of starch semi-crystalline structure to amorphous structure.Furthermore,there were substantial tem-perature differences between the two properties,ranging from 27to 31?C.Since peak viscosity was not detected in six out of ten rice ?our samples,only pasting temperature and ?nal viscosity were used for correlation analyses with the starch structures.

There were no signi?cant correlations observed between the pasting temperature and the four different levels of starch structures in rice ?our,except for a signi?cant positive correlation between the pasting temperature and the volume-median particle diameter of rice ?our when all ?our samples were analyzed as a whole (Table 3and Supplementary Data Figure S6).Fur-thermore,for the rice ?our samples that did not show de?ned peak viscosity during heating and holding at 95?C,the holding time required to reach plateau at 95?C is in the following order:HM1500P1>HM1000P1>CM5C1>CM5C2>HM500P1≈HM500P2(Fig.2B and C),which seems to be related to the ?our particle size (Table 1).Rice ?our samples with larger particle sizes have greater physical barrier to heat transfer as indicated by the higher T c of these ?our samples (Table 2)and,similarly,greater barrier to water diffusion or penetration than those with smaller particle size (Marshall,1992).Hence,the rice ?our sample with larger particle size has slower hydration rate and requires a longer time

J.Hasjim et al./Carbohydrate Polymers92 (2013) 682–690689

to develop viscosity during heating,resulting in higher pasting temperature,and to reach a plateau viscosity at95?C.

Signi?cant positive correlations were observed between the ?nal viscosity and the volume-median particle diameter of rice ?our(Level6structure),which were stronger when the cryo-genically milled and the hammer-milled rice?ours were analyzed separately than as a whole(R=0.98,0.96,and0.67,respectively) (Table3and Supplementary Data Figure S7),suggesting that differ-ent structures of non-starch components contributing to the?nal viscosity of the cryogenically milled and hammer-milled rice?ours, possibly due to different degradation mechanisms on the protein and/or cell-wall structure by the two grinding processes.Signi?-cant negative correlations were also observed between the?nal viscosity and the degree of damaged starch granules(Level5struc-ture),which were similar whether the cryogenically milled and the hammer-milled rice?ours were analyzed separately or as a whole(all R values were between?0.95and?1.00)(Table3and Supplementary Data Figure S7),indicating that damage to starch granules is the most dominant factor in?uencing the?nal viscosity of rice?our.Isolated starch granules with higher degree of damage were reported to have lower peak viscosity,trough,and?nal viscos-ity(Chen et al.,2003;Dhital et al.,2010a),and the authors related this with the increase in the molecular degradation of starch(Levels 1and2structures),occurring with the damage to starch https://www.wendangku.net/doc/6614114882.html,rger starch molecules have shown to produce paste with greater viscosity(Shibanuma,Takeda,&Hizukuri,1996).Although the results from the present study agree with this argument as a signi?cant positive correlation was observed between the?nal vis-cosity and theˉR h of whole starch molecules(Level2structure)in the hammer-milled rice?ours,it was not observed when all rice?our samples were analyzed as a whole or when the cryogenically milled rice?ours were analyzed separately(Table3and Supplementary Data Figure S7).Hence,the inability of damaged starch granules to retain water,possibly due to their smaller granule size(or vol-ume)compared with intact starch granules,when they are heated at95?C(Tester,1997)is a more plausible explanation for the rela-tionship between?nal viscosity and damaged starch granules in the present study than the molecular degradation of starch caused by the grinding processes.The results also imply that starch gran-ules(Level5structure)might still exist after heating,most likely in the swollen form,and contribute to the?nal viscosity of rice?our.

4.Conclusions

The present work is the?rst study to relate gelatinization and pasting properties with four different levels of starch structures in rice?our:volume-median particle diameter of?our,degree of damaged starch granules,ˉR h of whole starch molecules,and slope of amylose branches(Levels6,5,2,and1structures,respectively). The particle size of?our(Level6structure)is the dominant factor determining the gelatinization temperature of rice?our,where it may act as a physical barrier for heat transfer.This is con?rmed by the different trends observed for the gelatinization temperature of isolated starch granules,in which the factor of?our particle size is nonexistent.The signi?cant correlations between H and starch structures might be related to the degradation of starch crystalline structure(Level3structure)caused by the milling processes.Rice ?our(Level6structure)with volume-median particle diameter ≥56?m did not show a de?ned peak viscosity in the RVA viscogram during heating and holding at95?C,possibly due to the presence of native protein and/or cell-wall structure stabilizing the swollen starch granules against the rupture caused by shear during heat-ing.In addition,rice?our with larger particle size also had higher pasting temperature and required a longer holding time at95?C to reach a plateau viscosity,implying that large?our particle has a greater physical barrier for both heat transfer and water diffusion. The?nal viscosity,however,is strongly affected by the damage to starch granules(Level5structure)and to lesser extents by?our particle size(Level6structure)and molecular size of whole starch (Level2structure),con?rming that the differences in the?nal vis-cosity are not due to molecular degradation as previously suggested (Chen et al.,2003;Dhital et al.,2010a),but might be contributed by granular structure,most likely in swollen form.

The results from the present study suggest that compari-son of grain?ours from different botanical sources should take into account not only molecular structure of the components in the grains but also the structural changes caused by grinding process,such as?our particle size and damage to starch gran-ules.The mechanistic understanding in the relationships between starch structures and starch properties during heating or cooking concluded from the present study can be used to improve the man-ufacture and the selection criteria of rice?our with desirable starch gelatinization and pasting properties.

Supplementary data

The SEC weight molecular size distributions of whole(fully branched)starch(Level2structure)and debranched starch(Level1 structure)as well as the SEC number molecular size distributions of debranched starch(Level1structure)are shown in Supplementary Data Figure S1.The plots for the correlations listed in Table3are shown in the Supplementary Data Figures S2–S7. Acknowledgements

The authors thank the Australian Research Council(DP0985694 and LP0990769)for funding.The authors also thank Prof.Robert G. Gilbert and Prof.Michael J.Gidley for their constructive discussion. Appendix A.Supplementary data

Supplementary data associated with this article can be found,in the online version,at https://www.wendangku.net/doc/6614114882.html,/10.1016/ j.carbpol.2012.09.023.

References

Batey,I.L.,&Curtin,B.M.(2000).Effects on pasting viscosity of starch and?our from different operating conditions for the Rapid Visco Analyser.Cereal Chemistry, 77(6),754–760.

Chen,J.,Lii,C.,&Lu,S.(2003).Physicochemical and morphological analyses on damaged rice starches.Journal of Food and Drug Analysis,11(4),283–289. Cooke,D.,&Gidley,M.J.(1992).Loss of crystalline and molecular order during starch gelatinisation:Origin of the enthalpic transition.Carbohydrate Research, 227,103–112.

Dhital,S.,Shrestha,A.K.,Flanagan,B.M.,Hasjim,J.,&Gidley,M.J.(2011).Cryo-milling of starch granules leads to differential effects on molecular size and conformation.Carbohydrate Polymers,84(3),1133–1140.

Dhital,S.,Shrestha,A.K.,&Gidley,M.J.(2010a).Effect of cryo-milling on starches: Functionality and digestibility.Food Hydrocolloids,24(2–3),152–163.

Dhital,S.,Shrestha,A.K.,&Gidley,M.J.(2010b).Relationship between granule size and in vitro digestibility of maize and potato starches.Carbohydrate Polymers, 82(2),480–488.

Dona,A.C.,Pages,G.,Gilbert,R.G.,&Kuchel,P.W.(2010).Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release.Carbohydrate Polymers,80(3),599–617.

Fitzgerald,M.A.,Martin,M.,Ward,R.M.,Park,W.D.,&Shead,H.J.(2003).Viscosity of rice?our:A rheological and biological study.Journal of Agricultural and Food Chemistry,51(8),2295–2299.

