文档库 最新最全的文档下载
当前位置:文档库 › 结构可靠度设计原理与应用

结构可靠度设计原理与应用

结构可靠度设计原理与应用
结构可靠度设计原理与应用

华中科技大学研究生课程考试答题本

考生姓名

考生学号

系、年级结构工程硕1401班

类别学术型

考试科目结构可靠度设计原理与应用

考试日期 2015年1月20日

评分

题号得分题号得分

总分:评卷人:

注:1、无评卷人签名试卷无效。

2、必须用钢笔或圆珠笔阅卷,使用红色。用铅笔阅卷无效。

中心点法

1.如图所示圆截面直杆,承受拉力120P kN =,已知材料的强度设计值y f 的均

值310y f a MP μ=,标准差25y f a MP σ=,杆直径d 的均值30d mm μ=,标准差3d mm σ=,在功能函数为:1)()2/4Z d r P π=-; 2) ()24/Z r P d π=-,在这两种情况下,试用中心点法求其可靠度指标和可靠度。 (5分)

P

d

解:(1)clear all;clc;

mufy=310;sigmafy=25;mud=30;sigmad=3;P=120000; syms fy d; %定义符号变量fy 和d Z=(pi*d^2/4)*fy-P; %定义目标函数 pdfy=diff(Z,fy,1); %Z 对fy 求一阶偏导 pdd=diff(Z,d,1); %Z 对d 求一阶偏导 fy=mufy;d=mud; %将均值赋给fy 和d a=subs(pdfy); %求在均值点处的偏导数 b=subs(pdd);

c=subs(Z); %求功能函数在均值点的值 muZ=c;

sigmaZ=(a^2*sigmafy^2+b^2*sigmad^2)^(1/2); beta=muZ/sigmaZ %求得beta=2.0977

Pr=1-normcdf(-beta) %求得可靠概率Pr=0.9820

(2)clear all;clc;

mufy=310;sigmafy=25;mud=30;sigmad=3;P=120000; syms fy d; %定义符号变量fy 和d Z=fy-4*P/(pi*d^2); %定义功能函数 pdfy=diff(Z,fy,1); %Z 对fy 求一阶偏导 pdd=diff(Z,d,1); %Z 对d 求一阶偏导 fy=mufy;d=mud; %将均值赋给fy 和d a=subs(pdfy); %求在均值点处的偏导数 b=subs(pdd);

c=subs(Z); %求功能函数在均值点的值 muZ=c;

sigmaZ=(a^2*sigmafy^2+b^2*sigmad^2)^(1/2); beta=muZ/sigmaZ %求得beta=3.3259

Pr=1-normcdf(-beta) %求得可靠概率Pr=0.9996

2.粒状土承受剪切应力52kPa τ=,其剪切面法向应力w 服从正态分布,均值为100kPa ,标准差为20kPa ,土的磨擦角φ服从正态分布,均值为35o ,标准差为5o (=0.0873弧度)。 w 和φ相互独立,极限状态方程为:tan 0Z w φτ=-=,用中心点法计算β值和失效概率f P 。(5分) 提示:

()'

221

tan sec cos x x x

== 解:clear all;clc;

muw=100;sigmaw=20;mufai=0.6109;sigmafai=0.0873;tao=52; %角度输入要用弧度制,注意单位要统一 syms w fai; %定义变量类型为符号变量

Z=w*tan(fai)-tao; pdw=diff(Z,w,1); pdfai=diff(Z,fai,1); w=muw;fai=mufai; a=subs(pdw); b=subs(pdfai); c=subs(Z); muZ=c;

sigmaZ=(a^2*sigmaw^2+b^2*sigmafai^2)^(1/2); beta=muZ/sigmaZ %求得beta=0.9436

Pf=1-normcdf(beta) %求得失效概率Pf=0.1727

验算点法

3.某钢梁承受确定性弯矩138M kN m =?,抗弯截面模量

()6389010,0.05W W W N m μδ--=?=,服从正态分布;钢材强度f 服从对数正态分布()262,0.1f f MPa μδ==,极限状态方程为0Z fW M =-=。试用中心点法和验算点法求可靠指标β及梁的失效概率f P 并比较其计算结果。(20分) 解:(1)中心点法

clear all;clc;

muW=890*10^(-6);deltaW=0.05; muf=262000;deltaf=0.1; M=138; %单位统一为kN-m sigmaW=muW*deltaW; sigmaf=muf*deltaf; syms f W;

Z=f*W-M;

pdf=diff(Z,f,1);

pdW=diff(Z,W,1);

f=muf;W=muW;

a=subs(pdf);

b=subs(pdW);

c=subs(Z);

muZ=c;

sigmaZ=(a^2*sigmaf^2+b^2*sigmaW^2)^(1/2);

beta=muZ/sigmaZ %求得beta=3.6509

Pf=1-normcdf(beta) %求得失效概率Pf=1.3066e-6

(2)验算点法(对于非正态分布,根据等概率原则,将随机变量的分布转化为标准正态分布)

clear all;clc;

muW=890*10^(-6);deltaW=0.05;

muf=262000;deltaf=0.1;

