文档库 最新最全的文档下载
当前位置:文档库 › 电容传感器论文.

电容传感器论文.

电容传感器论文.
电容传感器论文.

滨江学院论文报告

题目电容式传感器姓名靳炜

学号20102305911 学院滨江学院

专业电子信息工程年级10级

指导老师周欣

2013年 6月 15 日

引言

用电测法测量非电学量时,首先必须将被测的非电学量转换为电学量而后输入之。通常把非电学量变换成电学量的元件称为变换器;根据不同非电学量的特点设计成的有关转换装置称为传感器,而被测的力学量(如位移、力、速度等)转换成电容变化的传感器称为电容传感器。

从能量转换的角度而言,电容变换器为无源变换器,需要将所测的力学量转换成电压或电流后进行放大和处理。力学量中的线位移、角位移、间隔、距离、厚度、拉伸、压缩、膨胀、变形等无不与长度有着密切联系的量;这些量又都是通过长度或者长度比值进行测量的量,而其测量方法的相互关系也很密切。另外,在有些条件下,这些力学量变化相当缓慢,而且变化范围极小,如果要求测量极小距离或位移时要有较高的分辨率,其他传感器很难做到实现高分辨率要求,在精密测量中所普遍使用的差动变压器传感器的分辨率仅达到1~5 μm数量级;而有一种电容测微仪,他的分辨率为0.01 μm,比前者提高了两个数量级,最大量程为

100±5 μm,因此他在精密小位移测量中受到青睐。

对于上述这些力学量,尤其是缓慢变化或微小量的测量,一般来说采用电容式传感器进行检测比较适宜,主要是

这类传感器具有以下突出优点:

(1)测量范围大其相对变化率可超过100%;

(2)灵敏度高如用比率变压器电桥测量,相对变化量可达10-7数量级;

(3)动态响应快因其可动质量小,固有频率高,高频特性既适宜动态测量,也可静态测量;

(4)稳定性好由于电容器极板多为金属材料,极板间衬物多为无机材料,如空气、玻璃、陶瓷、石英等;因此可以在高温、低温强磁场、强幅射下长期工作,尤其是解决高温高压环境下的检测难题。

电容式传感器工作原理

电容式传感器也常常被人们称为电容式物位计,电容式物位计的电容检测元件是根据圆筒形电容器原理进行工作的,电容器由两个绝缘的同轴圆柱极板内电极和外电极组成,在两筒之间充以介电常数为e的电解质时,两圆筒间的电容量为C=2∏eL/lnD/d,式中L为两筒相互重合部分的长度;D为外筒电极的直径;d为内筒电极的直径;e为中间介质的电介常数。在实际测量中D、d、e是基本不变的,故测得C即可知道液位的高低,这也是电容式传感器具有使用方便,结构简单和灵敏度高,价格便宜等特点的原因之一。

电容式传感器优缺点

电容器传感器的优点是结构简单,价格便宜,灵敏度高,零磁滞,真空兼容,过载能力强,动态响应特性好和对高温、辐射、强振等恶劣条件的适应性强等。缺点是输出有非线性,寄生电容和分布电容对灵敏度和测量精度的影响较大,以及联接电路较复杂等。

原理及应用

电容传感器的工作原理是利用力学量变化使电容器中其中的一个参数发生变化的方法来实现信号变换的。根据改变电容器的参数不同,电容传感器可有3类:

2.1改变极板遮盖面积的电容传感器

图1是3种这类传感器的原理图,图1(a)中是利用角位移来改变电容器极板遮盖面积。假定当2块极板完全遮盖时的面积为S0,两极板间的距离为d,极板间介质的介电常数为ε。当忽略边缘效应时,该电容器的电容量为:

如果其中一块板极相对另一极板转过θ角,则极板间的相互遮盖面积为:

可见,此电容量的变化值和角位移成正比,以此用来测量角位移。

图1(b)中是利用线位移来改变电容器极板的遮盖面积的。如果初始状态极板全部遮盖,则遮盖面积S0=ab,当2块极板相对位移x时,则极板的遮盖面积变为S1=b(a-x)。在介电常数和极板距离不变时,电容量分别为:

可见,此电容量的变化值和线位移x成正比,用他来测量各类线位移。

图1(c)所示电容变换器是图1(b)所示电容器的变种。采用这种锯齿形电极的目的在于提高传感器的灵敏度。若锯齿数为n,尺寸如图1(b)所示不变,当运动齿相对于固定齿移动一个位移x时,则可得:

比较式(2)和式(3)可见,灵敏度提高了n倍。

2.2改变介质介电常数的电容传感器

图2是2种改变介质介电常数的电容式传感器的原理图。图2(a)常用来检测液位的高度,图2(b)常用来检测片状材料的厚度和介电常数。

图2(a)中由圆筒1和圆柱2构成电容器两极,假定部分浸入被测量液体中(液体应不能导电,若能导电,则电极需作绝缘处理)。这样,极板间的介质由2部分组成:空气介质和液体介质,由此而形成的电容式料位传感器,由于液体介质的液面发生变化,从而导致电容器的电容C也发生