Gallant,D.J.,Bouchet,B.,&Baldwin,P.M.(1997).Microscopy of starch:Evidence of

a new level of granule organization.Carbohydrate Polymers,32(3–4),177–191. Ghiasi,K.,Hoseney,R.,&Varriano-Marston,E.(1983).Effects of?our components and dough ingredients on starch gelatinization.Cereal Chemistry,60(1),58–61. Hamaker,B.R.,&Grif?n,V.K.(1990).Changing the viscoelastic properties of cooked rice through protein disruption.Cereal Chemistry,67(3),261–264.

Han,X.-Z.,Campanella,O.H.,Mix,N.C.,&Hamaker,B.R.(2002).Consequence of starch damage on rheological properties of maize starch pastes.Cereal Chemistry, 79(6),897–901.

690J.Hasjim et al./Carbohydrate Polymers92 (2013) 682–690

Hasjim,J.,Li,E.,&Dhital,S.(2012).Milling of rice grains:The roles of starch struc-tures in the solubility and swelling properties of rice?our.Starch-St?rke,64(8), 631–645.

Hasjim,J.,Srichuwong,S.,Scott,M.P.,&Jane,J.(2009).Kernel composition,starch structure,and enzyme digestibility of opaque-2maize and quality protein maize.

Journal of Agricultural and Food Chemistry,57(5),2049–2055.

Karlsson,M.E.,&Eliasson,A.-C.(2003).Gelatinization and retrogradation of potato (Solanum tuberosum)starch in situ as assessed by differential scanning calorime-try(DSC).Lebensmittel-Wissenschaft und-Technologie,36(8),735–741.

Li,E.,Hasjim,J.,Dhital,S.,Godwin,I.D.,&Gilbert,R.G.(2011).Effect of a gibberellin-biosynthesis inhibitor treatment on the physicochemical properties of sorghum starch.Journal of Cereal Science,53(3),328–334.

Mahasukhonthachat,K.,Sopade,P.A.,&Gidley,M.J.(2010).Kinetics of starch diges-tion in sorghum as affected by particle size.Journal of Food Engineering,96(1), 18–28.

Marshall,W.E.(1992).Effect of degree of milling of brown rice and particle size of milled rice on starch gelatinization.Cereal Chemistry,69(6),632–636. Morrison,W.R.,&Tester,R.F.(1994).Properties of damaged starch granules.IV.

Composition of ball-milled wheat starches and of fractions obtained on hydra-tion.Journal of Cereal Science,20(1),69–77.

Morrison,W.R.,Tester,R.F.,&Gidley,M.J.(1994).Properties of damaged starch granules.II.Crystallinity,molecular order and gelatinisation of ball-milled starches.Journal of Cereal Science,19(3),209–217.

Oostergetel,G.T.,&van Bruggen,E.F.J.(1993).The crystalline domains in potato starch granules are arranged in a helical fashion.Carbohydrate Polymers,21(1), 7–12.

Shibanuma,Y.,Takeda,Y.,&Hizukuri,S.(1996).Molecular and pasting properties of some wheat starches.Carbohydrate Polymers,29(3),253–261. Srichuwong,S.,Gutesa,J.,Blanco,M.,Duvick,S.A.,Gardner,C.,&Jane,J.(2010).

Characterization of corn grains for dry-grind ethanol production.Journal of ASTM International,7(2)Srichuwong,S.,Sunarti,T.C.,Mishima,T.,Isono,N.,&Hisamatsu,M.(2005a).Starches from different botanical sources I:Contribution of amylopectin?ne structure to thermal properties and enzyme digestibility.Carbohydrate Polymers,60(4), 529–538.

Srichuwong,S.,Sunarti,T.C.,Mishima,T.,Isono,N.,&Hisamatsu,M.(2005b).

Starches from different botanical sources II:Contribution of starch struc-ture to swelling and pasting properties.Carbohydrate Polymers,62(1), 25–34.

Stark,J.R.,&Yin,X.S.(1986).The effect of physical damage on large and small barley starch granules.Starch-St?rke,38(11),369–374.

Syahariza,Z.A.,Li,E.,&Hasjim,J.(2010).Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis.Carbohydrate Polymers, 82(1),14–20.

Tester,R. F.(1997).Properties of damaged starch granules:Composition and swelling properties of maize,rice,pea and potato starch fractions in water at various temperatures.Food Hydrocolloids,11(3),293–301.

Tran,T.T.B.,Shelat,K.J.,Tang,D.,Li,E.,Gilbert,R.G.,&Hasjim,J.(2011).Milling of rice grains.The degradation on three structural levels of starch in rice?our can be independently controlled during grinding.Journal of Agricultural and Food Chemistry,59(8),3964–3973.

Vandeputte,G.E.,Derycke,V.,Geeroms,J.,&Delcour,J.A.(2003).Rice starches.II.

Structural aspects provide insight into swelling and pasting properties.Journal of Cereal Science,38(1),53–59.

Vilaplana,F.,&Gilbert,R.G.(2010).Two-dimensional size/branch length distribu-tions of a branched polymer.Macromolecules,43(17),7321–7329.

Yin,X.S.,&Stark,J.R.(1988).Molecular modi?cation of barley starch gran-ules by different types of physical treatment.Journal of Cereal Science,8(1), 17–28.

Zhou,Z.,Robards,K.,Helliwell,S.,&Blanchard, C.(2003).Effect of rice stor-age on pasting properties of rice?our.Food Research International,36(6), 625–634.

(完整版)高中数学新课标学习心得体会

高中数学新课标学习心得体会 通过对新课标的学习,本人有一些心得体会,现汇报如下: 一、课程的基本理念 总体目标中提出的数学知识(包括数学事实、数学活动经验)本人认为可以简单的这样表述:数学知识是“数与形以及演绎”的知识。 1、基本的数学思想 基本数学思想可以概括为三个方面:即“符号与变换的思想”、“集全与对应的思想”和“公理化与结构的思想”,这三者构成了数学思想的最高层次。基于这些基本思想,在具体的教学中要注意渗透,从低年级开始渗透,但不必要进行理论概括。而所谓数学方法则与数学思想互为表里、密切相关,两者都以一定的知识为基础,反过来又促进知识的深化及形成能力。 2、重视数学思维方法 高中数学应注重提高学生的数学思维能力。数学思维的特性:概括性、问题性、相似性。数学思维的结构和形式:结构是一个多因素的动态关联系统,可分成四个方面:数学思维的内容(材料与结果)、基本形式、操作手段(即思维方法)以及个性品质(包括智力与非智力因互素的临控等);其基本形式可分为逻辑思维、形象思维和直觉思维三种类型。 3、应用数学的意识 增强应用数学的意识主要是指在教与学观念转变的前提下,突出主动学习、主动探究。 4、注重信息技术与数学课程的整合 高中数学课程应提倡实现信息技术与课程内容的有机整合,整合的基本原则是有利于学生认识数学的本质。在保证笔算训练的全体细致,尽可能的使用科学型计算器、各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。 5、建立合理的科学的评价体系 高中数学课程应建立合理的科学的评价体系,包括评价理念、评价内容、评价形式评价体制等方面。既要关注学生的数学学习的结果,也要关注他们学习的过程;既要关注学生数学学习的水平,也要关注他们在数学活动中表现出来的情感态度的变化,在数学教育中,评价应建立多元化的目标,关注学生个性与潜能的发展。 二、课程设置