M=138;

sigmaW=muW*deltaW;

sigmaf=muf*deltaf;

syms Y1 Y2 f W F; %F=log(f),Y1和Y2服从标准正态分布

Z=f*W-M;

muF=log(muf/(1+deltaf^2)^(1/2)); %根据f的期望和变异系数求F的期望和标准差

sigmaF=(log(1+deltaf^2))^(1/2);

Y1=0;Y2=0; %以均值点作为初始验算点

W=muW+sigmaW*Y1;a=sigmaW;%pdW/pdY1=a

f=exp(muF+sigmaF*Y2);b=f*sigmaF;%pdf/pdY2=b c=subs(Z);

d=((f*a)^2+(W*b)^2)^(1/2);

beta=(c-(f*a*Y1+W*b*Y2))/d %beta=3.7476 alphaY1=-f*a/d;alphaY2=-W*b/d; Y10=beta*alphaY1;Y20=beta*alphaY2;

while ((Y1-Y10)^2+(Y2-Y20)^2)^(1/2)>0.1 %容许误差为0.1 Y1=Y10; Y2=Y20;

W=muW+sigmaW*Y1;a=sigmaW;%pdW/pdY1=a f=exp(muF+sigmaF*Y2);b=f*sigmaF;%pdf/pdY2=b c=subs(Z);

d=((f*a)^2+(W*b)^2)^(1/2); beta=(c-(f*a*Y1+W*b*Y2))/d alphaY1=-f*a/d;alphaY2=-W*b/d; Y10=beta*alphaY1;Y20=beta*alphaY2; end %beta=4.6001

Pf=1-normcdf(beta) %求得失效概率Pf=2.1113e-6

4.已知某钢筋混凝土受压短柱的极限状态方程为(,,)0Z g R G Q ==,抗力R 服从对数正态分布0.17R δ=;恒载(53, 3.71)G G G N kN kN μσ-==,服从正太分布;活载Q 服从极致I 型分布,70,20.3Q Q kN kN μσ==。试用JC 法求目标可靠指标[] 3.7β=时,构件截面的抗力平均值?R μ= (20分)

(提示:z

222222[]()R G Q R G Q z R G Q R R G Q μμμμμμμβσσσσδμσσ----===

++++;R G Q ***=+)

解:JC法

clear all;clc;

muX=[319.52;53;70];cuX=[0.17;0.07;0.29];

sigmaX =cuX.*muX ;

sLn=sqrt(log(1+(sigmaX(1)/muX(1))^2));

mLn=log(muX(1))-sLn^2/2;

aEv = sqrt(6)*sigmaX(3)/pi;

uEv = 0.5772*aEv-muX(3);

muX1 =muX;sigmaX1= sigmaX;

x = muX ; normX = eps;

count = 0;

while abs(norm(x)-normX)/normX>1e-6

normX = norm(x);

g = x(1)-x(2)-x(3);

gX = [1;-1;-1];

cdfX=[logncdf(x(1),mLn,sLn);1-evcdf(-x(3),uEv,aEv)];

pdfX=[lognpdf(x(1),mLn,sLn);evpdf(-x(3),uEv,aEv)];

nc = norminv(cdfX);

sigmaX1(1:2:3) = normpdf(nc)./pdfX;

muX1(1:2:3) = [x(1:2:3)-nc.*sigmaX1(1:2:3)];

gs = gX.*sigmaX1;

ccosX = -gs/norm(gs);

count =count+1;

x = muX1+ 3.7*sigmaX1.*ccosX

end

xR = x(1)

cosR = ccosX(1);

sigmaX1 = x.*sqrt(log(1+cuX));

sigmaRs = sigmaX1(1);

muX1 = x-3.7*sigmaX1.*ccosX;

muRs = muX1(1);

muR=sqrt(1+cuX(1)^2).*exp(log(x(1))-1+muX1(1)./x(1))

displayString1 = ['抗力平均值',num2str(muR)]

displayString2 = ['迭代次数为',num2str(count)]

%结论:JC法求解,当目标可靠指标[β]=3.7时,经过8次迭代,抗力平均值为519.7522。

蒙特卡罗法

5.设某构件正截面强度计算的极限状态方程为Z=R-S=0。其中R和S分别为正态和极值I型分布的随机变量,其统计量为R(100,20)和S(80,24),20和24为标准差。试用JC法和蒙特卡罗模拟分别求解构件失效概率。(20分)

