文档库 最新最全的文档下载
当前位置:文档库 › 近年国内外大停电事故及其简要分析

近年国内外大停电事故及其简要分析

近年国内外大停电事故及其简要分析
近年国内外大停电事故及其简要分析

近年国内外大停电事故及其简要分析

摘要:

对电力系统近10年发生的数10起主要大停电事故分别进行简要回顾,并分析其中部分的经过和造成停电事故的原因。根据罗列总结这些大停电事故,进一步总结将造成大停电的主要直接原因和共性原因,并结合中国电网结构特点,提出了为防止大停电事故发生而应当作出的改进措施建议,以及其他相关预防性措施建议。

关键词:大面积停电;电网安全;电力系统;

1、引言

近年来,全世界范围内的电网发生了许多大停电事故。2003年8月14日,美国东北部、中西部和加拿大东部联合电网发生大停电,引起了全世界的震惊。随后,英国、马来西亚、丹麦、瑞典、意大利、中国和俄罗斯等国又相继发生了较大面积的停电事故。这些大停电事故给社会和经济带来了巨大的损失。在认真回顾今年来这些大停电事件的时候,可以看到各种原因的大停电将造成的后果,能中汲取经验和教训,进一步反思我国电网目前存在的一些问题,这对构建我国大电网安全防御体系,保障电网的安全稳定运行具有极其重要的意义。

2、主要大停电事故回顾

以下将分述近年来主要大停电事故的事故概况,以及官方给出的造成事故的原因分析。

2.1. 美加8. 14 大面积停电事件

(1)美国东部时间(EDT)2003 年8 月14 日下午16 点11 分,以北美五大湖为中心的地区发生大面积停电事故,包括美国东部的纽约、密歇根、俄亥俄、马萨诸塞、康涅狄格、新泽西州北部和新英格兰部分地区以及加拿大的安大略等地区。这是北美有史以来最大规模的停电事故。停电涉及美国整个东部电网,事故中至少有21 座电厂停运,停电持续时间为29h,损失负荷61800MW。约5000 万人受到影响,地域约24000平方千米,其中纽约州80% 供电中断。

(2)简要经过和原因分析

a) 第一能源公司(FE) 的3 条输电线路由于离树枝太近,短路跳闸,这是大停电的最初原因;

b) 当时FE 公司控制室的报警系统未正常工作,而控制室内的运行人员也未注意到这一点,即他们没有发现输电线路跳闸;

c) 由于FE 公司的监控设备没有报警,控制人员就未采取相应的措施,如减负荷等,致使故障扩大化,最终失去控制;

d) 正是由于FE 公司根本未意识到出现问题,也就没有通告相邻的电力公司和可靠性协调机构,否则也可协助解决问题;

e) 此时,MISO 作为该地区(包括FE) 的输电协调机构,也出现问题;

f) MISO 的系统分析工具在8 月14 日下午未能有效地工作,导致MISO 没有及早注意到FE 公司的问题并采取措施;

g) MISO 用过时的数据支持系统的实时监测,结果未能检测出FE公司的事态发展,也未采取缓解措施;

h) MISO 缺乏有效的工具确定是哪条输电线路断路器动作及其严重性,否则MISO 的运行人员可以根据这些信息更早地意识到事故的严重性;

i) MISO 和PJM互联机构(控制宾夕法尼亚、马里兰和新泽西等地) 在其交界处对突发事件各自采取的对策缺乏联合协调措施;

j) 总体而言,这次大停电是诸多因素所致,包括通信设施差、人为错误、机械故障、运行人员培训不够及软件误差等。从复杂的计算机模拟系统到简单的输电

走廊树枝修剪,都未予以足够的重视。

2.2.伦敦大停电事件

(1)2003 年8 月28 日下午英国伦敦经历了16 年来第1 次大停电。英国国家电网公司所属的伦敦南部电力传输系统出现故障,导致该系统从18:20 至18:57 电力供应中断。停电影响了EDF 能源公司的410000 个用户,事故主要发生在伦敦南部地区,东至Bexley,西至Kingston,北至Bankside,南至Beckenham,停电共损失负荷724MW,约为当时整个伦敦负荷的20%。

(2)英国国家电网公司在事故后迅速进行了调查,故障出现的原因是在2001年更换老设备时安装了一个不正确的保护继电器,致使自动保护设备被误启动,而切除Hurst变电所的变压器不是造成本次事件的直接原因,它使伦敦电力供应量瞬间减少了五分之一。由于电力缺额过大造成了这次大停电。

2.3.北欧大停电事件

(1)2003 年9月23 日北欧电网中的瑞典中部和南部电网及丹麦的东部电网发生大面积停电,停电区包括瑞典首都斯德哥尔摩,重要城市马尔及丹麦首都哥本哈根。瑞典东部奥斯卡斯汉姆核电厂3号机(1 135 MW)及西部林哈尔斯核电厂3 号机(920 MW)及4 号机(885 MW)停运。

(2)瑞典方面报道,停电的主要原因是被暴风雪压倒刮断的树木破坏了供电线路,随之进一步引起跳闸停电事件的发生。

2.4.意大利全国大停电事件

(1)2003 年9 月28 日凌晨3∶30 意大利发生全国大停电,受停电影响的居民达5 400 万人(约占全国人口的93%)。停电数小时后北部城市米兰等首先恢复供电,继之首都罗马在当天中午开始有电。南部地区到29 日才恢复供电。

(2)这次事故的直接原因是从法国通往意大利的两条400kv高压电线因暴雨中断。但是在短暂的电力中断之后,意大利方面未能及时连通法、意之间的电力电缆法国,引起这2条400 kV 线路相继跳闸,导致意大利有功出力不足,引起一连串的停电事件。

2.5. 莫斯科大停电事件

(1)2005年5月23 13晚19:57起,俄罗斯莫斯科地区电网发生一系列故障,到5月25 13 11:00左右,莫斯科市大部分地区及附近25个城市发生大面积停电事故,莫斯科电网共断开了321座变电站,除最先停电的500 kV恰吉诺变电站外,还包括16座220 kV变电站,201座110 kV变电站,104座35 kV变电站。直接损失负荷达3 539.5 MW,近400万人的生活受到影响,造成了15~20亿美元的直接经济损失。

(2)事故的直接原因是气温高,用电负荷大幅增长,线路过负荷跳闸引起连锁反应,线路相继跳闸,导致大面积停电。前一天运行40多年的变电站电流互感器爆炸起火,造成220 kV线路停运,负荷改110 kV线路带是过载的直接原因。而设备运行维护不当造成电流互感器爆炸是事故发生的导火索。引起事故的恰吉诺变电站建于1963年,设备均已老化。且电网处于超负荷运行状态,运行人员也未引起注意,缺乏严格的操作规程约束及协调手段。

2.6.印尼大停电事件

(1)2005 年8 月18 日上午,印尼发生了包括首都雅加达在内的大面积停电事故印度尼西亚境内8 月18 日发生大面积停电,首都雅加达也彻底断电,总共波及近1 亿人口,接近总人口的一半。城市交通、铁路及航班也受到严重影响。