大学生毕业晚会主持词

大学生毕业晚会主持词 A:青春是一曲荡气回肠的歌,三年前我们怀着彩色梦想走进了鄂大,三年中我们有过欢笑,流过泪水,经历磨炼,得到成长 B:三年后的今天,我们在这里重温青春过往,因为明天就将各奔天涯。也正因为此,今夜,我们承载了太多的祝福与惦念,寄托了太多的关怀与企盼。 C:今晚,让我们再一次重温,那些感动过我们的人和事:灯火通明的教学楼里用功的身影,篮球场上捍卫集体尊严的男儿霸气,满是欢声笑语的宿舍边不着边际的闲谈…… D:又一个三年轮回之后,在同样微凉的夏夜,你是否会记起校园里的梧桐树,你是否会记起日记本里的书签,那些五彩缤纷的日子? A:无数个三年之后,你们的思念是否会有增无减?在你成长的岁月里,在你闯荡社会的每一天,是否会有那么几个瞬间让你渴望回到过去 B:让我们静静享受一下挑战,在日复一日与时间的赛跑中,你会变得更加坚强,更加神采奕奕!又一个青春之旅从今晚启航,又一个光阴的故事在今晚讲述 C:亲爱的同窗,不要带着离别的愁绪,因为明天又是一个新的起点,因为我们相信再次相逢,我们还是一首动人的歌!D:很高兴今天能有这个机会同大家相聚一堂,共叙离别。就让今天铭刻在我们心间,让母校留住我们的风采! A:今天,我们也非常荣幸的请到了…… B:下面让我们用热烈的掌声有请……上台讲话 结束语A:欢快的舞蹈表达不尽我们对母校的敬意 B:热情的赞歌唱不尽我们对母校的一腔深情

C:流火的六月,我们将带着恩师的叮咛,怀着必胜的信心,走向新的征程 D:绚烂的七月,我们将载着母校的祝愿,带着亲人的希望,向着新的征程扬帆起航A:老师们,同学们,欢送10级毕业生联欢晚会合:到此结束 A李:毕业,是一个沉重的动词; 刘:毕业,是一个让人一生难忘的名词; 李:毕业,是感动时流泪的形容词; 刘:毕业,是当我们以后孤寂时候,带着微笑和遗憾去回想时的副词; 李:毕业,是我们夜半梦醒,触碰不到而无限感伤的虚词。 刘:若干年后,假如我们还能够想起那段时光,也许这不属于难忘,也不属于永远,而仅仅是一段记录了成长经历的回忆。 李:尊敬的各位领导老师 刘:亲爱的各位同学们 合:大家晚上好! 李:很荣幸和大家相聚在这激情如火的六月,在这充满忧伤的六月! 刘:很高兴和大家相聚在“放心去飞,20年后再相聚—毕业晚会”现场! 李:我是李扬 刘:我是刘伟清 李:今天晚会现场非常荣幸的邀请到院系的各位领导和老师们。 刘:让我们首先欢迎…… 李:灿烂的星空曾经铭刻你我的笑容

乡村小学语文小班化教学策略研究

龙源期刊网 https://www.wendangku.net/doc/6614114882.html, 乡村小学语文小班化教学策略研究 作者:仇家凤 来源:《文理导航》2020年第06期 【摘要】随着城镇化进程加快,大量农民向城镇转移,农村学生数减少,小班化教学成为现实。本文针对这一背景,就语文小班化教学的策略进行探讨,希望促进小学语文教学效果的提升。 【关键词】乡村小学;小班化教学;教学策略 近年来国内经济的快速发展吸引越来越多的农村劳动力进入城市谋取工作和发展机会。与此同时,农村学校的生源在逐渐减少,造成这种情况的原因一方面是由于国内长期以来施行的计划生育政策,另一方面务工人员将自己的子女带入城市,以此可以让他们享受到城市里良好的教育条件和环境。上述情况从客观上导致农村学校的适龄学生流失率越来越高,原来的大班在容量上逐渐缩减为小班,甚至是几名学生。农村教师在适应了之前的大班授课后,不得不面对目前农村学校这种急剧变化的教育情况,尤其是作为小学教育主课程的语文科目,其教学人员更需要考虑如何及时应对这些变化。 一、树立小班化教学理念 小班化给教育教学带来了新的契机。语文教学中的小班教学在表面上是指在学生数量较少的班级中进行的语文教学活动,而从更深层次的内容上来说,这种语文教学小班化其实是一种教育方式和方法的发展趋势,更是一种教学理念的演进。为了真正实现学生在语文课堂中能够以主体地位来参与到语文教学活动的各个环节,语文教师要在这里充当好教学引导者的角色。要重视学生在教学中的个性化发展,多阅读一些有利于提升语文阅读能力的文章,同时还要去积极探索有益的教学方法和策略,多赋予孩子学习的主动性,以此激发学生在小班化语文教学活动中的想象力和创造力,实现教育对人的引领和改造作用。 二、增强学生学习自信,发掘学生潜能 课堂教学是师生互动最重要的舞台,“在教学互动中提升质量”是关键,“充分挖掘每一个孩子的潜能”是目标。要努力实现这一目标,必须做到充分尊重每个学生的能力差异。抓住学生的闪光点,在同学、家长面前表扬。讲究语言艺术,让学生感受被赏识的快乐,用真诚的微笑和期待的目光面对每一个孩子,帮助学生树立信心。 三、尊重差异,实施“分层教学”

小学语文小班化教学案例

小学语文小班化教学案例 -----培养学生自主与合作学习能力的协调发展 一、案例背景 语文课程标准中指出:“倡导自主、合作、探究的学习方式”,由此可见,自主学习与合作探究的学习方式已成为课程改革的目标之一。那么,如何使自主学习与合作探究的学习方式在我们小班化课堂教学中有用地进行呢?通过自己的教学实践,我感到,教师要善于根据学生特点,为他们创设自主与合作学习的条件,才能确实使自主与合作学习落到实处,而不会是“看似课堂上热热闹闹,实则只是摆摆花架子而无实效性”的局面。下面,我就《我为你骄慢》一课的教学作了尝试。《我为你骄慢》是二年级下册一篇叙事性的文章,故事中的小男孩不小心打碎了老奶奶家的玻璃,当时害怕逃跑了,但后来用自己的行动取得老奶奶的原谅,老奶奶为小男孩感到骄慢。教学时,我给他们充分地自读自悟的机会,给他们个性化表达的机会,同时充分利用小班化小组学习的条件,进行组内合作学习,学会讨论、交流。 二、案例描述 1、解放读课文,要求读准字音、读通句子。 2、旁桌互认生字。 3、组长检查词语。 4、想想小男孩和老奶奶之间发生了什么事。根据下面的提示说一说:送报的小男孩,后来。老奶奶为小男孩感到。 (学生从自主学习到组内合作、交流,参与的主动性、积极性很高,学习气氛非常浓重。) 片段二:叙说故事情节; 1、默读课文1、2自然段,然后试着用自己的话向大家介绍“我打碎玻璃”的详尽经过。小组内练说,指名说。 2、引读第三自然段。

说话:我觉得很不自在,是因为。 生1:我觉得很不自在,是因为我打碎了老奶奶家的玻璃,难以为情见老奶奶。 生2:我觉得很不自在,是因为我担心老奶奶知道。 生3:我觉得很不自在,是因为我做了错事,老奶奶却还微笑着对我。 生4:我觉得很不自在,是因为我很后悔逃跑,感到良心不安。 3、默读四、五自然段,说说我是如何向老奶奶道歉的。 提供词语帮助说话: 三个星期过去了攒钱便条信封 xx悄悄地信箱松弛 小组内练说、指名说。 (通过叙说故事情节,让学生将课文的语言有用地迁移于自己的言语实践,这个要求对于中下层次的学生来说有难度,但是先让学生在小组内练习,让小组里会说的同学先说,能为中下层次的同学提供互助学习的机会,形成了一个优良的学习小环境。) 片段三:说话训练; 师:老奶奶为小男孩的什么而骄慢呢? 生1:为他的厚道。 生2:为他的英勇。 师引导:这叫敢于承担责任。 生3:为他的知错就改。 师:当小男孩看到“我为你骄慢”的便条时是什么样的心情?