变化。这种方法测量的精度很高,且不受周围环境的影响。总电容C由液体介质部分电容C1和空气介质部分电容C2两部分组成:

x —电容器浸入液体中的深度;

R —同心圆电极的外半径;

r —同心圆电极的内半径;

ε1—被测液体的介电常数;

ε2—空气的介电常数。

当容器的尺寸和被测介质确定后,则h,R,r,ε1和ε2均为常数,令:

这说明,电容量C的大小与电容器浸入液体的深度x成正比。

图2(b)是在一个固定电容器的极板之间放入被测片状材料,则他的电容量为:

式中:S —电容器的遮盖面积;

d1—被测物体上侧至电极之间的距离;

d2—被测物体的厚度;

d3—被测物体下侧至电极之间的距离;

ε1—被测物体上侧至电极之间介质的介电常数;

ε2—被测物体的介电常数;

ε3—被测物体下侧至电极之间介质的介电常数。

由于d1+d3=d-d2,且当ε1=ε3时,式(5)还可写为:

式中d —两极板之间的距离。

显然,在电容器极板的遮盖面积S,两极板之间的距离d,被测物体上下侧至电极之间介质的介电常数ε1和ε3确定时,电容量的大小就和被测材料的厚度d2及介电常数ε2有关。如被测材料介电常数ε2已知,就可以测量等厚教材料的厚度d2;或者被测材料的厚度d2已知,就可测量其介电常数ε2。这就是电容式测厚仪和电容式介电常数测量仪的

工作原理。

3改变极板间距离的电容传感器

图3是这类传感器的原理图,图3(a)由2块极板构成,其中极板2为固定极板,极板1为与被测物体相连的活动极板,可上下移动。当极板间的遮盖面积为S,极板间介质的介电常数为ε,初始极板间距为d0时,则初始电容C0为:

当活动极板1在被测物体的作用下向固定极板2位移Δd 时,此时电容C为:

当电容器的活动极板1移动极小时,即Δd<

这时电容器的变化量ΔC才近似地和位移Δd成正比。其相对非线性误差为:

显然,这种单边活动的电容传感器随着测量范围的增大,相应的误差也增大。在实际应用中,为了提高这类传感器灵敏度、提高测量范围和减小非线性误差,常做成差动式电容器及互感器电桥组合结构,如图3(b)所示。两边是固定的电极板1和2,中间由弹簧片支承的活动极板3。2个固定极板与互感器两端及交流电源U相连接,活动极板连接端子和互感器中间抽头端子为传感器的输出端,该输出端电压

ΔU随着活动极板运动而变化。若活动极板的初始位置距2个固定极板的距离均为d0,则固定极板1和活动极板3之间,固定2和活动极板3之间的初始电容相等,若令其为C0。当活动极板3在被测物体作用下向固定极板2移动Δd时,则位于中间的活动极板到两侧的固定极板的距离分别为:

由上述推导可知,活动极板和2个固定极板构成电容分别为:

当他们做成差动式电容器及互感器电桥组合结构时,其等效电容为:

虽然电容的变化量仍旧和位移Δd成非线性关系,但是

消除了级数中的偶次项,使线性得到改善。当时(在微小量检测中,如线膨胀测量等,一般都能满足这个条件),略去高次项,得:

比较式(9)和式(7)可见,灵敏度提高了1倍。

比较式(10)和式(8)可见,在1时,非线性误差将大大下降。

电容式传感器具有如下特点

(1) 结构简单,适应性强

电容式传感器结构简单,易于制造,精度高;可以做得很小,以实现某些特殊的测量,电容式传感器一般用金属作电极,以无机材料作绝缘支承,因此可工作在高低温、强辐射及强磁场等恶劣的环境中,能承受很大的温度变化,承受高压力、高冲击、过载等;能测超高压和低压差。

(2) 动态响应好

电容式传感器由于极板间的静电引力很小,需要的作用能量极小,可动部分可以做得小而薄,质量轻,因此固有频率高,动态响应时间短,能在几兆赫的频率下工作,特适合于动态测量;可以用较高频率供电,因此系统工作频率高。它可用于测量高速变化的参数,如振动等。

(3) 分辨率高

由于传感器的带电极板间的引力极小,需要输入能量低,所以特别适合于用来解决输入能量低的问题,如测量极小的压力、力和很小的加速度、位移等,可以做得很灵敏,分辨力非常高,能感受0.001μm ,甚至更小的位移。