解:(1)JC法

clear all;clc;

syms R S;

muR=100;sigmaR=20;muS=80;sigmaS=24;

Z=R-S;

alpha=0.78*sigmaS;k=muS-0.5772*alpha; %alpha和k为极值I型分布的两个参数

syms x;

Scdf=exp(-exp(-(x-k)/alpha)); %S概率分布函数

Spdf=exp(-(x-k)/alpha-exp(-(x-k)/alpha))/alpha; %S概率密度函数

r=muR;s=muS; %初始验算点

x=s;

a=subs(Scdf);b=subs(Spdf); %求S在均值点处的分布函数值和概率密度值

a1=norminv(a); %求其逆概率分布值

sigmaS1=normpdf(a1)/b; %S1为NL当量正态化后的变量,服从(muS1,sigmaS1)的正态分布)

muS1=s-a1*sigmaS1;

c=(sigmaR^2+sigmaS1^2)^(1/2);

beta=(muR-muS1)/c %beta=0.7906

alphaR=-sigmaR/c; %求方向余弦

alphaS1=sigmaS1/c;

r1=muR+alphaR*beta*sigmaR; %求新的验算点

s1=muS1+alphaS1*beta*sigmaS1;

while ((r-r1)^2+(s-s1)^2)^(1/2)>0.1 %容许误差为0.1

r=r1;s=s1; %初始验算点

x=s;

a=subs(Scdf);b=subs(Spdf); %求S在均值点处的分布函数值和概率密度值

a1=norminv(a); %求其逆概率分布值

sigmaS1=normpdf(a1)/b; %S1为NL当量正态化后的变量,服从(muS1,sigmaS1)的正态分布)

muS1=s-a1*sigmaS1;

c=(sigmaR^2+sigmaS1^2)^(1/2);

beta=(muR-muS1)/c

alphaR=-sigmaR/c; %求方向余弦

alphaS1=sigmaS1/c;

r1=muR+alphaR*beta*sigmaR; %求新的验算点

s1=muS1+alphaS1*beta*sigmaS1;

end %beta=0.7654/0.7651/0.7651/0.7651

beta %beta=0.7651

pf=normcdf(-beta) %pf=0.2221

(2)蒙特卡罗法

clear all;clc;

syms R S;

muR=100;sigmaR=20;muS=80;sigmaS=24;

Z=R-S;

r=normrnd(muR,sigmaR,1000,1000);

s=rand(1000,1000);

alpha=0.78*sigmaS;k=muS-0.5772*alpha; %极值I型分布的两个参数syms x;

y=exp(-exp(-(x-k)/alpha)); %y为S的概率分布函数

f=finverse(y);

x=s;

s1=subs(f);

R=r;S=s1;

z=subs(Z);

m=0;n=0;

for i=1:1000

for j=1:1000

if z(i,j)<=0;

m=m+1;

end

n=n+1; end end

pf=m/n %pf=0.2393

6.设构件的极限状态方程为:21213410Z x x x x x =---=。式中,

111(,)(25,0.23)x x x μδ==,服从对数正态分布;222(,)(0.0113,0.3)x x x μσ==,为

正态分布;333(,)(0.0006,0.3)x x x μσ==,为正态分布;444(,)(0,0.1)x x x μσ==,为正态分布。试用蒙特卡洛法计算该结构构件的可靠度。(10分) 解:clear all;clc;

syms x1 x2 x3 x4 x111;%x111=log(x1) mux1=25;deltax1=0.23;sigmax1=mux1*deltax1; mux111=log(mux1/(1+deltax1^2)^(1/2)); sigmax111=(log(1+deltax1^2))^(1/2); mux2=0.0113;sigmax2=0.3; mux3=0.00006;sigmax3=0.3; mux4=0;sigmax4=0.1; Z=1-x1*x2-x1^2*x3-x4;

x1=lognrnd(mux111,sigmax111,1000,1000); x2=normrnd(mux2,sigmax2,1000,1000); x3=normrnd(mux3,sigmax3,1000,1000); x4=normrnd(mux4,sigmax4,1000,1000); z=subs(Z); m=0;n=0; for i=1:1000

for j=1:1000 if z(i,j)<=0; m=m+1; end n=n+1; end end

pf=m/n %pf=0.4988

7.设构件的极限状态方程为1234Z x x x x =+--,式中

111(,)(2234.32,0.1)x x x μσ==,为对数正态分布;222(,)(949.59,0.1)x x x μσ==,

为对数正态分布;333(,)(1521.9,0.109)x x x μσ==,为正态分布;