外文翻译

本科毕业论文外文翻译 外文译文题目(中文):再生建筑垃圾作为混凝土骨料用于 可持续建筑材料的探究 学院: 城市建设学院 专业: 土木工程 学号: 201308141162 学生姓名: 郑健 指导教师: 唐红 日期: 二○一七年六月

InternationalConferenceonSustainableDesign,Engineeringan dConstruction Recycled Construction Debris as Concrete Aggregate for Sustainable Construction Materials ShahidKabir*,AmmarAl-ShayebandImranM.Khan ProcediaEngineering145(2016)1518–1525 (可持续设计、工程与建筑国际会议) 再生建筑垃圾作为混凝土骨料用于可持续建筑材料的探究ShahidKabir*,AmmarAl-ShayebandImranM.Khan (土木与环境工程系,费萨尔国王大学,沙乌地阿拉伯王国)能源与工程145(2016)1518–1525

摘要 为了比较各种来源有差异的再生混凝土骨料废料拆除的工程性质,笔者专门为此做了一个实验:实验室从一个已知的工程性质商业预拌混凝土公司得到样品来测试混凝土废物,通过一些关于样品的工程性质的信息具体,并从结合市场规则的前提出发将其作为实验的控制样品。本研究探讨了潜在的建筑废物的可持续建筑材料的发展,以获得建筑废物的经济回报。将建筑垃圾处理成砾石后,计算出废料的再生材料量,进行骨料试验。实验室样品的制作是对各种废物来源进行混合设计与骨料回收的基础上完成的,得到控制样品后,最后进行抗压强度,拉伸强度,抗弯强度,以及一些非破坏性试验(NDT),如脉冲速度和锤击试验。从不同的测试得到的结果之间的相关性进行了分析,在这个实验程序中,指出样品之间的线性相关性以及其他机械性能的评价,如抗压强度,劈裂抗拉强度,弯曲强度,脉冲速度等。 关键词 可持续混凝土设计;再生骨料,建筑拆除混凝土,混凝土工程性能 一、引言 固体废物管理是全球面临的严峻挑战,而这也是海湾地区的一个特殊问题 ,其中大多数国家有着世界上最高的人均废物产生量。工业增长、建设繁荣、快速城市化、生活方式的改变和不可持续的消费模式,都对这一日益严重的浪费问题有着不小的影响。城市化建设的加速导致了数十亿美元的建设公共基础设施部门的建设项目的支出,这导致了建筑材料与相关建筑废弃物的管理不断增长的物质人力需求。拆除旧建筑物,成吨的建筑废料被丢弃;这些拆除的混凝土也常常被认为是没有价值的,作为拆卸废物处置。然而,大多数建筑垃圾被认为是有利用价值的,可以可用于再生建筑材料。 自然资源通常由建筑业大量消耗,同时还生产大量的建筑和拆除废物。碳废物构成最大的固体废物量。例如,美国建筑业每年产生超过1亿吨的碳废物,而大约有29%的固体废物流是由建筑业产生的。此外,英国的碳废物废物贡献率超过50%,每年有着7000万吨的碳废物被丢弃。克莱文等人在1994年的报道说,建筑活动产生的约20-30%的废物在澳大利亚,这是弃置垃圾的填埋场。而在1993-2004年间,则是中国香港建筑垃圾的巅峰年代,建筑垃圾的制造量翻了一番,达到2000万吨。2004年。在香港近23%的固体废物来自建筑业活动。大量的建筑垃圾在不同的国家揭示了地方行动的重要性,同时,回收和再利用建筑废物在整个建筑行业的生命周期中有着显著的意义。 建筑废物的产生和建筑材料消耗以及自然资源的不可持续使用也与建筑业的不利环境影响有关。在全球范围内,据估计,约30%的废物处置堆填区来源于建筑和拆除活动。此外,自然资源的过度使用,如碎石生产、爆破土石的山区,已成为一个日益严重的环境问题,这些工业生产的废物需要通过创新思想来加以解决,同时改善可持续发展的综合管理方案来获得经济回报。

湘艺版五年级音乐《长白山下的歌谣》教学设计

湘艺版五年级音乐《长白山下的歌谣》 教学设计 《长白山下的歌谣》教学设计 教材版本:湘艺版音乐教材 教学对象:五年级上期 一、教学案例: (一)题:《长白山下的歌谣》音乐综合 (二)教材版本:湘版新标实验教材 (三)年级:五年级 (四)教具准备:钢琴、AI、打击乐器、朝鲜族服饰、长鼓、金达莱花。 (五)教学目标: ①、认知目标:认真听赏朝鲜民歌《道拉基》,学习三拍子节奏特点。 ②、能力目标:通过小组合作学习(设计身势节奏、用长鼓为歌曲伴奏、即兴歌舞等形式)培养学生的创新能力、合作能力,体验朝鲜族民歌的韵律。 ③、情感目标:通过感受性学习歌曲《金达莱花开朵朵红》,了解朝鲜族人民勤劳淳朴、团结互助、热情好客、能歌善舞的优良传统与民族风情。 (六)设计思路: 五十六个民族五十六枝花,生活在吉林省长白山脚下的

朝鲜族,其歌舞有着独特的节奏韵律。湘版新标实验教材五年级上册第八单元题为:《长白山下的歌谣》,它引起了我的研究兴趣。本单元的教育主题为:用民族音乐激发学生的爱国情感,实现多元文化的交流。即:通过音乐去感受民族文化,进而去了解民族文化;反之,通过文化,我们才可以去体验民族音乐,整体地去认识民族音乐。本时选用听赏《桔梗谣》和演唱歌曲《金达莱花开朵朵红》这两部分内容,教学设计的基本思路是:使学生通过多种形式听、唱“长白山下的歌谣”,深刻体验民族音乐“原生态”的美,以及其歌舞文化、思想内涵;在师生平等互动的学习氛围里,通过实践创作、对歌曲的再表现等形式,激发学生热爱民族音乐、热爱我们伟大祖国的情感。 堂教学中我以“新程”为指导思想,对教学设计进行了一些新的尝试。以下结合自己教学实践中的堂教学个案,和大家共同评析与探讨。 (七)教学过程 ᠄ 导入新过程:即“看风景”。 、AI播放《大长今》影片,背景音乐:《大长今》的主题曲《希望》。 (学生起立,跟随老师自由律动。) 师:刚才同学们听到的旋律出自?

小班化语文教学案例——《清平乐-村居》

小班化语文教学案例——《清平乐村居》 【设计理念】 在课程标准的理念指导下,结合小班化教学的特点,本课的教学设计力求体现:1、师生、生生的互动。2、教学与活动相结合。3、面向全体,异质教学。4、针对个体,同质活动。 【教学内容】 《清平乐村居》是小学语文五年级上册的一篇课文。课文描绘了一幅充满农村生活气息的田园图景。词的上阕长短句相间,而下阕句式整齐,每句韵脚相同,节奏感强。全词描绘了南方一户农家生活劳动的场景:二老融洽,孩子孝顺,老有所养,少有所事,温馨、淳朴,自然。 【学习目标】 1.正确、流利、在感情地朗读课文,在读中感悟田园生活的意境。使学生从中受到美的熏陶;背诵课文。 2.学会本课5个生字。理解由生字组成的词语。 3.初步了解词的有关知识。 4.理解这首词的意思。想象这首词所描绘的情景,并在说的基础上写下来。 【学习小组的建构】 本课的学习小组先采用异质组合的分组法,再采用异质组队的分组法。根据各项语文学习能力(思维能力、朗读能力、书写能力、口语表达能力等)的强弱进行组合。本班共有24人,分为6组,每组4人,分别为1,2,3,4号。把1、2、3、4号同学,在异质组合的分组法中1、2、3、4号同学作为学习伙伴,其中1号为本小组组长,语文阅读,书写等综合能力较强,2号为本小组中相对较弱的同学,3,4号属于中等水平。在异质组队的分组法所有1号的同学座位一组,所有2号的同学也作为一组,所有3号一组,所有4号一组为一组。 【教学过程】 一.导入新课 1.、师:读读我们以前学过的课文,也有一种情趣,我们二年级学过词串: 金秋烟波水乡 芦苇菱藕荷塘 夕阳归舟渔歌 枫叶灯火月光