(2)造成大停电的原因,主要是爪哇岛和巴厘岛的电力输电网发生故障,连带影响到雅加达等地区的供电,导致供电系统出现问题。

2.7.中国海南大停电事件

(1)2005年9月26日清晨1时左右,第18号台风“达维”对海南电力设施造成了严重破坏,引发了部分电厂连续跳机解列,最终系统全部瓦解,导致了罕见的全省范围大停电。海南“9. 26”大停电“有两个明显的特点,一是停电波及面广,电厂全部解列,停电范围涉及全岛;二是从正常状态到全同崩溃时间较短,仅4min左右电网全黑。

(2)分析认为,电网设计水平偏低、孤立运行、设备老化严重、大机小网和弱联系的电网结构是海南“9. 26”大停电的主要原因。

2.8.西欧大停电事件

(1)欧洲当地时间2006 年11 月4 日22:10(北京时间2006 年11 月5 日5:10),欧洲电网发生一起大面积停电事故,事故中欧洲UCTE 电网解列为3 个区域,各个区域发供电严重不平衡,相继出现频率低周或高周情况。事故影响范围广泛,波及法国和德国人口最密集的地区以及比利时、意大利、西班牙、奥地利的多个重要城市,大多数地区在半小时内恢复供电,最严重的地区停电达1.5 h。整个事故损失负荷高达16.72 GW,约1500万用户受到影响。

(2)事件的起因是: 德国最大的能源公司———E. ON电网公司为了让迈尔(Meyerwerft ) 造船厂新的“挪威珍珠”号轮船通过埃姆斯( Ems) 河驶入北海,断开了河上从Conneforde 到Diele 的380 kV 双回线路。经协商,于11 月4 日21 : 38 进行开断操作,22 :10 :13 ,Landesbergen 到Wehrendorf 的线路由于过负荷保护跳闸。随之发生的一系列连锁跳闸,导致欧洲输电协调联盟(UCTE) 电网解列为3 块,并大量切机切负荷。

2.9.中国南方冰冻灾害大停电

(1)2008 年1 月10 日至2 月2 日,我国南方地区先后出现4 次大范围低温雨雪冰冻天气,遭遇了50年一遇的冰雪灾害,使电网安全运行经历前所未有的严峻考验。由于暴雪、冻雨导致河南、湖南、湖北、江西、安徽、浙江、福建等地输变电线路出现大范围的断线倒塔事故,造成大范围大面积停电限电,包括重要交通枢纽及设施等的供电中断,严重影响了电网安全运行。甚至部分地区电网瓦解,江西赣州电网进入了孤网运行、湖南郴州断电断水十多天。随即引发交通运输、物资调运、市场供应等方面的连锁反应,人民生活一度陷入了困境。据报道,全国范围电网此次因灾停运电力线路共37 606 条,因灾停运的变电站共2 027 座,110~500 kV 线路因灾倒塔共8 165 基。

(2)电力设施对极端气候灾害防范的设计标准不够,在冰冻严重灾害到来的时候,重电源、轻电网的弊端暴露是造成这次南方冰冻灾害大停电的主要原因。

2.10.巴西大停电事件

(1)2009-11-10T22:13,巴西全国范围内发生大面积停电,损失负荷24.436GW,约占巴西全部负荷的40%,受影响人口约5000 万,约占巴西总人口的26%,是近年来世界上影响较大的大停电事故之一

(2)巴西电网大停电属于故障连锁反应造成的大面积停电:雷电和暴风雨使依泰普水电站输电系统的圣保罗受端变电站变压器短路接地,使2条输电线同时断开,在几秒钟内第三条输电线跳开,形成故障连锁反应,造成南部—东南部互联电网15条输电线路跳闸断开,引起依泰普水电站全部运行机组与电网解列,造成主要是南部—东南部互联电网大面积停电。依泰普水电站运行机组解列,同时造成巴拉圭电网大停电。

2.11.智利大停电事件

(1)2011年9月25日晚8点30分左右,智利发生2个多小时的大停电,包括首都圣地亚哥在内的大多数地区漆黑一片,全国1600万人口中有近千万人受到2个多小时的影响。由于通讯信号系统中断,在外的人们无法使用手机同家人取得联系。断电期间,首都圣地亚哥一家商场发生骚乱事件,警方为此加强了街头巡逻。

(2)根据已掌握的情况,大面积停电或因一个变电站故障引起,中央电力互联系统出现的问题很可能由“输电线路振动”导致碰线引起的。政府正在就断电事件的确切原因展开调查,以确定出现问题的具体发电或送电环节。

3、事故主要原因总结及应对措施

3.1.造成停电主要原因

电力系统大面积停电的原因有直接的、间接的、表面的、深层的、设备的、人类等多方面,而且往往是多种因素的重叠所致。

(1)直接原因

①酷暑引起电力急增,如意大利停电;②输电线事故引起并波及、扩大(如美国、加拿大的最大停电);③变压器警报故障引起输电线中断(如英国的停电);

④酷暑季节引起高负荷运行中心火电站停机(如中国上海);⑤核电站停机引发后续事故和电压被破坏(如丹麦、瑞典);⑥国际连线的连锁中断引起国内供电不足(如意大利)。上述原因只是表面上的,深层次地探讨则涉及到电力工业市场化、自由化并导致输电网络趋于公共载流化。由于许多市场参与者相互之间复杂的交易而导致电力流通领域的扭曲和畸变,进而陷入混乱并导致过负荷状态的多发事故。

(2)共性原因

在电力市场化的竞争环境下,引起许多停电事故的原因往往带有共性、普遍性,但并未引起人们的重视。

1)设备投资不足

重收入(利润)、轻支出(投资)是商家带有普遍性的而且是根深蒂固的思潮。由于思想认识的错误,电力事故难免。2003 年美加大规模停电事故的教训,已经引起美国对输电网络现代化急迫性的重视。

2)保护系统欠妥

美加最大停电事故源于无功功率不足和长距离委托送电。由于短路跳闸后造成无功功率供电中断,地区网络电压降低,最终负荷中断。其他没有断电的发电机供电力过剩,频率急升,导致长距离连系的地域之间电力波动、振荡,最终波及、扩大事故。

3)支撑系统薄弱

支撑系统薄弱事故发生初期,电力公司对事故状态没有充分把握好,支援系统监视工具机能不足,系统监视和骨干系统警报发生故障

4)无功功率缺乏

发电机输出无功功率对于维持电网系统电压稳定有重要作用,却往往不

被重视。

5)情报交换不畅

这几次大规模停电有共性之处,即一个系统(地域)停电时,事故情报没有传递到相邻系统。系统之间的中继传递很不协调。

6)安全网络失灵

安全网络不完善,不能事前预测事故的发生,重大事态发生时又不能自动动作并起动保护系统。安全系统网络虽然费用较大却应是全地域覆盖。

7)接触树林接地

架线初期不会接触树木。天长日久,树林长高长大,加上电线过载过热伸长下垂而接触,发生接地短路事故。

8)人员素质不高

由于对运行操作人员培训不到位,面对系统全体停止运行的问题,是否下达发电设备和负荷中断的指令,多数犹豫不决,又不能预测是否会在相邻地域也引起事故。

3.2.主要应对措施

通过对近年一系列停电事故的简要分析,发现了在这些事故发生时暴露出来的各种弊病,针对这些影响安全性和可靠性的因素,应当从以下几方面吸取教训、采取有效措施加以防范:

(一)强化安全管理,加强安全监管

电力安全,责任重大;电力安全,重在管理。要进一步落实电力企业电力安全生产的主体责任,把安全管理落到实处;加大安全生产的资金投入,确保设备技改、大修、反措等安全措施到位。

(二)切实提高抵御突发事件和自然灾害的能力

要继续加强应对自然灾害等突发事件的协调机制和完善电网大面积停电应急处理预案体系。开展有针对性地的反事故演习。积极推进各地电力突发公共事件应急联合演练,达到加大预案宣传、检验预案的目的,切实提高政府、电力企业和社会各界对电网大面积停电时间的组织协调能力和应急处置水平。

(三)依靠科技进步,保证电力安全

随着大容量、超高压、交直流混合、长距离输电工程的不断投入运行,对电网控制技术提出了更高的要求。因此,要高度重视和利用先进的科学技术,加强电网稳定基础问题的研究,不断提高设备整体水平,提高系统稳定控制能力。通过科技进步,提高电力安全水平。

(四)重视重要用户及场所保安备用电源的建设和管理

我国一些重要用户安装了备用电源,但数量有限,管理也不够规范。因此,要加强重要用户、重要场所等保安备用电源的规划、建设和管理问题。要重视研究发展符合产业政策、节能高效的“分布式电源”建设问题。

4、总结

大面积停电、严重缺电能够迅速波及整个网络,大城市顷刻间陷入瘫痪,其损失、后果和造成的影响都是难以估量的。电力安全越来越关乎国家安全。这几起大停电事故为我们敲响了警钟,电力安全生产,事关社会稳定,事关经济发展,事关人民群众生活。这些大停电事故充分表明,只有电网坚强才能满足不同运行方式的需求并抵御负荷大幅度变化等可能给电网安全运行造成的影响。这些为我国将来的电网建设提供了宝贵的参考案例和经验教训。

井上、下大面积停电事故现场处置方案通用范本

内部编号:AN-QP-HT956 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 井上、下大面积停电事故现场处置方 案通用范本

井上、下大面积停电事故现场处置方案 通用范本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 一、事故特征 1、事故类型及危害程度分析 我矿配电场所主要有地面35kv变电所、10kv开闭所和井下中央(采区)变电所,一旦出现全矿停电、单一线路停电或各种保护失灵事故,会影响全矿安全生产,出现人身触电、停风、瓦斯积聚等多起事故,造成人员伤亡、设备损坏等。 2、事故发生的区域、地点 事故多发生在地面变电所、井下中央变电所。

关于814美加大停电事故起因和建议的最终报告(中文_部分)

美加电力系统停电事故特别调查组 关于2003年8月14日美国-加拿大停电事故起因和建议的最终报告 2004年4月

美加电力系统停电事故特别调查组 2004年3月31日 尊敬的总统和总理阁下: 我们非常高兴地向你们提交美加电力系统停电事故特别调查组的最终报告。在你们的直接授权下,特别调查组已经完成了对2003年8月14日停电事故起因的彻底调查,并且对所应采取的措施提出了建议,以便降低将来发生类似规模事故的可能性。 报告表明,本次事故应该能够避免,并且美国和加拿大都必须立即采取措施以保证我们的电力系统更加可靠。最重要的是,必须使可靠性准则成为强制规定,并对不遵守准则的行为进行实际的处罚。 我们希望两国继续合作以落实报告中提出的措施。如果不执行这些建议,将会威胁到供电可靠性,而这对经济、能源和国家安全至关重要。 特别调查组的所完成的工作,是两国政府间密切而有效合作的典型例证。这种合作还将在我们努力实施报告中建议的过程中得到延续。我们决心同国会、议会、各州(省)及所有股东合作,确保北美电网的坚强和可靠。 在此我们还要感谢特别调查组的全体成员和各工作组的努力工作和大力支持,使我们完成了停电事故调查并得到最终调查报告。所有参与者都对此作出了重要的贡献。我们提交此报告并乐观地认为此报告的建议将会使我们两国人民获得更好的电力供给。 美国能源部部长:Spencer Abraham 加拿大自然资源部部长:John Efford

目录 第一章.简介 (4) 第二章.北美电力系统及相关可靠性组织简介.......... 错误!未定义书签。第三章.停电事故................................. 错误!未定义书签。第四章.大停电事故前北美东北部电网的状态.......... 错误!未定义书签。第五章.大停电从俄亥俄州开始的过程和原因.......... 错误!未定义书签。第六章.大停电事故崩溃阶段 ....................... 错误!未定义书签。第七章.8.14大停电与以前历次北美地区大停电的比较 . 错误!未定义书签。第八章.大停电中的核电厂......................... 错误!未定义书签。第九章.停电事故中物理和网络安全方面的问题........ 错误!未定义书签。第十章.预防和减小未来停电事故影响的建议.......... 错误!未定义书签。

事故教训心得体会

篇一:安全事故教训学习心得体会 沛祥 电力部门安全事故心得体会目前我们组织学习了《××市供电有限责任公司6.6人身触电事故》, 《昭通供电局6.14误操作事故》,《曲靖供电局110kv富源变电站6.24人身触电事故》的安全事 故通报,事故的主要原因是工作人员未认真执行安全操作规程,不按章作业,工作负责人现场管理不 到位。此三件事故的发生,暴露了安全管理的一系列问题,凸现了工作人员安全责任不清,现场不 进行查勘,作业人员缺乏基本的安全技能。事实证明,如果对危险点不预测,不防范和控制,那么 在一定的条件下,它就可能演变为事故,后果不堪设想。通过学习,在次强化了大家的安全生产意 识,安全生产要坚持“安全第一,预防为主”的思想,并切实落到日常工作中。此三件事故的发生, 使每个员工的心里都十分沉痛,同为南网人,发生在他们身上,如同发生在我们的身上一样,沉痛 的教训,只有认真思考,进行反思。通过学习,体会如下: 1、三件事故充分暴露出来的问题是:“违章,麻痹,不负责任”,三违行为就是野蛮行为,不树立 牢固的安全意识,只图省事、快当、存绕幸心理,怕麻烦,这就是事故发生的必然。 2、作业人员严重的违章,是导致事故发生的主要原因,不验电不挂接地线,无安全措施保障的情 况下就作业,严重违反《安全工作规程》和保障安全的技术措施,这也是事故发生的必然。 3、制度的缺失,管理的缺位。严不起来,落实不下去,执行力差,而且在检查中只报喜不报忧, 平时对设备管理又不到位消缺又不及时,判断缺陷又不准确,日常巡检工作又不认真,致使存在不 安全的因素而导致事故的发生。 4、风险管理流于形式,有章不循,有规不遵,工作浮躁,作业人员现场操作不按要求执行,危险 点控制措施虚设。 5、在工作中安全管理制度和安全措施未落实,工作人员安全意识,安全学习流于形式。通过学习 我们反思很多、很多,我 们应该深刻地吸取教训,对照《安全工作规程》,结合我们公司的安全生 产实际和安全生产