444(,)(496.1,0.292)x x x μσ==,为极值I 型分布。试用蒙特卡洛法计算该结构构

件的可靠度。(10分) 解:clear all;clc;

syms x1 x2 x3 x4 x111 x222;%x111=log(x1)、x222=log(x2) mux1=2234.32;sigmax1=0.1;deltax1=sigmax1/mux1; mux111=log(mux1/(1+deltax1^2)^(1/2)); sigmax111=(log(1+deltax1^2))^(1/2);

mux2=949.59;sigmax2=0.1;deltax2=sigmax2/mux2; mux222=log(mux2/(1+deltax2^2)^(1/2)); sigmax222=(log(1+deltax2^2))^(1/2); mux3=1521.9;sigmax3=0.109; mux4=496.1;sigmax4=0.292;

alpha=0.78*sigmax4;k=mux4-0.5772*alpha; %极值I 型分布的两个参数

建筑结构可靠度设计统一标准GB50068-2001

建筑结构可靠度设计统一标准GB 50068-2001 中华人民共和国国家标准 建筑结构可靠度设计统一标准 Unified standard for reliability design of building structures GB 50068-2001 主编部门:中华人民共和国建设部 批准部门:中华人民共和国建设部 施行日期:2002年3月1日 关于发布国家标准《建筑结构可靠度设计统一标准》的通知 建标[2001]230 号 根据我部“关于印发《一九九七年工程建设标准制订、修订计划的通知》”(建标[1997]108号)的要求,由建设部会同有关部门共同修订的《建筑结构可靠度设计统一标准》,经有关部门会审,批准为国家标准,编号为GB 50068-2001 ,自2002年3月1日起施行。其中1.0.5,1.0.8为强制性条文,必须严格执行,原《建筑结构设计统一标准》GBJ 68-84 于2002年12月31日废止。 本标准由建设部负责管理,中国建筑科学研究院负责具体解释工作。建设部标准定额研究所组织中国建筑工业出版社出版发行。 中华人民共和国建设部 2001年11月13日 前言 本标准是根据建设部建标[1997]108 号文的要求,由中国建筑科学研究院会同有关单位对原《建筑结构设计统一标准》(GBJ 68-84)共同修订而成的。 本次修订的内容有:

1.标准的适用范围:鉴于《建筑地基基础设计规范》、《建筑抗震设计规范》在结构可靠度设计方法上有一定特殊性,从原标准要求的"应遵守"本标准,改为"宜遵守"本标准; 2.根据《工程结构可靠度设计统一标准》(GB 50153-92)的规定,增加了有关设计工作状况的规定,并明确了设计状况与极限状态的关系; 3.借鉴最新版国际标准ISO 2394:1998 《结构可靠度总原则》,给出了不同类型建筑结构的设计使用年限; 4.在承载能力极限状态的设计表达式中,对于荷载效应的基本组合,增加了永久荷载效应为主时起控制作用的组合式; 5.对楼面活荷载、风荷载、雪荷载标准值的取值原则和结构构件的可靠指标以及结构重要性系数等作了调整; 6.首次对结构构件正常使用的可靠度做出了规定,这将促进房屋使用性能的改善和可靠度设计方法的发展; 7.取消了原标准的附件。 本标准黑体字标志的条文为强制性条文,必须严格执行。 本标准将来可能需要进行局部修订,有关局部修订的信息和条文内容将刊登在《工程建设标准化》杂志上。 为了提高标准质量,请各单位在执行本标准的过程中,注意总结经验,积累资料,随时将有关的意见和建议寄给中国建筑科学研究院,以供今后修订时参考。 本标准主编单位:中国建筑科学研究院 本标准参编单位:中国建筑东北设计研究院,重庆大学,中南建筑设计院,四川省建筑科学研究院,福建师范大学。 本标准主要起草人:李明顺胡德炘史志华陶学康陈基发白生翔苑振芳戴国欣陈雪庭王永维钟亮戴国莹林忠民 1 总则 1.0.1 为统一各类材料的建筑结构可靠度设计的基本原则和方法,使设计符合技术先进,经济合理、安全适用、确保质量的要求,制定本标准。 1.0.2 本标准适用于建筑结构,组成结构的构件及地基基础的设计。