《新课标下高中数学概念教学的实践与研究》

《新课标下高中数学概念教学的实践与研究》 课题开题报告 浙江温州第二十二中学高洪武325000 一、课题提出的背景及现实意义 新一轮课程改革已经在全国部分省市如火如荼地开展,为了进一步扩大普通高中新课程实验范围,教育部决定从2006年秋季起,福建、浙江、辽宁和安徽4省将全面进入普通高中新课程实验。这将意味着我省教师将真正意义上进入新课程教学的实践与研究了。作为高中数学教师,理所当然将在这一实验过程中扮演着重要的角色。在新课程理念下,对构建数学理论大厦的数学概念如何实施教学是摆在每一位老师面前的一个严峻的课题。 高中数学课程标准指出:数学教学中应加强对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终,帮助学生逐步加深理解。长期以来,由于受应试教育的影响,不少数学教师重解题、轻概念造成数学解题与概念脱节、学生对概念含混不清,一知半解,不能很好地理解和运用概念。数学课堂变成了教师进行学生解题技能培训的场所;而学生成了解题的机器,整天机械地按照老师灌输的“程序”进行简单的重复劳作。严重影响了学生思维的发展,能力的提高。这与新课程大力倡导的培养学生探究能力与创新精神已严重背离。那么在新课标下如何才能帮助学生更好、更加深刻地理解数学概念;如何才能灵活地应用数学概念解决数学问题,我想关键的环节还是在于教师如何实施数学概念教学,为此“新课标下高中数学概念教学的实践与研究”课题在这样的背景下应运而生。 二、国内外关于同类课题的研究综述和课题研究的理论依据 1.国内外关于同类课题的研究综述: 国内外关于数学概念教学理论研究是比较多的,对于一些概念课授课方法也是有研究的。但是那些理论的得出和经验的总结都是特定教育环境下的产物;而对于今天所推进的新课程实验(特别是在我国刚刚开始实施阶段),高中数学概念教学理论研究还几乎是一片空白。对于实践研究就更不足为谈了。 2. 课题研究的理论依据: 2-1 一般来说,数学概念要经历感知、理解、保持和应用四种心理过程。数学概念教学主要依据有如下理论: (1)联结理论、媒介理论:联结理论把概念的掌握过程解释为各种特征的重叠过程,尤如用照相机拍摄下来的事物在底片上的重叠,能够冲洗出照片一样。即接受外界刺激然后做出相应的反应。而媒介理论认为内部过程存在一种媒介因素,并用它来解释复杂的人类行动。 (2)同化、顺应理论:皮亚杰认为,概念的掌握过程无非是经历了一个同化与顺应的过程;所谓同化,就是把新概念、新知识接纳入到一个已知的认知结构中去;所谓顺应,就是当原有的认知结构不能纳入新概念时,必须改变已有的认知结构,以适应新概念。 (3)假设理论:假设理论不同于联结理论把概念掌握的过程看成是一个消极被动的过程,并认为学生掌握概念是一个积极制造概念的过程。所谓积极制造概念的过程,就是根据事实进行抽象、推理、概括、提出假设,并将这一假设应用于日后遇到的事例中加以检验的

毕业设计外文翻译-中文版

本科生毕业设计(论文)外文科技文献译文 译文题目(外文题目)学院(系)Socket网络编程的设计与实现A Design and Implementation of Active Network Socket Programming 机械与能源工程学院 专学业 号 机械设计制造及其自动化 071895 学生姓名李杰林 日期2012年5月27日指导教师签名日期

摘要:编程节点和活跃网络的概念将可编程性引入到通信网络中,并且代码和数据可以在发送过程中进行修改。最近,多个研究小组已经设计和实现了自己的设计平台。每个设计都有其自己的优点和缺点,但是在不同平台之间都存在着互操作性问题。因此,我们引入一个类似网络socket编程的概念。我们建立一组针对应用程序进行编程的简单接口,这组被称为活跃网络Socket编程(ANSP)的接口,将在所有执行环境下工作。因此,ANSP 提供一个类似于“一次性编写,无限制运行”的开放编程模型,它可以工作在所有的可执行环境下。它解决了活跃网络中的异构性,当应用程序需要访问异构网络内的所有地区,在临界点部署特殊服务或监视整个网络的性能时显得相当重要。我们的方案是在现有的环境中,所有应用程序可以很容易地安装上一个薄薄的透明层而不是引入一个新的平台。 关键词:活跃网络;应用程序编程接口;活跃网络socket编程

1 导言 1990年,为了在互联网上引入新的网络协议,克拉克和藤农豪斯[1]提出了一种新的设 计框架。自公布这一标志性文件,活跃网络设计框架[2,3,10]已经慢慢在20世纪90 年代末成形。活跃网络允许程序代码和数据可以同时在互联网上提供积极的网络范式,此外,他们可以在传送到目的地的过程中得到执行和修改。ABone作为一个全球性的骨干网络,开 始进行活跃网络实验。除执行平台的不成熟,商业上活跃网络在互联网上的部署也成为主要障碍。例如,一个供应商可能不乐意让网络路由器运行一些可能影响其预期路由性能的未知程序,。因此,作为替代提出了允许活跃网络在互联网上运作的概念,如欧洲研究课题组提出的应用层活跃网络(ALAN)项目[4]。 在ALAN项目中,活跃服务器系统位于网络的不同地址,并且这些应用程序都可以运行在活跃系统的网络应用层上。另一个潜在的方法是网络服务提供商提供更优质的活跃网络服务类。这个服务类应该提供最优质的服务质量(QOS),并允许路由器对计算机的访问。通过这种方法,网络服务提供商可以创建一个新的收入来源。 对活跃网络的研究已取得稳步进展。由于活跃网络在互联网上推出了可编程性,相应 地应建立供应用程序工作的可执行平台。这些操作系统平台执行环境(EES),其中一些已 被创建,例如,活跃信号协议(ASP)[12]和活跃网络传输系统(ANTS)[11]。因此,不 同的应用程序可以实现对活跃网络概念的测试。 在这些EES 环境下,已经开展了一系列验证活跃网络概念的实验,例如,移动网络[5],网页代理[6],多播路由器[7]。活跃网络引进了很多在网络上兼有灵活性和可扩展性的方案。几个研究小组已经提出了各种可通过路由器进行网络计算的可执行环境。他们的成果和现有基础设施的潜在好处正在被评估[8,9]。不幸的是,他们很少关心互操作性问题,活跃网络由多个执行环境组成,例如,在ABone 中存在三个EES,专为一个EES编写的应用程序不能在其他平台上运行。这就出现了一种资源划分为不同运行环境的问题。此外,总是有一些关键的网络应用需要跨环境运行,如信息收集和关键点部署监测网络的服务。 在本文中,被称为活跃网络Socket编程(ANSP)的框架模型,可以在所有EES下运行。它提供了以下主要目标: ??通过单一编程接口编写应用程序。 由于ANSP提供的编程接口,使得EES的设计与ANSP 独立。这使得未来执行环境的发展和提高更加透明。

大学毕业晚会主持词四人

大学毕业晚会主持词四人 四个主持人主持的大学毕业晚会应该怎么说主持词呢下面小编跟大家分享几篇大学毕业晚会主持词,以供参考! 大学毕业晚会主持词一 1.节奏引领时尚,余音环绕广场,新鲜的韵律,高难度的声响,一样为您缔造不一样的完美想象,下面请欣赏来自07音乐班的xxx为您带来的《》相信会给您带来意外的惊喜。 2.铃声清脆鼓铿锵,天山铃舞尽展情,来自天山的自然是蝶飞花影动,美丽各不同,那就让我们停下脚步,一饱眼福,欣赏由xxx为我们带来的舞蹈《天山铃舞》 3. 军中有歌,歌才动情,军旅里飞来一只熟悉的百灵,不错下面就由请xxx为大家献上一首耳熟能详的老歌,《军中飞来一只百灵》 4.炫酷才叫时尚,八零后心之向往,相信大家都一样,需要个性张扬。今天我们特意请来了城市建设学院的武状元优秀团队,为大家献上一段充满活力的XXX,感谢他们的到来,大家掌声欢迎! 5.相信大家都看过一部曾经风靡一时的电影,那是周杰伦曾经推出的一部年度巨献《不能说的秘密》.里面的四手联弹一定给大家留下了不可磨灭的深刻印象,旋律依旧在脑中回响。不过经典一样可以复制,精彩一样能够粘贴,下面给大家带来的这个惊喜,可谓是非常具有特色,一样是所见