大面积停电事件应急预案

大面积停电事件应急预案 1总则 1.1编制目的 1.2编制依据 1.3适用范围 1.4工作原则 2组织指挥体系及职责 2.1省指挥部组成及职责 2.2现场指挥部组成及职责 2.3专家组组成及职责 2.4县级以上政府职责 3事件分级 3.1特别重大大面积停电事件 3.2重大大面积停电事件 3.3较大大面积停电事件 3.4一般大面积停电事件 4预防与预警 4.1风险监测与报告 4.2预警级别及发布 4.3预警预防行动 5应急响应

5.1Ⅰ级响应 5.2Ⅱ级响应 5.3Ⅲ级响应 5.4Ⅳ级响应 6应急处置 6.1信息报告 6.2处置措施 6.3指挥与协调联动6.4信息发布 6.5响应终止 7后期处置 7.1处置评估 7.2事件调查 7.3善后处置 7.4恢复重建 8保障措施 8.1队伍保障 8.2装备物资保障 8.3通信、交通与运输保障8.4技术保障 8.5应急电源保障 8.6资金保障

9预案管理 9.1预案培训 9.2预案演练 9.3预案更新 9.4预案实施(生效)时间 1总则 1.1编制目的 切实履行政府社会管理和公共服务的职能,提升科学、有效、快速处置我省大面积停电事件的能力,迅速、有序地恢复电力供应,最大程度预防和减少大面积停电事件造成的影响和损失,维护国家安全、社会稳定和人民生命财产安全。 1.2编制依据 依据《中华人民共和国安全生产法》《中华人民共和国突发事件应对法》《中华人民共和国电力法》《生产安全事故报告和调查处理条例》《电力安全事故应急处置和调查处理条例》《电网调度管理条例》《国家大面积停电事件应急预案》《黑龙江省安全生产条例》《黑龙江省人民政府突发公共事件总体应急

(30)2.23停电事故分析报告 Microsoft Word 文档

2.23中心配电室停电事故分析报告 一、事故经过 2013年2月23日13:58,化产风机突然停电,导致与煤气系统有关的焦炉、化产、电厂(电厂煤压机停电)全部停产,14:22化产循环水泵、煤气风机等停电区域陆续送电,在初冷器上水后,煤气风机于14:25左右启动运行,15:14焦炉恢复加热,此后化产各工序相继复产。由于电厂本身启动困难,2#燃机于21:25启动运行,1#燃机也于次日凌晨0:06开启发电。 本次停电是由于给利48#(2#循环氨水泵)开关柜送电所造成。23日下午13:51,机电员工黄震来到中心配电室要求对利48#(2#循环氨水泵)送电,张保军和徐振华从电脑查看利48#开关柜地刀在断开位置(即处于解备状态)后,即办理送电操作票,操作指令为“将利48#(即2#循环氨水泵)开关恢备、投运”,在张保军的监护下,徐振华将48#开关顺利恢备,然而在对其投用时48#开关跳闸,并导致利32#(变电站二进线)开关跳闸,致使燃气公司部分主要设备(循环氨水泵、煤气风机、电厂煤压机等)停电。 二、原因分析 1、在接到供电需求后,配电操作人员仅在后台机(电脑)查看利48#开关柜地刀在断开位置(即处于解备状态)后即进行送电操作,过于相信电脑画面,未到现场做进一步核实和确认。由于电脑显示与现场实际状态严重不符,因此导致本次停电事故,这是本次事故的直接原因。 2、由于对供电设备的点检、维护不到位,导致电脑显示与设备

的实际状态差异太大,对操作工起了误导作用;防误操作的“五防机构”也损坏失灵,对错误操作起不到防范作用,这是本次事故的另一原因。 三、责任与处罚 纵观事故始末,造成本次事故的原因直接而简单,主要由于未执行“在重大操作时必须确认”而导致,因此本次事故的性质定性为操作事故。 本次事故导致燃气公司全面停产约1小时,造成较为严重的经济损失和社会影响。但责任人态度较好,认识到位,愿接受公司任何处罚。 1、供电部负责人张保军对供电设备点检、维护负领导责任,同时又是本次送电操作的指挥者,对本事故负主要责任,罚款500元。 2、操作工徐振华专业技能不熟练,检查确认不到位,对本次事故负次要责任,罚款100元。 四、采取措施 1、通过本次事故,对现有的规程、制度做全面的梳理,不健全要健全,不完善的要完善,更重要的还要认真学习和落实。 2、加强设备的点检与维护,使设备处于完好状态,坚持技防与人防并重的原则。 3、在停、送电操作及其它操作时,一定要坚守事先沟通和确认,切不可被表面现象所迷惑。 燃气公司 2013年2月27日

北美大停电事故分析

北美大停电事故分析 摘要:本文基于2003年美加大停电过程中电网事件的演变过程,着重阐述和分析了其中的电压崩溃场景,特别调了事故发生的各个阶段中无功功率的变化与作用,指出了系统中安装充足的无功补偿装置和制定统一的法规以激励独立发电商向系统提供充足无功功率和无功储备的必要性。 关键词:北美大停电;电力系统;电压崩溃;级联效应;无功储备 0 引言 2003年8月14日下午,美国的中西部和东北部以及加拿大的安大略省经历了一次大停电事故,其影响范围包括美国的俄亥俄州、密西根州、宾夕法尼亚州、纽约州、佛蒙特州、马萨诸塞州、康涅狄格州、新泽西州和加拿大的安大略省,损失负荷达61.8 GW,影响了5千万人口的用电。停电在美国东部时间下午4时06分开始,在美国的一些地区两天内未能恢复供电,加拿大的安大略省甚至一周未能完全恢复供电。这次停电事故引起了全世界的关注。在8.14之后不久我国的一些学者也就这次事故进行过介绍,并提出了各自的看法-事故发生后,美国和加拿大联合成立了"美加8.14大停电事故工作组",对事故进行了系统的调查和初步的计算分析,并于2003年11月提出了一份报告引起对8.14大停电事故的起因做了系统、详实的报道,其中涉及到了电网方面的事件、计算机方面的事件以及人员方面的事件。参照该报道中电网事件的演变过程,本文着重阐述和分析了其中电压崩溃的场景。 1 事故的起因、发展过程 美加电力系统故障工作组对有关8.4大停电原因的报告以及有关方面的资料清晰地给出了此次事故的起因和发展过程,现简述如下。 从2003年8月14日下午美国东部时间(EDT,本文下述均为此时间)15时06分开始,美国俄亥俄州的主要电力公司--第一能源公司(First EnergyCorp以下简记为FE)的控制区内发生了一系列的突发事件。这些事件的累计效应最终导致了大面积停电。 事故演变过程可分为如下几个阶段: (1)事故发生前的阶段。由于空调负荷及其他负荷的增长,在8月14日以前的几天以及8月14日中午,俄亥俄州北部许多节点的电压呈下降趋势,如图1所示。这表明8月14日的中午该地区已有无功不足的迹象,而且在中午12时以前系统中已有不寻常的电压波动,尽管此时系统仍然处于正常的运行状态。(图1) 在发生大停电事故前,由于Cleveland有功及无功的重要电源--机组Davis-Besse和机组Eastlake4已经停运,致使在13:31机组Eastlake 5的停运,进一步耗尽了Cleveland-Akron 地区的临界电压下的支撑。仿真表明,当Eastlake 5退出运行后,Cleveland地区的FE无功