(4) 温度稳定性好

电容式传感器的电容值一般与电极材料无关,有利于选择温度系数低的材料,又由于本身发热极小,因此影响稳定性也极微小。

(5) 可实现非接触测量、具有平均效应

如回转轴的振动或偏心、小型滚珠轴承的径向间隙等,采用非接触测量时,电容式传感器具有平均效应,可以减小工件表面粗糙度等对测量的影响。

不足之处是输出阻抗高,负载能力差,电容传感器的电容量受其电极几何尺寸等限制,一般为几十皮法到几百皮法,使传感器输出阻抗很高,尤其当采用音频范围内的交流电源时,输出阻抗更高,因此传感器负载能力差,易受外界干扰影响而产生不稳定现象;寄生电容影响大,电容式传感器的初始电容量很小,而传感器的引线电缆电容、测量电路的杂散电容以及传感器极板与其周围导体构成的电容等“寄生电容”却较大,降低了传感器的灵敏度,破坏了稳定性,影响测量精度,因此对电缆的选择、安装、接法都要有要求。

电容式传感器可用来测量直线位移、角位移、振动振幅(测至 0.05μm的微小振幅),尤其适合测量高频振动振幅、精密轴系回转精度、加速度等机械量,还可用来测量压力、差压力、液位、料面、粮食中的水分含量、非金属材料的涂

层、油膜厚度、测量电介质的湿度、密度、厚度等。在自动检测和控制系统中也常常用来作为位置信号发生器。

压力传感器的论文

压力传感器的论文 合理进行压力传感器的误差补偿是其应用的关键。压力传感器主要有偏移量误差、灵敏度误差、线性误差和滞后误差,本文将介绍这四种误差产生的机理和对 测试结果的影响,同时将介绍为提高测量精度的压力标定方法以及应用实例。 目前市场上传感器种类丰富多样,这使得设计工程师可以选择系统所需的压力传感器。这些传感器既包括最基本的变换器,也包括更为复杂的带有片上电路的高集成度传感器。由于存在这些差异,设计工程师必须尽可能够补偿压力传感器的测量误差,这是保证传感器满足设计和应用要求的重要步骤。在某些情况 下,补偿还能提高传感器在应用中的整体性能。 本文以摩托罗拉公司的压力传感器为例,所涉及的概念适用于各种压力传感器的设计应用。 摩托罗拉公司生产的主流压力传感器是一种单片压阻器件,该器件具有3类: 1. 基本的或未加补偿标定; 2. 有标定并进行温度补偿; 3. 有标定、补偿和放大。 偏移量、范围标定以及温度补偿均可以通过薄膜电阻网络实现,这种薄膜电阻网络在封装过程中采用激光修正。 该传感器通常与微控制器结合使用,而微控制器的嵌入软件本身建立了传感器数学模型。微控制器读取了输出电压后,通过模数转换器的变换,该模型可以将电压量转换为压力测量值。 传感器最简单的数学模型即为传递函数。该模型可在整个标定过程中进行优化,并且模型的成熟度将随标定点的增加而增加。 从计量学的角度看,测量误差具有相当严格的定义:它表征了测量压力与实际压力之间的差异。而通常无法直接得到实际压力,但可以通过采用适当的压力标准加以估计,计量人员通常采用那些精度比被测设备高出至少10倍的仪器作为测量标准。 由于未经标定的系统只能使用典型的灵敏度和偏移值将输出电压转换为压力,测得的压力将产生如图1所示的误差。 这种未经标定的初始误差由以下几个部分组成: a. 偏移量误差。由于在整个压力范围内垂直偏移保持恒定,因此变换器扩散和激光调节修正的变化将产生偏移量误差。 b. 灵敏度误差,产生误差大小与压力成正比。如果设备的灵敏度高于典型值,灵敏度误差将是压力的递增函数(见图1)。如果灵敏度低于典型值,那么灵敏度误差将是压力的递减函数。该误差的产生原因在于扩散过程的变化。 c. 线性误差。这是一个对初始误差影响较小的因素,该误差的产生原因在于硅片的物理非线性,但对于带放大器的传感器,还应包括放大器的非线性。线性误差曲线可以是凹形曲线,也可以是凸形曲线。 d. 滞后误差:在大多数情形中,滞后误差完全可以忽略不计,因为硅片具有很高的机械刚度。一般只需在压力变化很大的情形中考虑滞后误差。 标定可消除或极大地减小这些误差,而补偿技术通常要求确定系统实际传递函数的参数,而不是简单的使用典型值。电位计、可调电阻以及其他硬件均可在补偿过程中采用,而软件则能更灵活地实现这种误差补偿工作。 一点标定法可通过消除传递函数零点处的漂移来补偿偏移量误差,这类标定方法称为自动归零。