不多,机会难得。下面请欣赏xxxx为大家带来的,钢琴四手连弹《军队进行曲》 6.幽幽云水意.漫漫古典情. 诗情画境的晕染为我们带来流动的娴静。请大家随着动人的舞蹈穿越书法的妙境,伴随优雅的琴韵体会超越喧嚣的古韵墨香。下面请欣赏xxx为您带来的xxxx 7.四年的岁月流光见证了你我在辽东学院的欢欣成长,相信由很多即将走出校园的同学都想倾诉衷肠,下面我们就请出来自05对外汉语的毕业生代表xxx听听她如何表达。 8.当你离开的时候,我送走你的只有沉默。当你离开我的时候,我绝不会把泪滴落。这是金达莱花的歌词大意,相信朝鲜族金达莱花的舞姿会像歌词一样优美,让人回味。下面请欣赏xxxx金达莱花。 9.是谁带来远古的呼唤,是谁留下千年的期盼,这首歌自打年初就开始被人重新无数次的翻唱,不过下面的歌曲,同样青藏高原的演唱,绝对会给您用实力带来不一样。由请xxxx 10.因为有爱,我们才牵手,因为有爱,我们才会风雨同舟。与身边爱自己的人共同牵手,一同遨游,幸福生活才能没有尽头。下面欣赏牵手。 11. 我对你的敬仰之情,如滔滔江水,连绵不绝;又如黄河之水,一发不可收拾;相信大家对电影《月光宝盒》中这一

中英文翻译中文译文

BPMN2.0标准业务流程建模简介 Thomas Allweyer著2.1最初的BPMN模型 一个简单的BPMN流程模型被认为是一个起点。在图1中所示的模型工作可以被大多数先前已经涉及任何种类的过程建模的人所直接理解。建模的方式类似于公知的流程图和活动图。 图1 一个简单的BPMN模型 营业部和人力资源部门参与的过程为“发布职位”。当需要雇员的过程开始。该营业部报告该职位空缺。然后,人力资源部写一份招聘启事。该营业部的评论此招聘启事。 在这一点上,有两种可能性:要么招聘启事是好的,否则是不行的。如果不行的,它是由人力资源部返工。这是一次,其次是营业部审查招聘启事。同样,其结果可能是好还是不好吧。因此,它可能在招聘启事发生时需要检讨多次。如果它是好的,它是由人力资源管理部门公布的,在这个过程结束时。 在现实中,用于创建和发布招聘启事可以更加复杂和广泛。所提出的例子是(像在这本书中所有例子)为了具有小的和容易理解的模型的简化,可用于说明不同的BPMN元素。 2.2 BPMN构建的使用 下面,将模型图1中的每个元件更加紧密地说明。整个过程被包含在一个池。这是一个完整的过程的一般种类的容器。在上面的例子中,池标有包含进程的名称。 每一道工序都坐落在池内。如果该集合对于过程来说是不重要的,它不要求将其拉在图中。在不显示一个池的过程中,整个过程都包含在一个无形的,隐含的池。池是特别有趣的当数个池用来模拟一个协作使用,即几个合作伙伴的过程的相互作用。每个合作伙伴的过

程在一个单独的游泳池显示。这将在第5章描述。 从图1中的池分隔成两个道。道可用于各种用途,例如用于分配组织单位,如在这个例子中,或用于技术系统内代表不同的组件。在这个例子中,道显示的过程的活动由营业部和人力资源部门进行。 被池和道也被称为“泳道”。他们像游泳池划分成的道。比赛的每一个参与者只游在自己道。过程本身开始的第一个活动为“要求员工”。流程通常有这样一个启动事件。其标志是一个简单的圆形。在大多数情况下是有意义的只使用一个起始事件,而不是几个的。 一个圆角矩形代表活动。在一个活动得到的东西做的。这是由活动的名称表示,比如“报告工作机会”或“审查职位发布”。 连接箭头用于模拟的顺序流。它们表示,其中不同的事件,活动,和其它元件的遍历顺序。通常,这被称为控制流,但在BPMN有第二类型的流,该消息流,从而影响一个过程的控制,以及,因此,某种控制流,太。出于这个原因,术语“序列流”被使用。用于从其它种类的流区分开来,这是很重要的绘制顺序用实线和填充箭头流动。 这个过程“发布职位”包含了拆分:活动“审查招聘启事”后面的网关。一个空白的菱形代表了一个独特的网关。这意味着,从几个外向顺序流向,只有一个必须选择。在招聘启事进程正确网关到达每一次,一个决定必须。无论顺序流向右后跟,导致活动“发布作业发布”,或一到左侧被选择,触发活动“返修作业发布”。因此不可能同时遵循两条路径。 这样的决定的逻辑也被称为“异或”,缩写为“异或”。在输出路径的条件决定选择哪条路径。如果建模工具的使用量和处理已被执行或由软件程序进行模拟,则通常可以正式定义确切条件。这种正式的描述,其可以表示在一种编程语言,可以存储在该序列流动的特殊属性。 如果,在另一方面,模型的目的是要说明一个过程到其它人,那么最好是写非正式的,但可以理解的,语句直接进入图,旁边的顺序流。的意思是“好”与“不行”后,被称为“审查职位发布”活动是明确到人- 一个程序无法使用它。 网关还用于合并替代路径。在示例过程中,对活动“评论作业发布”左侧网关合并两个输入序列流动。再次,这是一个唯一网关。该公司预计,无论是活动“写入招聘发布”或“返修职位发布”进行网关到达之前- 在同一时间,但不能同时使用。它应为使用网关或者用于分离或用于接合被照顾,但不能用于二者的组合。在示例过程中

小班化小学语文课堂教学模式

小班化小学语文课堂教学模式 凤凰镇何田小学朱建平 小班化教学是建立在素质教育高标准,高要求的教育质量观和现代办学效益观基础上,充分发发挥“小班”本质特征的教学模式。现就有关教学策略方面浅谈几点体会。 一、教学方式的重组 在小班化教学模式中,师生之间的互动关系应得到增强和增加。 1、建立和谐的师生关系。教学是师生间交流沟通的过程,教师要和学生共同分享对教材的理解、课堂给予的快乐。教师的责任就是要成为学生学习的引导者、帮扶者和促进者。教师要转变教育观念,关心学生的心理需求,尊重学生的个性表达,营造一种平等宽容、健康和谐的课堂教学氛围。 2、营造浓郁学习氛围的教室环境。学生是课堂教学的主体,小班化教室环境的布置要以学生为本位,从有利于学生学习成长、有利于教师实施个别化教学去考虑。要把教室布置成为一个学习中心,营造浓郁的书香氛围。如可以在教室内悬挂励志格言、经典名句,张贴学生优秀作品,设立班级小书库,在课桌椅的排列上采取个体独立式或小组组合式,摆放成圆形、方框形、辩论型式、等等,以方便学生开展自学思考、课堂练习和进行一些互动沟通、讨论交流。 3、创设科学的教学情境。教师要注意采取各种方法激发学生强烈的求知欲望,引导学生迅速进入最佳语文学习状态,使他们在兴趣盎然的心理气氛中,跟着教师进入新知识的探索过程中。从教学需要出发,营造或创设与教学内容相适应的场景,力求生动、形象、有趣,以激发他们学习的兴趣,引起学生的情感体验,帮助学生迅速而正确地理解教材内容,促进儿童知识的、能力的、智力的、情感意志的尽可能大的发展。 二、自主探究策略 尊重和落实学生在课堂教学中的主体地位,注重学生在课堂内的自主探究,还学生以学习主动权,让学生有独立认知、思考的过程,是新课改的重要理念之