几起全厂停电事故的分析及对策正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 几起全厂停电事故的分析 及对策正式版

几起全厂停电事故的分析及对策正式 版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 〔摘要〕介绍了几起全厂停电事故的经过,并对几起事故的原因进行分析,对暴露出的问题进行探讨,提出了预防事故相应的措施和对策,希望有关人员从中能够吸取一些有益的经验和教训,为保证枢纽的供电安全和电网的安全运行起到积极的作用。 〔关键词〕全厂停电;事故分析;对策 1 电厂的主接线及运行方式 1.1 主接线方式 电厂4台机组采用“两机一变”扩大

单元接线,出线共有两回,一回220 kV出线至清远站,一回 110 kV出线经1.5 km短线路至电厂的北寮站,然后通过北寮分线送至110kV源 潭站。 1.2 运行方式 正常运行方式为1,2号机组通过1号主变送电至220 kV飞清线,3,4号机组通过2号主变和1号主变也送电至220 kV飞清线;即正常运行方式为4台机组均向220 kV飞清线送电,110 kV短线121 A开关处于热备用状态,同时110 kV系统电源送电至电厂厂用10 kVⅢ段进线开关处作为电厂的备用电源。当220 kV线路故障或维修时,才从110 kV系统送电。

8.14美加大停电事故原因分析及启示

8.14美加大停电事故原因分析及启示 美加大停电事故原因作初步分析 (1)电网结构方面 北美电网包括三个独立电网①东部互联电网,包括美国东部的地区和加拿大从萨斯喀彻温省向东延伸至沿海省份的地区②西部互联电网,包括美国西部的地区不含阿拉斯加州和加拿大阿尔伯达省、不列颠哥伦比亚省以及墨西哥的一小部分③相对较小的德克萨斯州电网。这三个互联系统在电气上相互独立,通过少数几条输送容量较小的直流联络线相连。这次发生大面积停电事故在东部地区。被认为造成大停电的主要导火线是包括底特律、多伦多和克利夫兰地区的Erie 湖大环网,沿该环网流动的潮流经常无任何预警地发生转向,造成下方城市负荷加重。此次系统潮流突然发生转向时,控制室的调度员面对这一情况束手无策。 (2)电网设备方面 美国高压主干电网至少已有四五十年的历史,一些早期建设的线路及设备比较陈旧,而更新设备又需要大量资金投入。投资电网建设的资金回报周期长、回报率低。例如在20世纪90年代,投资发电厂资金回报率常常在12%~15%,而投资输电线路只有8%左右。因此,只有当供电可靠性问题非常严重,或是供电要求迫切时,电力公司才会考虑投资修建输电线路。另外,环保方面的限制也增加了输电线路建设的难度。 (3)电网调度方面 由于没有统一调度的机制,各地区电网之间缺乏及时有效的信息交换,因此在事故发展过程中,无法做到对事故处理的统一指挥,导致了事故蔓延扩大。国际电网公司(ITC)追踪到大停电以前1h 5min的数据,认为如果能够早一点得到系统发生事故的一些异常信号,就可能及时采取应急措施,制止大停电事故的发生。 (4)保护控制技术方面 美国电网结构复杂,容易造成运行潮流相互窜动,增加了电网保护、控制以及解列的难度。这次停电事件中,在事故发生初期FE与AEP公司的多条联络线跳闸(有些在紧急额定容量以下),对事故扩大起到推波助澜的作用。NERC在对事故记录的调查中发现许多“时标”不准确,原因是记录信息的计算机发生信息积压,或者是时钟没有与国家标准时间校准。 (5)电力市场化体制方面 电力市场化也存在一些负面影响,例如电力放松管制后,电网设备方面的投资相应减少。据美国有关方面的统计资料显示,在过去10年内,美国负荷需求增加了30%,但输电能力仅增加了15%,由此使高压线路的功率输送裕度减少,电网常常工作在危险区或边缘区。 此外,在现有电网条件下虽可以采用一些新技术来提高电网输送容量,以防止事故扩展到全网,但这种投资回报率低,难以吸引足够的投资。 (6)厂网协调方面 由于未建立起厂网协调的继电保护和安全稳定控制系统,使得在系统电压下降时,许多发电机组很快退出运行,加剧了电压崩溃的发生。 (7)系统计算分析和仿真试验方面 此次事故从第一回线路跳开至系统崩溃历时1个多小时,由于未及时采取措施而导致了事故扩大。如果事先对这类运行方式作好充分的系统计算分析或仿真试验,采取相应的防

电力系统大面积停电事故原因与应对策略分析

电力系统大面积停电事故原因与应对策略分析 摘要在对电力系统发生大面积停电事故的5大主要原因进行简单归纳总结后,结合笔者多年工作经验,对提高电力系统安全经济调度运行水平的应对策略进行了认真探讨,尤其对构建完善电网安全性评价体系、全面加强电网安全运行管理、以及电力信息安全等应对策略进行了详细分析研究。 关键词电力系统;大面积停电事故;安全;应对策略 随着智能电网建设步伐的不断加快,电力系统规模变得越来越大,结构变得越来越复杂,监理全国统一、甚至跨国的互联大电网系统,已成为我国电力系统发展的必然方向。电网系统互联程度的不断提高,其运行方法相应也变得越来越复杂,影响电网安全可靠、节能经济运行的因素也越来越多,这就对保证电力系统安全经济稳定运行的技术措施提出了更高的要求。在现代智能大电网中,各区域、各部分相互联系、密切相关,尤其是风电、太阳能、自备发电站等分布式微电网系统接入到电网系统后,一个局部的小扰动或异常运行均可能引起整个电网系统发生连锁反应,甚至还会引起大面积停电甚至系统崩溃等恶性事故发生。因此,充分利用电网经济调度运行管理过程中特有的地位和条件,发挥经济调度运行管理中应有的纽带与桥梁功能作用,不断提高电网安全水平和电能供应人性化服务水平,就显得非常有理论研究和实践应用 价值。 1 电力系统大面积停电事故发生原因分析 从大量实际案例分析可知,导致电力系统发生大面积停电事故的主要因素包括不可抗拒自然外力破坏、电力设备故障、电力需求侧供需失衡、人为蓄意破坏以及管理存在不足等5个大的因素。 1)不可抗拒的自然外力破坏。从大量实际工作经验可知,造成电力系统中电力设备发生损坏的主要原因还是自然外力的破坏作用。如:严重覆冰导致线路断线、舞动发生短路故障;凝露、冻雾、雷电等引起线路绝缘子发生闪络故障;架空线路对树发生闪络等。我国2008年发生南方雪灾引起大面积的停电事故,就是遭遇极端灾害性天气所引起的。 2)电力设备故障。电力设备是电能输送、分配调度最为重要的设备。电力设备故障是引发电力系统发生大面积停电事故的最常见形式,除了由于上述气候和自然环境外力破坏引起设备故障外,设备自身电气性能和机械性能异常等均可能引起设备发生“拒动”、“误动”等故障,甚至整个设备功能失效。 3)电力需求侧供需失衡供需平衡破坏。需求侧电力负荷或发电容量由于某些原因出现较大突变波动,导致电力系统中功率供需出现严重不平衡,也是引起电力系统发生大面积停电的另一主要原因。气候条件引起需求侧负荷发生突增或