工程结构荷载与可靠度设计原理_复习资料

荷载与结构设计原理总复习题 一、判断题 1.严格地讲,狭义的荷载与直接作用等价,广义的荷载与间接作用等价。(N) 2.狭义的荷载与直接作用等价,广义的荷载与作用等价。(Y) 3.广义的荷载包括直接作用和间接作用。(Y) 4.按照间接作用的定义,温度变化、基础不均匀沉降、风压力、地震等均是间接作用。(N) 5.由于地震、温度变化、基础不均匀沉降、焊接等引起的结构内力变形等效应的因素称为间接作用。(Y) 6.土压力、风压力、水压力是荷载,由爆炸、离心作用等产生的作用在物体上的惯性力不是荷载。(N) 7.由于雪荷载是房屋屋面的主要荷载之一,所以基本雪压是针对屋面上积雪荷载定义的。(N)8.雪重度是一个常量,不随时间和空间的变化而变化。(N) 9.雪重度并非一个常量,它随时间和空间的变化而变化。(N) 10.虽然最大雪重度和最大雪深两者有很密切的 关系,但是两者不一定同时出现。(Y) 11.汽车重力标准是车列荷载和车道荷载,车列荷 载是一集中力加一均布荷载的汽车重力形式。 (N) 12.烈度是指某一地区遭受一次地震影响的强弱程度,与震级和震源深度有关,一次地震有多个烈度。(Y) 13.考虑到荷载不可能同时达到最大,所以在实际工程设计时,当出现两个或两个以上荷载时,应采用荷载组合值。(N) 14.当楼面活荷载的影响面积超过一定数值需要 对均布活荷载的取值进行折减。(Y) 15.土的侧压力是指挡土墙后的填土因自重或外 荷载作用对墙背产生的土压力。(Y) 16.波浪荷载一般根据结构型式不同,分别采用不同的计算方法。(Y) 17.先张法是有粘结的预加力方法,后张法是无粘结的预加力方法。(Y) 18.在同一大气环境中,各类地貌梯度风速不同,地貌越粗糙,梯度风速越小。(N)19.结构构件抗力R是多个随机变量的函数,且近似服从正态分布。(N) 20.温度作用和变形作用在静定结构中不产生内力,而在超静定结构中产生内力。(Y) 21.结构可靠指标越大,结构失效概率越小,结构越可靠。(Y) 22.朗肯土压力理论中假设挡土墙的墙背竖直、光滑、填土面水平无超载。(Y) 23.在朗肯土压力理论的假设中,墙背与填土之间既无摩擦力也无剪力存在。(Y) 24.在朗肯土压力理论的假设中,墙背与填土之间虽然无摩擦力,但仍有剪力存在。(N) 25.土的自重应力为土自身有效重力在土体中引起的应力。(Y) 26.不但风的作用会引起结构物的共振,水的作用也会引起结构物的共振。(Y) 27.平均风速越大,脉动风的幅值越大,频率越高。(N) 28.风压是指风以一定的速度向前运动受到阻塞时对阻塞物产生的压力。(Y) 29.地震作用中的体波可以分为横波和纵波,两者均可在液体和固体中传播。(N) 30.如果波浪发生破碎的位置距离直墙在半个波 长以内,这种破碎波就称为近区破碎波。(Y)31.远区破碎波与近区破碎波的分界线为波浪破 碎时发生在一个波长的范围内。(N) 32.在实际工程设计时,当出现可变荷载,应采用 其荷载组合值。(N) 33.对于静定结构,结构体系的可靠度总大于或等 于构件的可靠度。(N) 34.对于超静定结构,当结构的失效形态不唯一 时,结构体系的可靠度总小于或等于结构每一失效形态对应的可靠度。(Y) 35.结构设计的目标是确保结构的承载能力足以 抵抗内力,而变形控制在结构能正常使用的范围内。(Y) 36.对实际工程问题来说,由于抗力常用多个影响 大小相近的随机变量相乘而得,则其概率分布一般来说是正态的。(N) 37.结构可靠度是指结构可靠性的概率度量,是结 构在规定的时间内,在规定的条件下,完成预定功能的概率。

建筑结构可靠度分析与设计原理

玻璃幕墙是1985年以来开始在我国应用的建筑幕墙,它是在铝合金门窗的基础上随着高层建筑的兴起而发展起来的轻质建筑外围护结构。 我国2002年开始实施新修订的{建筑结构可靠度设计统一标准(GB 50068-2001)和《建筑结构荷载规范》(GB50009-2001)及颈建筑抗震设计规范》(GB 50011-2001)三项国家标准。幕墒与门窗作为对建筑物理功能和人的安全使用有重大影响的建筑外围护结构与构件,必须按照这些标准及其强制性条文的要求进行结构设计计算,以保证其足够的可靠度。 铝合金玻璃幕墙与门窗是世界上应用最为成熟和目前应用最为广泛的金属框架建筑幕墒和门窗。我国《玻璃幕墒工程技术规范》(JGJ102-96)目前正在进行修订,《铝合金门窗工程技术规程》于2002年8月开始编制,尚未有建筑门窗工程设计规范。认真总结国内外技术与经验,对它们进行结构可靠度设计研究,正确编制我国的玻璃幕墒与门窗技术标准规范,以逐步建立起各种材料及型式的建筑幕墒与门窗结构可靠度设计、评估理论体系,对我国建筑幕墒与门窗工程实践和技术发展有着重要的现实意义和深远的历史意义。 建筑结构可靠度分析与设计原理 1.结构的可靠性 建筑结构是组成工业与民用房屋建筑包括基础在内的承重骨架体系,必须满足的基本功能要求是:(1)安全性:在正常施工和正常使用时能承受可能出现的各种作用:在设计规定的偶然事件发生时(如地震、火灾等)及发生后,仍能保