新课标下如何进行高中数学概念教学

新课标下如何进行高中数学概念教学 发表时间:2011-01-26T17:01:56.810Z 来源:《少年智力开发报》2010年第9期供稿作者:杨昆 [导读] 如何在这一要求下进行数学概念教学?我认为抓好概念教学是提高数学教学质量的最关键的一环。 贵州省平塘民族中学杨昆 教师应该准确地提示概念的内涵与外延,使学生深刻理解概念,并在解决各类问题时灵活应用数学概念是新课标下数学概念的教学要求。因此正确理解数学概念,是掌握数学基础知识的前提。如何在这一要求下进行数学概念教学?我认为抓好概念教学是提高数学教学质量的最关键的一环。下面我从引入概念、解析概念、巩固概念三个方面谈谈对概念教学。 一、引入概念 概念教学中要引导学生经历从具体的实例抽象出数学概念的过程.因此引入数学概念就要以具体的典型材料和实例为基础,揭示概念形成的实际背景,要创设好的问题情境,帮助学生完成由材料感知到理性认识的过渡,并引导学生把背景材料与原有认知结构建立实质性联系.下面介绍几种引入数学概念的方法: 1.从实际生活中,引入新概念。 新课标强调“数学教学要紧密联系学生的生活实际”.在数学概念的引入上,尽可能地选取学生日常生活中熟悉的事例. 2.创设问题情境,引入新概念。 教师要善于恰当地创设趣味性、探索性的问题情境,激发学生概念学习的兴趣,使学生能够从问题分析中,归纳和抽象出概念的本质特征,这样形成的概念才容易被学生理解和接受。 3. 从最近概念引入新概念。 数学概念具有很强的系统性。数学概念往往是“抽象之上的抽象”,先前的概念往往是后续概念的基础,从而形成了数学概念的系统。公理化体系就是这种系统性的最高反映。教学中充分利用学生头脑中已有的知识与相关的经验引入概念,使相应的具体经验升华为理性认识,不仅能使学生准确地理解概念的形式定义,而且有利于建立起关于概念的恰当心理表征。使学生对知识的积累变成对知识的融合。 二、解析概念 生动恰当的引入概念,只是概念教学的第一步,,要使学生真正掌握新概念,还必须多角度、多方位的解析概念。对概念理解不深刻,解题时就会出现这样或那样的错误,要正确而深刻地理解一个概念并不是一件容易的事,教师要根据学生的知识结构和能力特点,从多方面着手,适当地引导学生正确地分析解剖概念,充分认识概念的科学性,抓住概念的本质。因此,教师要充分利用概念课,培养学生的能力,训练学生的思维,使学生认识到数学概念,既是进一步学习数学的理论基础,又是进行再认识的工具。为此,我们可以从以下几个方面努力,加深对概念的理解。 1.用数学符号语言解析概念。数学教学体现了数学语言的特点,数学语言无非是文字叙述、符号表示、图形表示三者之间的转换,当然要会三者的翻译,同时更重要的是强调符号感。引进数学符号以后,应当引导学生把符号与它所代表的实质内容联系起来,使学生在看到符号时就能够联想起符号所代表的概念及其本质特征。事实上,如果概念的符号能够与概念的实质内容建立起内在联系,那么,符号的掌握可以提高学生的抽象能力、概括能力。数学中的逻辑推理关键就在于能够合理、恰当地应用符号,而这又要依靠对符号的实质意义的把握。在概念学习中,形式地掌握符号而不懂得符号的本质涵义的情况是经常发生的,这时符号将使知识学习产生困难,导致数学推理的错误。 2.用图形语言解析概念。数与形的结合是使学生正确理解和深刻体会概念的好方法,数形结合妙用无穷,教学中凡是“数”与“形”能够结合起来讲的,一定要尽量结合起来讲。 3.逆向分析,加深对概念的理解。人的思维是可逆的,但必须有意识地去培养这种逆向思维活动的能力。对某些概念还应从多方面设问并思考。 4.讲清数学概念之内涵和外延,沟通知识的内在联系。概念反映的所有对象的共同本质属性的总和,叫做这个概念的内涵,又称涵义。适合于概念所指的对象的全体,叫做这个概念的外延,又称范围。 5.揭示概念与概念之间的区别与联系,使新概念与已有认知结构中的有关概念建立联系,把新概念纳入到已有概念体系中,同化新概念。教学中,应将相近、相反或容易混淆的概念放到一块来对比讲解,从定义、图形、性质等各方面进行分析对比,从而正确理解把握概念.。 三、巩固概念 学生认识和形成概念,理解和掌握之后,巩固概念是一个不可缺少的环节。巩固的主要手段是多练习、多运用,只有这样才能沟通概念、定理、法则、性质、公式之间的内存联系。我们可以选择概念性、典型性的习题,加强概念本质的理解,使学生最终理解和掌握数学思想方法。例如,当学习完“向量的坐标”这一概念之后,进行向量的坐标运算,提出问题:已知平行四边形ABCD的三个顶点ABC的坐标分别是(1,2),(2,4),(0,2),试求顶点D的坐标。学生展开充分的讨论,不少学生运用平面解析几何中学过的知识(如两点间的距离公式、斜率、直线方程、中点坐标公式等),结合平行四边形的性质,提出了各种不同的解法,有的学生应用共线向量的概念给出了解法,还有一些学生运用所学过向量坐标的概念,把点D的坐标和向量CD的坐标联系起来,巧妙地解答了这一问题。学生通过对问题的思考,尽快地投入到新概念的探索中去,从而激发了学生的好奇以及探索和创造的欲望,使学生在参与的过程中产生内心的体验和创造。除此之外,教师通过反例、错解等进行辨析,也有利于学生巩固概念。 总之,在中学数学概念的教学中,只要针对学生实际和概念的具体特点,注重引入,加强分析,重视训练,辅以灵活多样的教法,使学生准确地理解和掌握概念,才能更好地完成数学概念的教学任务,从而有效地提高数学教学质量。

外文翻译及中文译文

车床 用于车外圆、端面和镗孔等加工的机床称作车床。车削很少在其他种类的机床上进行,因为其他机床都不能像车床那样方便地进行车削加工。由于车床除了用于车外圆还能用于镗孔、车端面、钻孔和铰孔,车床的多功能性可以使工件在一次定位安装中完成多种加工。这就是在生产中普遍使用各种车床比其他种类的机床都要多的原因。 两千多年前就已经有了车床。现代车床可以追溯到大约1797年,那时亨利?莫德斯利发明了一种具有把主轴和丝杆的车床。这种车床可以控制工具的机械进给。这位聪明的英国人还发明了一种把主轴和丝杆相连接的变速装置,这样就可以切削螺纹。 车床的主要部件:床身、主轴箱组件、尾架组件、拖板组、变速齿轮箱、丝杆和光杆。 床身是车床的基础件。它通常是由经过充分正火或时效处理的灰铸铁或者球墨铸铁制成,它是一个坚固的刚性框架,所有其他主要部件都安装在床身上。通常在球墨铸铁制成,它是一个坚固的刚性框架,所有其他主要部件都安装在床身上。通常在床身上面有内外两组平行的导轨。一些制造厂生产的四个导轨都采用倒“V”,而另一些制造厂则将倒“V”形导轨和平面导轨结合。由于其他的部件要安装在导轨上并(或)在导轨上移动,导轨要经过精密加工,以保证其装配精度。同样地,在操作中应该小心,以避免损伤导轨。导轨上的任何误差,常常会使整个机床的精度遭到破坏。大多数现代车床的导轨要进行表面淬火处理。以减少磨损和擦伤,具有更大的耐磨性。 主轴箱安装在床身一端内导轨的固定位置上。它提供动力。使工件在各种速度下旋转。它基本上由一个安装在精密轴承中的空心轴和一系列变速齿轮---类似于卡车变速箱所组成,通过变速齿轮,主轴可以在许多中转速的旋转。大多数车床有8~18中转速,一般按等比级数排列。在现代车床上只需扳动2~4个手柄,就能得到全部挡位的转速。目前发展的趋势是通过电气的或机械的装置进行无级变速。 由于车床的精度在很大程度上取决于主轴,因此主轴的结构尺寸较大,通常安装在紧密配合的重型圆锤滚子轴承或球轴承中。主轴中有一个贯穿全长的通孔,长棒料可以通过该孔送料。主轴孔的大小是车床的一个重要尺寸,因为当工件必须通过主轴孔供料时,它确定了能够加工棒料毛坯的最大外径尺寸。 主轴的内端从主轴箱中凸出,其上可以安装多种卡盘、花盘和挡筷。而小型的车床长带有螺纹截面供安装卡盘之用。很多大车床使用偏心夹或键动圆锥。这