电气误操作事故原因分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.电气误操作事故原因分析 正式版

电气误操作事故原因分析正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 在发电厂和变电站运行中,电气倒闸操作是一项复杂而细致的工作,由于操作错误往往会造成用户停电、损坏设备、人身伤亡和电网瓦解等重大事故,所以也是一项非常重要的工作。在防止误操作方面,虽然《电业安全工作规程》中已经有了明确规定,各单位也做了大量工作,但误操作事故仍然频发不断。 1 电气工作票制度执行中造成的误操作

(1) 工作票签发人和工作负责人未经考核批准,有的由于不熟悉规程,对设备系统结线和运行方式一知半解,经常出现错误。如:在部分停电工作时,在1张工作票中将工作范围扩大到2个以上的电气连接部分,同时发给1个工作负责人几张工作票。 (2) 工作票中安排的任务与实际工作不符。如:工作任务为某断路器或开关柜的检修,实际工作时却将断路器两侧的隔离开关和母线清扫也包括在内。 (3) 安全技术措施不完善或有错误。如:停电范围不明确,容易将工作范围扩大到带电设备上;安全围栏或遮栏有漏洞,不能防止误入带电间隔;接地线位

井上、下大面积停电事故现场处置方案实用版

YF-ED-J5876 可按资料类型定义编号 井上、下大面积停电事故现场处置方案实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

井上、下大面积停电事故现场处 置方案实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 一、事故特征 1、事故类型及危害程度分析 我矿配电场所主要有地面35kv变电所、 10kv开闭所和井下中央(采区)变电所,一旦 出现全矿停电、单一线路停电或各种保护失灵 事故,会影响全矿安全生产,出现人身触电、 停风、瓦斯积聚等多起事故,造成人员伤亡、 设备损坏等。 2、事故发生的区域、地点 事故多发生在地面变电所、井下中央变

电所。 3、事故可能发生的季节和造成的危害程度 主要发生事故季节为夏天雷雨季节和冬季干燥季节,可能影响整个矿井或某一区域供电、供风等,造成人员伤亡或设备损坏等。 4、事故前可能的征兆 设备电流、电压、温度等参数发生明显变化;机电设备异响、发热、异常振动等; 二、应急组织与职责 1、应急自救组织形式及人员构成情况: 应急自救组织以班组为单位,由全班组人员组成。应急自救组织组长由跟班干部及班组长担任,成员为全体班组人员组成。 2、应急自救组织机构、人员的具体职责:

大停电事故原因分析

大停电事故原因分析 ——为何电力系统过负荷需要及时消除? 一、印度大停电 时间:2012年7月30日和31日 原因:两次事故都是因同一条重载的400千伏联络线距离保护三段动作而跳闸,引发相关线路过负荷、功率振荡而跳闸导致系统失稳。虽然这条400千伏线路功率达到1450MW,但尚未达到该线路允许的最大载流量限额(765千伏降压、四分裂导线),距离保护三段在这种情况下动作跳闸不合理。由于继电保护未采用振荡闭锁技术,导致大量线路跳闸,进一步加剧了电网失稳。北部、东部、东北部电网防止电网频率瓦解的自动低频减载方案因未落实到位而没有发挥出应有的作用。 总结:线路过负荷+继电保护动作不合理 二、美加大停电 时间:2003年8月14日 过程: (1)正常情况下,潮流从南部和东部注入俄亥俄州北部和密歇根州东部;(2)由于一条线路因灌木丛火灾而跳闸,俄亥俄州北部和东部系统隔离;(3)由于一条线路因过负荷而跳闸,俄亥俄州北部和密歇根州东部均和南部系统隔离; (4)潮流方向变为逆时针倒转,从宾夕法尼亚州经纽约州、安大略省注入密歇根州,从而向俄亥俄州和密歇根东部供电; (5)正如当天所发生的那样,因为纽约州内部电力需求相对较少,大量功率从纽约州输出到安大略省(一般情况下,纽约州常常需要输入电能); (6)纽约州和安大略省解列; (7)由于纽约州和安大略省解列,大量潮流无处可去,突然发生纽约州大停机;(8)东部互联电网解列; (9)大面积停电。 在这其中有关“线路过负荷”的一个很重要的事件: 15:05,俄亥俄州北部克利夫兰地区一条345KV超高压线路跳闸,其输出功率转移到另一条345KV超高压线路上; 15:32,该相邻345KV线路因过热软化下垂,接触到树枝短路跳闸,系统电压降低。

巴西大停电事故分析及对中国电网启示-中国电力0830

文章编号:文献标志码:A 巴西2009年11月10日大停电事故分析 及对中国电网启示 吴小辰,周保荣,柳勇军,胡玉峰,赵杰 南方电网技术研究中心,广州510623 摘要:本文介绍了2009年11月10日巴西电网大停电事故过程,分析了导致事故发生的原因,并结合中国电网实际,从网架结构、电力系统三道防线和黑启动方面提出中国电网应当吸取的经验教训和可借鉴的经验。 关键词:巴西大停电;安全稳定;事故分析 The Analysis of Brazilian Blackout on November 10th, 2009 and revelations to Security for Chinese Power Grid WU Xiao-chen, ZHOU Bao-rong, LIU Y ong-jun, HU Y ufeng, ZHAO Jie CSG Technology Research Center, Guangzhou 510623, China Abstract: The paper discribe the process of brazilian blackout on November 10th,2009 and investigate the reasons causing this blackout. With relation of chinese power gird practice, lessons learned from this blackout was put forward in view of structure of network and three defense lines of power systems as well as black-start. Key words: Brazilian blackout; Security and stability;analysis of blackout. 0 前言 2009年11月10日晚22点13分(北京时间11日8点13分),巴西电网发生大面积停电,引起世界关注。本次大停电事件影响巨大,受影响人口约5000万,损失负荷24436MW,约占巴西电网全部负荷的40%。 巴西电网50%以上的负荷主要集中在圣保罗、里约热内卢等经济发达的东南地区,伊泰普水电基地通过远距离大容量、交直流通道向东送至东南负荷中心。为贯彻落实西电东送战略,中国已建成北部、中部和南部3个交直流输电系统,将西部煤电、西南水电送至东部沿海经济发达的负荷中心地区,电网布局与巴西电网有类似之处。 巴西电网大停电事故对中国电网有很好的借鉴意义。本文分析巴西电网大停电事件,理清事故发展和扩大的脉络,剖析事故的根源和暴露的问题,并结合中国电网实际,提出中国电网应从这次大停电事故吸取的经验和教训。 1 巴西电网及伊泰普电站概述 1.1 巴西电网概述 巴西全国已形成南部、东南、中西部、北部和东北部大区互联电网,交流电压等级繁多,主要的电压系列有765kV、525kV、440kV、345kV、230kV 及138kV。 巴西电源以水电为主,负荷分布很不均匀,负荷中心集中在东南电网。2008年巴西水电装机比例为全部装机的87%,东南电网负荷约为全网负荷的56%。 巴西电网是一个事故频发的电网,1996~2004年期间有16次负荷损失超过1000MW的事故,其中有2次事故负荷损失超过20000MW。虽有自然环境因素,但其装备和管理水平还有待提高。 1.2 伊泰普电站概述