传感器原理及其应用论文

传感器原理及其应用论文 摘要:在科学技术高速发展的现代社会中,人类已经入瞬息万变的信息时代,人们在日常生活,生产过程中,主要依靠检测技术对信息经获取、筛选和传输,来实现制动控制,自动调 节,目前我国已将检测技术列入优先发展的科学技术之一。由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 一、传感器简介 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息, 并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。(1)、传感器定义及分类 信息处理技术取得的进展以及微处理器和计算机技术的高速发展,都需要在传感器的开发方面有相应的进展。微处理器现在已经在测量和控制系统中得到了广泛的应用。随着这些系统能力的增强,作为信息采集系统的前端单元,传感器的作用越来越重要。传感器已成为自动化系统和机器人技术中的关键部件,作为系统中的一个结构组成,其重要性变得越来越明 显。最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。 国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。按照Gopel等的说法是:“传感器是包括承载体和电路连接的敏感元件”,而“传感器系统则是组合有某种信息处 理(模拟或数字)能力的传感器”。传感器是传感器系统的一个组成部分,它是被测量信号输 入的第一道关口。 (2)、传感器的作用 人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个 参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。 在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到fm的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应。此外,还出现了对深化物质认识、 开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超 高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有 相适应的传感器是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。

传感器论文

压力传感器的温控系统的研究 班级:学号: 姓名: 摘要:针对压力传感器易受温度影响,产生零点漂移、测量误差增大,从而产生测量误差等问题,本文设计了一种温度控制系统,根据科恩-库恩公式建立了系统的数学模型,采用参数自整定PID控制算法,克服了纯 PID 控制有较大超调量的缺点,从而减少了温度漂移对于测量值的影响,实现了一个温度控制系统。同时利用仿真软件建立系统的仿真模型,通过仿真和测试验证系统满足设计要求。很大程度上补偿了温度所应起的温漂对于测量值影响产生的误差,是压力传感器在高温工作情况下的稳定性的得到极大的提高。 关键字:温度传感器,温漂腔体仿真操作 0 引言 针对我国当对于压力传感器材料的研究的现进成果以及压力传感器技术在我国生产技术,社会生活,军事医学等方面的广泛运用,对于传感器各方面的研究就有极大的意义,同时也为我们研究传感器提供了有力的基础。sic的耐高温,抗腐蚀,抗辐射性能,因而使用SiC 来制作压力传感器,能够克服Si器件高温下电学、机械、化学性能下降的缺陷,稳定工作于高温环境,具有光明的应用前景。 但是界温度较大时,压力传感器受温度影响精度不高,会产生零点漂移等问题,从而增大测量误差。于是尝试加工一个腔体,把压力传感器和温度传感器放置在里面形成一个小的封闭腔体,在外界温度较高或较低的情况下,用加热装置先升温到几十度并维持这一温度,给压力传感器做零点补偿,提高压力传感器的测量精度。这样就克服了在大温度范围难以补偿的问题。本文对这个温度控制系统提出了解决方案,采用了PID参数自整定控制,模糊控制属于智能控制方法,它与 PID 控制结合,具有适应温控系统非线性、干扰多、时变等特点[1-3]。 1 硬件系统 用放置在腔体内的温度传感器测量恒温箱内的温度,产生的信号经过放大后输出反馈信号,再用单片机进行采样,由液晶显示恒温箱内的温度,并通过温度控制算法控制加热装置。所使用的单片机为STC125408AD,自带A/D转换、EPROM功能,内部集成MAX810专用复位电路(外部晶振20 MHz以下时,可省外部复位电路),ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器可通过串口(P3.0/ P3.1) 直接下载用户程序,数秒即可完成一片。 2 系统的控制模型 电加热装置是一个具有自平衡能力的对象,可用 一阶 惯性环节描述温控对象的数学模型[5-8] 。 G(S)=K/(t′S+1) (1) 式中: K为对象的静增益;t′为对象的时间常数。 目前工程上常用的方法是对过程对象施加阶跃输入信号,测取过程对象的阶跃响应,然后由阶跃响应曲线确定过程的近似传递函数。具体用科恩-库恩(cohen-coon)公式确定近似传递函数。 cohn-coon 公式如下: K= Δ C/ Δ M

合金薄膜压力传感器的应用共15页

传感器原理及工程应用(论文) 合金薄膜压 力传感器的应用 学生姓名:张志强 指导教师:任爽 所在学院:信息技术学院 专业:电气工程及其自动化 学号:20094073120 中国·大庆 2019 年12 月

目录 前言........................................................ I I 1 合金薄膜压力传感器工作原理 (1) 2 合金薄膜高温压力传感器研究现状 (2) 2.1 镍铬系合金薄膜压力传感器 (2) 2.2 铂钨合金薄膜压力传感器 (3) 2.3 钯铬合金薄膜应变计 (3) 3 多功能传感器(MULTIFUNCTION) (4) 3.1 多功能传感器的执行规则和结构模式 (4) 3.2 多功能传感器的研制与应用现状 (4) 4 无线网络化(WIRELESS NETWORKED) (7) 4.1 传感器网络 (7) 4.2 传感器网络研究热点问题和关键技术 (7) 4.3 传感器网络的应用研究 (8) 结论 (10) 参考文献 (11)