持必需的整体稳定性:(2)适刚性:在正常使用时具有良好的工作性能:(3)耐久性:在正常维护下具有足够的耐久性能。 结构的可靠性是结构安全性、适用性和耐久性的统称,是结构在规定的时间内和规定的条件下,完成预定功能的能力。 2.结构的可靠度 (1)结构的极限状态设计要求 影响结构可靠性的各种随机因素可归纳为二个均为随机变量的综合变量即结构的作用效应S和抗力R,结构的功能函数Z=g(R,5)=R-S也是随机变量。当Z>0时,结构处于可靠状态:当Z<0时,结构处于失效状态:当Z=R-S=0时。结构处于极限状态。结构的极限状态设计要求为:R-S>=O,即结构的抗力要大于等于其作用效应。 (2)结构的概率可靠度 由于影响结构可靠性的各种因素中荷载与作用的效应是变化不定的,结构的抗力R也是不确定的(构件材料性能不确定性、几何参数不确定性、计算模式不确定性),因此结构设计所要求的Z=R-S>=0的可靠目标不可能绝对保证,只能在一定的概率意义下满足,即P(R>=S)=P,是结构的可靠概率。所以说,结构的可靠度是结构可靠性的定量描述,即结构在规定的时间内,在规定的条件下,完成预定功能的概率。而结构的失效概率Pf=1-PI。由于结构的失效概率一

工程结构可靠度设计统一标准

工程结构可靠度设计统一标准 第一章总则 第二章极限状态设计原则 第三章结构上的作用 第四章材料和岩土的性能及几何参数 第五章结构分析 第六章分项系数设计方法 第七章质量控制要求 附录一结构可靠指标计算的一次二阶矩法 附录二永久作用、可变作用和偶然作用举例 附录三永久作用标准值的确定原则 附录四可变作用标准值的确定原则 附录五可变作用准永久值和频遇值的确定原则附录六本标准用词说明 附加说明 第一章总则 第1.0.1 条为统一工程结构可靠度设计的基本原则和方法,使设计符合技术先进、经济合理、安全适用、确保质量的要求,制定本标准。 第1.0.2 条本标准是制定房屋建筑、铁路、公路、港口、水利水电工程结构可靠度设计统一标准应遵守的准则。在各类工程结构的统一标准中尚应制定相应的具体规定。 第1.0.3 条本标准适用于整个结构、组成整个结构的构件以及地基基础,适用于结构的施工阶段和使用阶段。 第1.0.4 条工程结构必须满足下列功能要求: 一、在正常施工和正常使用时,能承受可能出现的各种作用; 二、在正常使用时,具有良好的工作性能; 三、在正常维护下,具有足够的耐久性能; 四、在设计规定的偶然事件发生时和发生后,能保持必需的整体稳定性。 第1.0.5 条结构在规定的时间内,在规定的条件下,对完成其预定功能应具有足够的可靠度,可靠度一般可用概率度量。 确定结构可靠度及其有关设计参数时,应结合结构使用期选定适当的设计基准期作为结构可靠度设计所依据的时间参数。 第1.0.6条工程结构设计宜采用分项系数表达的以概率理论为基础的极限状态设计方法。

第1.0.7条工程结构设计时,应根据结构破坏可能产生的后果(危及人的生命,造成经济损失,产生社会影响等)的严重性,采用表1.0.7规定的安全等级。 工程结构的安全等级表1.0.7 注:对特殊结构,其安全等级可按具体情况确定。 第1.0.8条工程结构中各类结构构件的安全等级宜与整个结构的安全等级相同。对其中部分结构构件 的安全等级可适当提高或降低,但不得低于三级。 第1.0.9条对不同安全等级的结构构件,应规定相应的可靠度。 第1.0.10条工程结构应按其破坏前有无明显变形或其它预兆区别为延性破坏和脆性破坏两种破坏类型。对脆性破坏的结构,其规定的可靠度应比延性破坏的结构适当提高。 第1.0.11条当有条件时,工程结构宜按结构体系进行可靠度设计。结构体系可靠度设计,应根据结构 破坏特点选定主要破坏模式,并通过结构选型或调正构件可靠度,提高整个结构可靠度设计的合理性。 第1.0.12条为了保证工程结构具有规定的可靠度,应对结构设计所依据的主要条件进行相应的控制。 应根据结构的安全等级划分相应的控制等级。对控制的具体要求,由有关的勘察、设计、施工及使用等标准专门规定。 第二章极限状态设计原则 第2.0.1条整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,此特定状态应为该功能的极限状态。 对于结构的各种极限状态,均应规定明确的标志及限值。 第2.0.2条极限状态可分为下列两类: 、承载能力极限状态。这种极限状态对应于结构或结构构件达到最大承载能力或不适于继续承载的 变形 当结构或结构构件出现下列状态之一时,应认为超过了承载能力极限状态:1.整个结构或结构的一部分作为刚体失去平衡(如倾覆、滑移等);2.结构构件或连接因材料强度被超过而破坏(包括疲劳破坏),或因过度变形而不适于继续承

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

建筑结构可靠度设计统一标准

建筑结构可靠度设计统一标准

————————————————————————————————作者:————————————————————————————————日期: ?