医院大面积停电事故应急预案

医院大面积停电应急预案 (一)制定目的 为应对医院突发性大面积停电事故,迅速有序地组织和恢复供电,确保病人生命安全和减少财产损失,保证医院用电畅通,促进事故应急工作的制度化和规范化,依据国家相关法律法规,结合我院实际情况,制定本预案。 (二)适用范围 本预案所称“突发性大面积通电事故”(下称“大面积停电事故”)是指因严重自然灾害重要设施损坏或遭受破坏等原因造成突发性的全院大面积电力系统安全防线失效,电网发生大面积瓦解或崩溃的事故。 (三)应急原则 大面积停电事故处理工作贯彻“预防为主,常备不懈”的方针,遵循“统一领导,完善机制,明确责任,加强合作,快速发应,措施果断”的原则。 (四)组织机构 医院成立大面积停电事故应急领导小组,下设应急抢修队。 1.医院大面积停电事故应急领导小组 组长:xxx 副组长:xxx 成员:xxx 维修电工:xxx 职责: 1.做好日常安全供电工作,落实安全生产责任制,防范大面积停电事故发生。 2.发生大面积停电事故时,及时做好停电事故应急工作,尽快恢复供电。

3.根据大面积停电事故严重程度,决定启动和终止应急预案。 4.及时向上级报告事故情况。 5.必要时请求外力支援。 6.领导小组组长是履行本预案规定的第一责任人。成员单位应在领导小组的统一指挥下,各司其职,各负其责,通力合作,做好大面积停电事故时的综合应急工作。 2.应急抢修队 队长:xxx 副队长:xxx 成员:xxx 职责:发生事故时,组织人员实施救援行动;向指挥小组汇报事故情况,必要时向供电部门发出求援请求,事后总结应急救援工作经验教训。 (五)应急程序 1.后勤部门电工班应急程序 (1)计划性停电应急程序 A.根据电力部门通知的停电时间及故障原因,做好响应的准备工作。电工在接到电力公司通知停电的电话或以其他形式的停电通知时,必须问清楚停电的时间,停多长时间及停电原因,做好记录。 B.通知总务科(夜班通知总值班xxx),说明停电的原因,具体停电时间,停多长时间,并做好电源切换的准备工作。 C.在规定的时间内完成电源切换工作,保证全院恢复供电。 (2)紧急停电应急程序

2003年世界上几起大停电事件的经验、教训和启示

2003年世界上几起大停电事件的经验、教训和启示 上海市电力公司蓝毓俊 在现代化的城市中,电能与人类生活,社会活动和经济发展之间相互紧密结合的程度,已经是其他能源不可比拟的,因此电力已成为现代社会物质文明和精神文明的重要支柱,是我国全面建设小康社会的重要物质基础。安全、可靠的电力供应是社会稳定的重要因素之一.事实证明大面积的停电必将引起社会极大的动荡和经济上的重大损失。2003年8月14日“美加大面积停电事件”发生后,紧接着8月28日英国伦敦.9月1日马来西亚、澳大利亚悉尼,9月23日瑞典和丹麦,9月28日意大利全国等都发生了程度不同的大面积停电事件。不仅引起了我们电力工作者,而且引起了各国政府、社会上各界人士对供电可靠性的普遍关注。 一、2003年世界上几起大面积停电事件概况 1.“美加814大面积停电事件”和美国历史上的一些停电事件 美国东部时间8月14日16时lo分(北京时间8月15日4时10分)开始,美国东北部和加拿大东部互联电网发生大面积停电事件。累计损失负荷6180万千瓦,涉及美国密歇根州、俄亥俄卅I、纽约州、新泽西州北部、马萨褚塞卅I、康涅狄格州和加拿大东部的安大略省、魁北克省等广大地区,约5000万人的生活用电受到严重影响,经济损失严重。美国估计每天损失可达300亿美元,加拿大估计安大略省损失为50亿加元。 事件首先从美国中部电网ISO所属的A砰、FE、WETC和ITc四个电网公司所属区域开始,主要影响美国PJM互联系统、新英格兰ISO、纽约ISO、中西部ISO和加拿大的安大略ISO,魁北克水电系统也受到一定影响。 椐北美电力可靠性委员会(N醯c)的信息,事件发展主要过程如下: (1)事件发生前,停电地区中西部正值高温天气,电网负荷很大。潮流方向是从印第安那州和俄亥俄卅I南部通过密歇根州和俄亥俄州北部向底特律地区送电,并通过底特律地区送往加拿大的安大略省。 (2)14时左右俄亥俄州北部属FE电网公司的E船tLal【e电厂一台55万千瓦机组跳闸。 (3)16时06分俄亥俄南北联络通道上送克里夫兰的?条345Kv线路原因不明跳闸。 (4)15时32分俄亥俄南北联络通道另一条345l(v线路因为严重过载导致弧垂过低而跳闸。 (5)15时41分和15时46分俄亥俄南北联络通道又有两条345Kv线路相继跳闸,克里夫兰地区出现严重低电压。(6)16时06分俄亥俄南北联络通道又有一条345Kv线路跳闸。此时潮流反向从底特律地区向俄亥俄州北部送电。(7)16时09分俄亥俄南北联络通道最后两条345KV线路跳闸。俄亥俄南北联络通道全部断开,潮流发生了大范围转移.通过印第安那州经密歇根州和底特律地区向俄亥俄州北部送电。 (8)大约30~40秒以后,因电压下降,密歇根州中部电网大约180万千瓦机组相继跳闸,密歇根州中部电网电压开始崩溃。 (9)16时10分底特律地区电压全面快速崩溃,在8秒钟之内约30条密歇根州与底特律间的联络线跳闸,潮流再次发生大范围转移,从俄亥俄南部经宾西法尼亚、纽约州、安大略、底特律向克里夫兰送电。 (10)16时10分底特律和安大略交界地区大量机组和线路跳闸,安大略电网和底特律电网解列,底特律和俄亥俄北部地区系统全部崩溃,系统瓦解,所有负荷损失。同时,安大略和纽约电网开始崩溃,负荷几乎完全或大部分损失。椐报道至少有263座发电厂,包括22座核电站,其531台机组在8月14日事故中停运,累计损失负荷6180万千瓦。 美国纽约于8月15日晚9时30分,在停电29小时后全面恢复电力供应,16日上午恢复了正常。加拿大电力部门表示,全面恢复供电还需四、五天的时间。因此本次事件被认为时北美历史上最严重的一次电网事故。 2004年4月5日,美加联合调查组公布了《“8.14”美加大停电最终报告》,报告的主体内容共分为9个部分。(1)北美电力系统及其可靠性组织概况: (2)大停电原因及违反北美电力可靠性协会(NERc)有关准则: (3)东北部电力网在大停电前的情况; (4)为什么大停电会起始于俄亥俄州; (5)大停电的过程: l

井上、下大面积停电事故现场处置方案(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 井上、下大面积停电事故现场处 置方案(通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