前言 咨询公司INTECHNO CONSULTING的传感器市场报告显示,2019年全球传感器市场容量为506亿美元,预计2019年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景,一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、MEMS(Micro-Electro-Mechanical Systems,微机电系统)传感器、生物传感器等新兴传感器。其中,无线传感器在2019-2019年复合年增长率预计会超过25%。 目前,全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。

压力传感器的毕业设计英语论文

The Basic knowledge of Sensor and Development of Sensor The Basic knowledge of Sensor A transducer is a device which converts the quantity being measured into an optical, mechanical, or-more commonly-electrical signal. The energy-conversion process that takes place is referred to as transduction. Transducers are classified according to the transduction principle involved and the form of the measured. Thus a resistance transducer for measuring displacement is classified as a resistance displacement transducer. Other classification examples are pressure bellows, force diaphragm, pressure flapper-nozzle, and so on. 1、Transducer Elements Although there are exception ,most transducers consist of a sensing element and a conversion or control element. For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement. This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance. Such combination of mechanical and electrical elements form electromechanical transducing devices or transducers. Similar combination can be made for other energy input such as thermal. Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical transducers respectively. 2、Transducer Sensitivity The relationship between the measured and the transducer output signal is usually obtained by calibration tests and is referred to as the transducer sensitivity K1= output-signal increment / measured increment . In practice, the transducer sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1. 3、Characteristics of an Ideal Transducer The high transducer should exhibit the following characteristics a) high fidelity-the transducer output waveform shape be a faithful reproduction of the measured; there should be minimum distortion. b) There should be minimum interference with the quantity being measured; the presence of the transducer should not alter the measured in any way. c) Size. The transducer must be capable of being placed exactly where it is needed.

电容传感器论文

滨江学院论文报告 题目电容式传感器姓名靳炜 学号20102305911 学院滨江学院 专业电子信息工程年级10级 指导老师周欣 2013年6月15 日

引言 用电测法测量非电学量时,首先必须将被测的非电学量转换为电学量而后输入之。通常把非电学量变换成电学量的元件称为变换器;根据不同非电学量的特点设计成的有关转换装置称为传感器,而被测的力学量(如位移、力、速度等)转换成电容变化的传感器称为电容传感器。 从能量转换的角度而言,电容变换器为无源变换器,需要将所测的力学量转换成电压或电流后进行放大和处理。力学量中的线位移、角位移、间隔、距离、厚度、拉伸、压缩、膨胀、变形等无不与长度有着密切联系的量;这些量又都是通过长度或者长度比值进行测量的量,而其测量方法的相互关系也很密切。另外,在有些条件下,这些力学量变化相当缓慢,而且变化范围极小,如果要求测量极小距离或位移时要有较高的分辨率,其他传感器很难做到实现高分辨率要求,在精密测量中所普遍使用的差动变压器传感器的分辨率仅达到1~5 μm数量级;而有一种电容测微仪,他的分辨率为0.01 μm,比前者提高了两个数量级,最大量程为100±5 μm,因此他在精密小位移测量中受到青睐。 对于上述这些力学量,尤其是缓慢变化或微小量的测量,一般来说采用电容式传感器进行检测比较适宜,主要是

这类传感器具有以下突出优点: (1)测量范围大其相对变化率可超过100%; (2)灵敏度高如用比率变压器电桥测量,相对变化量可达10-7数量级; (3)动态响应快因其可动质量小,固有频率高,高频特性既适宜动态测量,也可静态测量; (4)稳定性好由于电容器极板多为金属材料,极板间衬物多为无机材料,如空气、玻璃、陶瓷、石英等;因此可以在高温、低温强磁场、强幅射下长期工作,尤其是解决高温高压环境下的检测难题。 电容式传感器工作原理 电容式传感器也常常被人们称为电容式物位计,电容式物位计的电容检测元件是根据圆筒形电容器原理进行工作的,电容器由两个绝缘的同轴圆柱极板内电极和外电极组成,在两筒之间充以介电常数为e的电解质时,两圆筒间的电容量为C=2∏eL/lnD/d,式中L为两筒相互重合部分的长度;D为外筒电极的直径;d为内筒电极的直径;e为中间介质的电介常数。在实际测量中D、d、e是基本不变的,故测得C即可知道液位的高低,这也是电容式传感器具有使用方便,结构简单和灵敏度高,价格便宜等特点的原因之一。

MEMS压力传感器论文

基于MEMS实现SOI压力传感器的设计研究 学院:机械与材料工程学院 专业班级:机械(专研)-14 学号:2014309020127 学生姓名:王宇 指导教师:赵全亮 撰写日期:2015年1月6日

目录 1.MEMS传感器概述 (1) 1.1 MEMS传感器研究现状 (1) 1.2 MEMS压力传感器分类 (1) 1.3MEMS压力传感器应用 (2) 2.基于MEMS实现SOI压力传感器的设计研究 (2) 2.1 SOI压力传感器简介 (2) 2.2 SOI压力传感器的理论及结构设计 (3) 2.3 SOI压力传感器总结 (6) 3.MEMS压力传感器发展趋势 (7)