《小学语文小班化教学模式》课题研究结题报告

《小学语文小班化教学模式》 课题研究结题报告 明德小学在2012年9月开始了区级课题《小学语文小班化教学模式》的研究,经过三年的努力,已经初见成效,现对我校课题研究作结题报告 一、本课题研究现状及研究意义。 (一)本课题研究现状 实施小班化教学是当前国际教育改革的一大趋势,国外和国内的一些大城市,小班化教育已经较为普及,并且取得了一定成效。小班化教育由于人数少,增加了师生之间交往的额度,每个学生能更多地得到教师的关注和指导,促进了教育过程中面向全体学生目标的实现。通过实行小班化,让学生更充分享受各种教育资源,增加接受优质教育的机会,小班化教学已成为个性化实施素质教育的重要载体。 (二)本课题研究的意义: 随着农村生源的自然萎缩,结合我校师生比的现状,2012年我校通过努力在班额设置上具备了开展具有农村特色的“小学语文小班化教学模式”的研究。 小学语文小班化教学模式的研究主要着眼于课堂教学模式的研究,争取经过一个阶段研究,使教师的教学观、学

生观、课程观、评价观等方面得到较大幅度的提高,努力为学生营造和谐课堂,使学生在课堂上有效地互动、合作,发展学生学习的主观能动性,为学生终身的发展奠定良好的基础。 二.研究的主要内容、基本思路。 (一)研究的主要内容 1、界定 小班:指较少容量的教学班的学生数量,控制在30人以下,区别于一般在40甚至50人以上的传统教学班。 小学语文小班化教学:在小班配置条件下,以培养创新精神和实践能力,以人的发展为核心目标的素质教育观支配直的教学活动体系,强调和谐的情境,充分有效的自主探究、合作交流的小班教学特征。 合作:合作是人与人之间在共同活动中发生相互作用和联系的基本方式,教学活动是一种特殊的社会性交往活动,教学过程是师生共同构建学习主体的过程。 2、课题研究的主要内容 (1)小组合作学习的研究 现在社会需要的是那种会合作,又能积极参与竞争的人才。小班化教学过程应重视学生的小组合作意识的培养,让学生养成合作的习惯。做好合作小组成员组合的研究,在小组学习中,教师要对各小组的组员构成进行认真考虑,而不

外文翻译译文(张苗苗)

温州医学院 本科毕业论文外文翻译资料 (2018届> 译文题目1劳伦斯《儿子与情人》中地异化 <中文) 译文题目2人地异化:海明威短篇小说研究 <中文) 译文总字数6069 学院仁济专业英语 班级06英语2班学号0606041058 作者姓名张苗苗完稿时间2018-04-27 指导老师陈勇合作老师无劳伦斯《儿子与情人》中地异化b5E2RGbCAP 第6-14页第一章异化地意义拉丁语异化地意思是产权转让,一种麻木、精神错乱地状态和有敌意或疏远倾向地行动.英语用法中地“异化”和法语用法中地“异化”保留着疏远地意思.作为一种文学主题地异化,它可以被描述为文学角色或人物与他或她以前或本来应有地本性或者是想要地一种谐和和一致地疏离.相反,关于异化问题地解决方法,一个有悖于它地是和解主题.异化关系以及孤独主题就是一体地,常常摈弃异化形象地环境背景?但是,孤独也可以从积极地方面被展示,比如说和平,与自然或上帝交流地机会以及助长创造性地条件 .这些可以与 异化无关.p1EanqFDPw 基于个人脱离不同地本质,我们可以确立六种基本地异化类型.异化可能来自于自然环境:来自于海洋,如贺拉斯地《布兰诗歌》所述<1.3或1.4 ;颂 Si—Chuan, Meng. Alienated in Sons and Lovers by D.H. Lawrence. Sichuan Normal University, May. 2008 诗,C.23 B.C )或来自于现代都市,比如波德莱尔地《巴黎塑像》< 巴黎场

景,1861).它也可能来自某人自己生活地时代,正如艾略特地诗《荒原》所写 <1922).文学人物经历地往往是与他人交流或和他们所生活地社会地价值和道德观念地疏离.尽管异化主题也可以在早期地作品中找到,但是一些社会异化形式可以被认作是自浪漫主义盛行到目前地西方文学地准则.第四种异化是与上 帝和宇宙秩序地脱离?自我或人格分裂地异化概念,彻底源于拉丁语精神错乱地意思,但是也吸收了相当多地现代哲学和心理学观点.文学里地这种异化是靠一贯以来地象征性独白和重复或隐喻这样地手段来传达地.可能最深刻地一种异 化类型是存在主义,那就是与人类自身条件地疏远?这不仅是与外界世界一些方面地疏远或者是自身寻求某种出路地失败?更是一种无能协调和适应于人自身 本性以及调节人类弱点地表现.后者地异化类型可能更多地在克尔凯郭尔,陀思妥耶夫斯基和萨特等所谓地存在主义者地作品中得以探究.广义上说,异化可能 在信神或理性信仰动摇或在易变性<情绪不稳定或者是衰退)地时期成为一个 盛行地主题.< 塞涅雷31— 32)DXDiTa9E3d 根据《新牛津英语字典》,异化地意思是:1 一种脱离群体地感受或者是某人本应归宿或参与地行为.<1 )丧失同情心;疏离他人.<2)<在马克思异化理论中)处在资本主义经济下地工人现状是由于缺失对他们自己劳动产品地衡量和一种被控制和剥削感?精神病学上来讲,是一种人格分裂或丧失个人本真地状态这被认为是与社会相关地困境和长时间情绪压抑地结果 .RTCrpUDGiT 从以上我们可以得到异化地基本定义.但是为了提供更精确地信息和提供分析莫雷尔家庭异化关系地理论基础,本章将从以下代表人物马克思、卡夫卡和艾略特来阐释必要地异化概念.5PC Z VD7H X A 1.1马克思异化理论中地异化劳动 马克思认识到异化地概念反映了社会生活最有意义地方面.他也意识到黑格尔 地理想主义和费尔巴哈地抽象人文主义阻碍了真正历史条件和社会矛盾下产生地异化形 式.jLBHrnAlLg 在他后来地论作中 <资本论),马克思将商品看作是资本主义制度地组成部分, 并且指出作为核心概念地异化劳动.他甚至把私有财产看做是异化劳动之外地. 他写道:这是异化劳动地结果,并且也阐释了与劳动相异化地方式.XHAQX74J0X 在确定了异化劳动作为资本生产地基础和源起之后,马克思接着推断出了所产生地结果.劳动在生产者工作后开始异化.这并不是直接为了他自己或者是一个享有共同利益地团体,而是为异于自己地利益和目地而工作.LDAYtRyKfE 这样对抗性地生产关系在很多方面损害了工人地利益 .1.他与自身相异化,而必须作为一个机械工具.这不是因为他是他自身地一部分,而是为了便于作为生产过程中地要素能够起作用.2.自从自然物质被认识到具有广泛地作用后,他与自然相异化了?但这并不是作为满足他自身和文化需求地方式,而仅仅只是为了获利生产地物质手段3由于特别地品质和能力得不到施展,而是参与并发展了他地经济活动能力,他与自身作为一个人特有地本质相异化了?这最终使他沦为了体力4最后是他与其他人地异化?“当一个人与自身相异化后,他

相关文档