井上、下大面积停电事故现场处置方案(通 用版) 一、事故特征 1、事故类型及危害程度分析 我矿配电场所主要有地面35kv变电所、10kv开闭所和井下中央(采区)变电所,一旦出现全矿停电、单一线路停电或各种保护失灵事故,会影响全矿安全生产,出现人身触电、停风、瓦斯积聚等多起事故,造成人员伤亡、设备损坏等。 2、事故发生的区域、地点 事故多发生在地面变电所、井下中央变电所。 3、事故可能发生的季节和造成的危害程度 主要发生事故季节为夏天雷雨季节和冬季干燥季节,可能影响整个矿井或某一区域供电、供风等,造成人员伤亡或设备损坏等。

4、事故前可能的征兆 设备电流、电压、温度等参数发生明显变化;机电设备异响、发热、异常振动等; 二、应急组织与职责 1、应急自救组织形式及人员构成情况: 应急自救组织以班组为单位,由全班组人员组成。应急自救组织组长由跟班干部及班组长担任,成员为全体班组人员组成。 2、应急自救组织机构、人员的具体职责: (1)应急自救组织组长职责 ①负责察看事故性质、范围和发生原因等情况,并快速报告给调度室。 ②带领全班组人员,开展自救、互救工作。 (2)应急自救组织成员职责 ①在班组长的带领下开展自救、互救工作。 ②尽可能采取措施减少事故扩大,减小人员伤亡。 三、应急处置

停电事故分析报告.doc

安环字[2010]17号 安技环保部关于“9.12”停电事故调查报告 张总: 2010年9月12日晚20:50分,动力公司供电车间降压站院内,2#主变失电,造成全厂停电。接到事故报告后,21:05分,武保部陆立贵、苏昆甫,安技环保部黄国平、许锋等同志相继赶到事故现场,集团孟书记闻讯后也赶到现场,并对事故原因查找及抢修等工作中的安全问题做了重要指示,动力公司组织专业技术人员,按现场制定的方案进行抢修,2010年9月13日凌晨4:00恢复供电。事后,安技环保部组织相关科室人员对事故经过进行了调查,召开了“9.12”停电事故专题会,现将调查情况汇报如下: 一、事故经过 经调查,2010年9月12日晚20:50分,供电车间运行人员董玉梅、顾文彬发现在降压站院内所用变所处位置出现一

团火光,降压站停电。停电后两名员工马上检查主控室、6KV 配电室内高压设备状态,发现1102、602开关跳闸,2#主变失电,造成全厂停电。董玉梅立刻打电话将该情况汇报给供电车间副主任王丹,王丹及时向动力公司领导以及调度汇报停电情况,通知车间相关人员赶往现场。21:10分供电车间工作人员全部到达现场,王丹组织车间相关人员进入现场寻找故障点。经过逐一排查后,发现6KV配电室Ⅰ段PT柜(电压互感器柜)有弧光灼烧痕迹,其它高压开关柜、变压器等设备外观完好。将PT柜柜门打开后,发现在该柜避雷器B、C相间横躺着一只猫的尸体,电击致死,该柜A相避雷器、B、C相母排烧断。发现故障点后,在场有关领导立即组织车间相关人员展开了现场分析会,安排人员进入现场进行事故处理,隔离故障点。经过检修、调试和倒闸操作,于2010年9月13日凌晨4:00恢复全厂供电。 二、事故原因分析 经动力公司供电车间、动力公司及集团安技部相继组织的三次事故调查分析认为,本次事故属意外停电事故。造成本次事故的直接原因是:猫通过电缆地沟进入6KVⅠ段PT 柜导致相间短路,瞬间大电流引起1102、602开关继电保护动作,2#主变失电,造成全厂停电。造成本次事故的根本原因是:动力公司供电车间高压设备设施防护措施不到位,不符合电力设备防护工作要求。 三、整改意见

近年国内外大停电事故及其简要分析

近年国内外大停电事故及其简要分析 摘要: 对电力系统近10年发生的数10起主要大停电事故分别进行简要回顾,并分析其中部分的经过和造成停电事故的原因。根据罗列总结这些大停电事故,进一步总结将造成大停电的主要直接原因和共性原因,并结合中国电网结构特点,提出了为防止大停电事故发生而应当作出的改进措施建议,以及其他相关预防性措施建议。 关键词:大面积停电;电网安全;电力系统;

1、引言 近年来,全世界范围内的电网发生了许多大停电事故。2003年8月14日,美国东北部、中西部和加拿大东部联合电网发生大停电,引起了全世界的震惊。随后,英国、马来西亚、丹麦、瑞典、意大利、中国和俄罗斯等国又相继发生了较大面积的停电事故。这些大停电事故给社会和经济带来了巨大的损失。在认真回顾今年来这些大停电事件的时候,可以看到各种原因的大停电将造成的后果,能中汲取经验和教训,进一步反思我国电网目前存在的一些问题,这对构建我国大电网安全防御体系,保障电网的安全稳定运行具有极其重要的意义。 2、主要大停电事故回顾 以下将分述近年来主要大停电事故的事故概况,以及官方给出的造成事故的原因分析。 2.1. 美加8. 14 大面积停电事件 (1)美国东部时间(EDT)2003 年8 月14 日下午16 点11 分,以北美五大湖为中心的地区发生大面积停电事故,包括美国东部的纽约、密歇根、俄亥俄、马萨诸塞、康涅狄格、新泽西州北部和新英格兰部分地区以及加拿大的安大略等地区。这是北美有史以来最大规模的停电事故。停电涉及美国整个东部电网,事故中至少有21 座电厂停运,停电持续时间为29h,损失负荷61800MW。约5000 万人受到影响,地域约24000平方千米,其中纽约州80% 供电中断。 (2)简要经过和原因分析 a) 第一能源公司(FE) 的3 条输电线路由于离树枝太近,短路跳闸,这是大停电的最初原因; b) 当时FE 公司控制室的报警系统未正常工作,而控制室内的运行人员也未注意到这一点,即他们没有发现输电线路跳闸; c) 由于FE 公司的监控设备没有报警,控制人员就未采取相应的措施,如减负荷等,致使故障扩大化,最终失去控制; d) 正是由于FE 公司根本未意识到出现问题,也就没有通告相邻的电力公司和可靠性协调机构,否则也可协助解决问题; e) 此时,MISO 作为该地区(包括FE) 的输电协调机构,也出现问题; f) MISO 的系统分析工具在8 月14 日下午未能有效地工作,导致MISO 没有及早注意到FE 公司的问题并采取措施; g) MISO 用过时的数据支持系统的实时监测,结果未能检测出FE公司的事态发展,也未采取缓解措施; h) MISO 缺乏有效的工具确定是哪条输电线路断路器动作及其严重性,否则MISO 的运行人员可以根据这些信息更早地意识到事故的严重性; i) MISO 和PJM互联机构(控制宾夕法尼亚、马里兰和新泽西等地) 在其交界处对突发事件各自采取的对策缺乏联合协调措施; j) 总体而言,这次大停电是诸多因素所致,包括通信设施差、人为错误、机械故障、运行人员培训不够及软件误差等。从复杂的计算机模拟系统到简单的输电

相关文档
相关文档 最新文档