1.MEMS传感器概述 1.1 MEMS传感器研究现状 进入21世纪以来,在市场引导、科技推动、风险投资和政府介入等多重作用下,MEMS传感器技术发展迅速,新原理、新材料和新技术的研究不断深入,MEMS传感器的新产晶不断涌现。目前,MEMS传感器正向高精度、高可靠性、多功能集成化、智能化、微型化和微功耗方向发展。 其中,MEMS技术也是伴随着硅材料及其加工技术、IC技术的成熟而发展起来的,它的运用带来了传感器性能的大幅度提升,其特点主要包括:1)质量和尺寸的减少;2)标准的电路避免了复杂的线路和外围结构;3)可以形成传感器阵列,获取阵列信号;4)易于处理和长的寿命;5)低的生产成本,这包括低的能源消耗,较少的用材;6)可以避免或者少用贵重的和对环境有损害的材料,其中压力传感器是影响最为深远且应用最为广泛的MEMS传感器。 1.2 MEMS压力传感器分类 MEMS传感器的发展以20世纪60年代霍尼韦尔研究中心和贝尔实验室研制出首个硅隔膜压力传感器和应变计为开端。压力传感器是影响最为深远且应用最广泛的MEMS传感器,其性能由测量范围、测量精度、非线性和工作温度决定。从信号检测方式划分,MEMS压力传感器可分为压阻式、电容式、压电式和谐振式等,其特点如下: 1)压阻式:通过测量材料应力来测量压力大小,它具有体积小、全动态测量范围的高线性度、较高的灵敏度、相对较小的滞后和蠕变的特点,此类型传感器多采用惠斯通电桥来消除温度影响; 2)电容式:通过测量电容变化来测量压力大小,相比较压阻式的传感器,它具有很高的灵敏度、低温度敏感系数、没有滞后、更高的长期稳定性,但同时它也有更高的非线性度、更大的体积,需要更复杂的检测电路和更高的生产成本; 3)谐振式:通过测量频率或频率的微分变化来测量压力大小,它可以通过诸如热、电磁和静电效应来改变膜片频率,并且可以通过真空封装来提高传感器精度; 4)压电式:压电传感器是利用某些电介质受力后产生的压电效应制成的传

压力传感器文献综述

压力传感器文献综述 摘要:传感器技术是综合多种学科的复合型技术,是一门正在蓬勃发展的现代化传感器技术。本文通过部分文献资料对压力传感器的发展过程、研究现状和发展趋势做一简要介绍。关键词:压力;传感器; 1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段(1) 发明阶段(1945 - 1960 年) :这个阶段主要是以1947 年双极性晶体管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯与1945 发现了硅与锗的压阻效应,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为电信号进行测量。此阶段最小尺寸大约为1cm。 (2) 技术发展阶段(1960 - 1970 年) :随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。(3) 商业化集成加工阶段(1970 - 1980 年) :在硅杯扩散理论的基础上应用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术,主要有V 形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化的工厂加工模式,成本进一步降低。(4) 微机械加工阶段(1980 年- 今) :上世纪末出现的纳米技术,使得微机械加工工艺成为可能。通过微机械加工工艺可以由计算机控制加工出结构型的压力传感器,其线度可以控制在微米级范围内。利用这一技术可以加工、蚀刻微米级的沟、条、膜,使得压力传感器进入了微米阶段。 2 压力传感器国内外研究现状 传感器是新技术革命和信息社会的重要技术基础,是现代科技的开路先锋。美、日、英、法、德和独联体等国都把传感器技术列为国家重点开发关键技术之一。美国长期安全和经济繁荣至关重要的22项技术中就有6项与传感器信息处理技术直接相关。关于保护美国武器系统质量优势至关重要的关键技术,其中8项为无源传感器。。正是由于世界各国普遍重视和投入开发,传感器发展十分迅速。目前,我国传感器行业规模较小,应用范围较窄。为此,我们亟须转变观念,将传感器的研发由单一型传感器的研发,转化为高度集成的新型传感器研发。新型传感器的开发和应用已成为现代系统的核心和关键,它将成为21世纪信息产业新的经济增长点。改革开放30年来,我国传感器技术及其产业取得了长足进步,主要表现在:建立了传感技术国家重点实验室、微米/纳米国家重点实验室、国家传感技术工程中心等研究开发基地;MEMS、MOEMS等研究项目列入了国家高新技术发展重点;在“九五”国家重科技攻关项目中,传感器技术研究取得了51个品种86个规格新产品的成绩,初步建立了敏感元件与传感器产业;2007年传感器业总产量达到20.93亿只,品种规格已有近6000种,并已在国民经济各部门和国防建设中得到一定的应用。压力传感器的发展动向主要有以下几个方向: 2.1光纤压力传感器 这是一类研究成果较多的传感器,但投入实际领域的并不是太多。光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、

传感器原理及应用论文

传感器与检测技术 结业作业 题目:光电传感器的应用 专业:电气工程及其自动化 姓名:张治中 班级:K0313417 学号:K031341725 日期:2015.12.25

摘要:能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置叫做传感器,通常由敏感元件和转换元件组成。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器一般由敏感元件、转换元件、基本转换电路三部分组成,组成框图见图1。 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 如今,传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。

图2 光电式传感器(photoelectric transducer),基于光电效应的传感器,在受到可见光照射后即产生光电效,将光信号转换成电信号输出。它除能测量光强之外,还能利用光线的透射、遮挡、反射、干涉等测量多种物理量,如尺寸、位移、速度、温度等,因而是一种应用极广泛的重要敏感器件。 关键词:光电传感器、光电效应、转速测量 1设计目的 转速测量是社会生产和日常生活中重要的测量和控制对象。近年来,由于世界范围内对转速测量合理利用的日益重视,促使转速测量技术的迅速发展,各种新型的测量仪表相继问世并越来越多地得到应用。进行转速测量的检测控制,可以使用多种传感器。由于技术保密,厂家不会提供详细电路图和源代码,用户很难自行进行二次开发和改进。针对这种现状,使用光电传感器结合STC公司的STC 89C51型单片机设计的一种转速测量与控制系统。STC 89C51单片机采用了CMOS工艺和高密度非易失性存储器技术,而且其输入/输出引脚和指令系统都与MCS-51兼容,是开发该系统的适合芯片。 2 系统组成及工作原理 2.1 转速测量原理 在此采用频率测量法,其测量原理为,在固定的测量时间内,计取转速传感器产生的脉冲个数,从而算出实际转速。设固定的测量时间为Tc(min),计

电容式传感器的发展及应用报告、论文(电子系-完整版

电容式传感器的发展及应用报告、论文(电子系-完整版

————————————————————————————————作者:————————————————————————————————日期:

电容式传感器应用与发展 姓名 (系09级自动化专业,0905075015) 摘要:随着传感器不断的发展与成熟,电容式传感器广泛应用于压力、液位、位移等各种检测中,在农业、工业等领域的发展作出突出贡献。电容式传感器作为一项前途广阔的新型技术,日益受到人们的重视。 关键词:电容传感器粮食水分液位前景 0 引言 电容传感技术投入应用已长达一个世纪,它具有结构简单、动态响应快、易实现非接触测量等突出的优点,具有着十分广泛的应用前景,它不仅在工业、农业、军事、环境、医疗等传统领域有具有巨大的运用价值,在未来还将在许多新兴领域体现其优越性。 1电容式传感器的应用 1.1电容式传感器在农业上的应用 在农业生产中,长期以来,粮食水分检测一直依靠手搓、嘴咬、眼观为主要的判别方法,人为影响很大。但是国家在粮食收购过程中开始推行收购统一化、标准化,其中就包括粮食水分检测的标准化,因此设计一套粮食水分快速检测仪是十分必要的。 传统的电烘箱恒重法是利用电阻炉加热并根据失去的质量来测量粮食的含水量,因此可以实现粮食水分的在线测量,并可以作为其它水分仪标定的标准装置。但它是一种间歇式的测量装置,测量周期较长,大约需要.40S,不能实现对粮食水分的连续测量,不利于提高控制指标。在研究了粮食的导电浴盆效应的基础上提出了用电容式传感器测量粮食的水分。这种方法把粮食作为电介质,通过测量粮食的介电常数来测量粮食的含水量。由于用电容式传感器测量电容时,在电容两端还有一个并联的电导成分,因此总的变化是由电容(C)与电导(G)的比值来反映的,又由于C/G 的值与相角有确定的函数关系,因此只要测量出相角的值即可以测量出水分的含量。用这种方法设计出的测量装置结构简单、成本低,并可以连续的在线测量。 在设计中采用电容式传感器作为测量器件。该传感器是根据变介质型电容式传感器设计的。被测粮食放入电容式传感器两极板间时,由于粮食的含水量不同,从而使电容式传感器

基于单片机的压力传感器系统的设计与实现

摘要 (4) 第1章绪论................................................................................................................................................ - 1 - 1.1 课题设计背景................................................................................................................................. - 1 - 1.2 传感器系统简介............................................................................................................................. - 1 - 1.3 本文内容提要................................................................................................................................. - 2 - 第2章调理电路硬件设计........................................................................................................................ - 2 - 2.1 传感器电路分析............................................................................................................................. - 2 - 2.2选用放大电路及其电路分析.......................................................................................................... - 3 - 2.3 AD转换电路的设计....................................................................................................................... - 4 - 2.3.1AD0804的外围接口的功能: ............................................................................................. - 4 - 2.3.3控制程序的设计:............................................................................................................. - 6 - 2.4 LCD显示电路的设计..................................................................................................................... - 8 - 2.4.1LCD的介绍........................................................................................................................... - 8 - 第3章控制程序的设计............................................................................................................................ - 15 - 3.1 程序要完成的任务....................................................................................................................... - 15 - 3.2 程序流程设计............................................................................................................................... - 16 - 第4章课题总结...................................................................................................................................... - 18 - 4.1 仪用放大电路............................................................................................................................... - 18 - 4.2单片机的使用................................................................................................................................ - 18 - 4.3 AD转换和LCD的控制 ............................................................................................................... - 18 - 在使用类似于AD转换芯片和LCD显示等数字集成芯片时,我们重点关注于其外围引脚的功能和控制时序图就可以了,通过外围引脚的功能来设计电路连接图,等外围电路连接好以后其实它的控制程序的大概框架就有了,再结合着时序图对各个引脚状态变化的先后顺序和各个状态的持续时间做一下处理,我们的控制程序基本上就可以出炉了。当然这时我们编写出的控制程序只是一个理论上的结果,最多有一个仿真结果。在实际调试时若出现了焊接失误或者是程序控制的问题时,我们最好任然秉持先前的网口概念。对整个电路和程序进行模块化处理,一个模块一个模块的检查处理。这样我们调试的效率就会提高很多。 .............................................................................. - 18 - 第5章结论.............................................................................................................................................. - 19 - 在课题选择之初,其目的是为了熟练掌握针对于压力测量电路的设计和应用,并分析在设计过程中对测量精度影响较大的部分。但是在设计过程中,这一目的被逐渐淡化,转而注重于各个模块的选择和设计。因为在设计的过程当中发现,我们对调理电路的设计所考虑的参数似乎和实际的物理量并没有太大的关系,若不考虑传感器与物理世界的交互方式的话,如文章开头所述:我们只要对电量进行操作就可以了。.............................................................................................................................................. - 19 - 致谢...................................................................................................................................................... - 19 - 参考文献...................................................................................................................................................... - 20 -

基于压力传感器的气压检测仪-论文

密级公开学号201340513215 衡水学院 毕业论文(设计) 基于压力传感器的气压检测仪 论文作者:韩承桓 指导教师:侯晓云 系别: :物理与电子信息系 专业电子信息工程 年级: 2013级 提交日期: 2017年4月18日答辩日期:2017年5月05日

毕业论文(设计)学术承诺 本人郑重承诺:所呈交的毕业论文(设计)是本人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文(设计)中不存在抄袭情况,论文(设计)中不包含其他人已经发表的研究成果,也不包含他人或其他教学机构取得的研究成果。 作者签名:日期: 毕业论文(设计)使用授权的说明 本人了解并遵守衡水学院有关保留、使用毕业论文(设计)的规定。即:学校有权保留或向有关部门送交毕业论文(设计)的原件或复印件,允许论文(设计)被查阅和借阅;学校可以公开论文(设计)的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文(设计)及相关资料。 作者签名:指导教师签名: 日期:日期:

论文题目:基于压力传感器的气压检测仪 摘要:该设计是基于压力传感器的气压检测仪。设计要求在减少成本的同时,能最大程度的实现预期功能。硬件方面,选择使用相应的单片机、压力传感器、A/D转换器以及LCD1602;而在软件方面,用C语言编写源程序,利用相关软件编译,之后再将文件拷入芯片中。在保证其所测数据准确性的前提下,尽量简化设计过程,节约成本。 关键词:气压检测;压力传感器;单片机;A/D转换器;C语言编程 TITLE:PRESSURE DETECTION INSTRUMENT BASED ON PRESSURE SENSOR I

压力传感器应用论文.

传感器的应用 压 力 传 感 器 姓名:白智伟 学号:2011081403 班级:2011级电本2班 压力传感器 摘要:压力传感器以stc11f04e单片机为中心控制系统. 主要由弹性体、电阻应变片电缆线等组成,内部线路采用惠更斯电桥,当弹性体承受载荷产生变形时,电阻应变片受到拉伸或压缩应变片变形后,它的阻值将发生变化,从而使电桥失去平衡,产生相应的差动信号,再经相应的测量电路把这一电阻变化转换为电信号,然后用放大器将此信号放大。用双积分型A/D转换电路转换,将转变的数字量经单片机处理。最后由LCD将其显示。 关键词:stc11f04e;传感器;双积分型A/D转换电路。 一.系统设计 1.总体设计思路:

本设计主要由压力传感器,运算放大器,双积分型A/D转换电路,单片机,LCD显示屏构成。总体框架如下图1。 图1总体电路框图 二.各个单元电路设计 1.压力传感器的设计 采用电阻应变式压力传感器。是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把 4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 2.输入放大电路的设计 由于所测出的微压力传感器两端的电压信号较弱,所以电压在进行A/D 转换之前必须经过放大电路的放大。输入放大的主要作用是提高输入阻抗和,本设计采用OP07集成运算放大器构成同相比例放大电路,以提高电路的输入阻抗,以达到设计要求。 3.双积分式A/D转换器的设计

相关文档
相关文档 最新文档