众智软件 1 总则 1.0.1 为统一各类材料的建筑结构可靠度设计的基本原则和方法,使设计符合技术先进、经济合理、安全适用、确保质量的要求,制定本标准。 1.0.2 本标准适用于建筑结构,组成结构的构件及地基基础的设计。 1.0.3 制定建筑结构荷载规范以及钢结构、薄壁型钢结构、混凝土结构、砌体结构、木结构等设计规范应遵守本标准的规定;制定建筑地基基础和建筑抗震等设计规范宜遵守本标准规定的原则。 1.0.4 本标准所采用的设计基准期为50年。 1.0.5结构的设计使用年限应按表1.0.5采用。 1.0.6结构在规定的设计使用年限内应具有足够的可靠度。结构可靠度可采用以概率理论为基础的极限状态设计方法分析确定。 1.0.7 结构在规定的设计使用年限内应满足下列功能要求:?1在正常施工和正常使用时,能承受可能出现的各种作用;?2在正常使用时具有良好的工作性能; 3 在正常维护下具有足够的耐久性能;?4在设计规定的偶然事件发生时及发生后,仍能保持必需的整体稳定性。 1.0.8 建筑结构设计时,应根据结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等级。建筑结构安全等级的划分应符合表1.0.8的要求。

1.0.9建筑物中各类结构构件的安全等级,宜与整个结构的安全等级相同。对其中部分结构构件的安全等级可进行调整,但不得低于三级。 1.0.10 为保证建筑结构具有规定的可靠度,除应进行必要的设计计算外,还应对结构 材料性能、施工质量、使用与维护进行相应的控制。对控制的具体要求,应符合有关勘察、设计、施工及维护等标准的专门规定。 1.0.11 当缺乏统计资料时,结构设计应根据可靠的工程经验或必要的试验研究进行。

《工程结构荷载与可靠度设计原理》复习题

《工程结构荷载与可靠度设计原理》复习题 第一章荷载类型 1.荷载:由各种环境因素产生的直接作用在结构上的各种力称为荷载。 2.作用:能使结构产生效应(结构或构件的内力、应力、位移、应变、裂缝等)的各种因素总称为作用。 3.荷载与作用的区别与联系. 区别:荷载不一定能产生效应,但作用一定能产生效应。 联系:荷载属于作用的范畴。 第二章重力 1.土是由土颗粒、水和气体组成的三项非连续介质。 2.雪压:单位面积地面上积雪的自重。 3.基本雪压:当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。 第三章侧压力 1.根据挡土墙的位移情况和墙后土体所处的应力状态,土压力可分为静止土压力、主动土压力和被动土压力。 三种土压力的受力特点: (1)静止土压力:挡土墙在土压力作用下,不产生任何方向的位移或转动而保持原有的位置,墙后土体处于弹性平衡状态。 (2)主动土压力:挡土墙在土压力的作用下,背离墙背方向移动或转动时,墙后土压力逐渐减小,当达到某一位移量值时,墙后土体开始下滑,作用在挡土墙上的土压力达到最小值,滑动楔体内应力处于主动极限平衡状态。 (3)被动土压力:挡土墙在外力作用下向墙背方向移动或转动时,墙体挤压土体,墙后土压力逐渐增大,当达到某一位移时,墙后土体开始上隆,作用在档土墙上的土压力达到最大值,滑动楔体内应力处于被动极限平衡状态。 2.水对结构物的力学作用表现在对结构物表面产生静水压力和动水压力。静水压力可能导致结构物的滑动或倾覆;动水压力,会对结构物产生切应力和正应力,同时还可能引起结构物的振动,甚至使结构物产生自激振动或共振。 3.(1)冻胀力:在封闭体系中,由于土体初始含水量冻结,体积膨胀产生向四面扩张的内应力,这个力称为冻胀力。(2)冻土:具有负温度或零温度,其中含有冰,且胶结着松散固体颗粒的土,称为冻土。 (3)冻胀原理:水分由下部土体向冻结锋面迁移,使在冻结面上形成了冰夹层和冰透镜体,导致冻层膨胀,底层隆起。(4)影响冻土的因素:含水量、地下水位、比表面积和温差。 第四章风荷载 1.基本风压:按规定的地貌、高度、时距等量测的风速所确定的风压称为基本风压。通常应符合以下五个规定:标准高度的规定(10m)、地貌的规定(空旷平坦)、公称风速的时距(10分钟)、最大风速的样本时间(1年)和基本风速重现期(30-50年)。 2.风效应可以分为顺风向结构风效应和横风向结构风效应两种。 3.速度为的风流经任意截面物体,都将产生三个力:物体单位长度上的顺风向力p D、横风向力P L以及扭力矩P M。 第五章地震作用 1.地震按其产生的原因,可分为火山地震、陷落地震和构造地震。 2.(1)震源:即发震点,是指岩层断裂处。 (2)震中:震源正上方的地面地点。 (3)震源深度:震中至震源的距离。 (4)震中距:地面某处到震中的距离。 (5)震级:衡量一次地震规模大小的数量等级。 (6)地震能:一次地震所释放的能量。 (7)烈度:某一特定地区遭受一次地震影响的强弱程度。 (8)地震波:传播地震能量的波 3.地震波分为在地球内部传播的体波和在地面附近传播的面波。 第七章荷载的统计分析 1.平稳二项随机过程荷载模型的假定为:

宁波大学结构可靠性设计基础考试复习题

一﹑单项选择题 1.我国现行规范中一般建筑物的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 2.对普通房屋和构筑物,《建筑结构可靠度设计统一标准》给出的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 3.对临时性结构,《建筑结构可靠度设计统一标准》给出的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 4.我国现行建筑规范中设计基准期为 A .10年 B 。30年 C .50年 D 。100年 5. 现行《建筑结构荷载规范》规定的基本风压值的重现期为 A.30年 B.50年 C.100年 D.150年 6. 称确定可变作用及与时间有关的材料性能的取值而选用的时间参数为 A. 结构设计基准期 B. 结构设计使用年限 C. 结构使用年限 D. 结构全寿命 7.下面哪一个变量不是随机变量? A .结构构件抗力 B .荷载最大值 T Q C .功能函数Z D .永久荷载标准值 8.结构可靠性是指 A .安全性 B 。适用性 C .耐久性 D 。安全性﹑适用性和耐久性的总称 9.在结构可靠度分析中,描述结构的极限状态一般用 A .功能函数 B 。极限状态方程 C .可靠度 D 。失效概率 10.裂缝超标破坏属于哪个极限状态范畴. A .承载力极限状态 B. 正常使用极限状态 C. 稳定极限状态 D. 强度极限状态 11.规定时间规定条件预定功能相同时,可靠指标 越大,结构的可靠程度 A.越高 B.越低 C.不变 D.视情况而定 12. 结构的失效概率与可靠度之和 A.等于1 B.大于1 C.小于1 D.不确定 13.当功能函数服从哪一个分布时,可靠指标与失效概率具有一一对应关系。 A .正态分布 B 。均匀分布 C .极值分布 D .指数分布 14. 结构的失效概率 f P 与结构抗力R 和荷载效应S 的概率密度干涉面积。

《工程荷载与可靠度设计原理》课后思考题及复习详解

《工程荷载与可靠度设计原理》 ---课后思考题解答 1 荷载与作用 1.1 什么是施加于工程结构上的作用?荷载与作用有什么区别? 结构上的作用是指能使结构产生效应的各种原因的总称,包括直接作用和间接作用。引起结构产生作用效应的原因有两种,一种是施加于结构上的集中力和分布力,例如结构自重,楼面的人群、家具、设备,作用于桥面的车辆、人群,施加于结构物上的风压力、水压力、土压力等,它们都是直接施加于结构,称为直接作用。另一种是施加于结构上的外加变形和约束变形,例如基础沉降导致结构外加变形引起的力效应,温度变化引起结构约束变形产生的力效应,由于地震造成地面运动致使结构产生惯性力引起的作用效应等。它们都是间接作用于结构,称为间接作用。 “荷载”仅指施加于结构上的直接作用;而“作用”泛指使结构产生力、变形的所有原因。 1.2 结构上的作用如何按时间变异、空间位置变异、结构反应性质分类? 结构上的作用按随时间变化可分永久作用、可变作用和偶然作用;按空间位置变异可分为固定作用和自由作用;按结构反应性质可分为静态作用和动态作用。 1.3 什么是荷载的代表值?它们是如何确定的? 荷载代表值是考虑荷载变异特征所赋予的规定量值,工程建设相关的国家标准给出了荷载四种代表值:标准值,组合值,频遇值和准永久值。荷载可根据不同设计要求规定不同的代表值,其中荷载标准值是荷载的基本代表值,其它代表值都可在标准值的基础上考虑相应的系数得到。 2 重力 2.1 成层土的自重应力如何确定? 地面以下深度z处的土体因自身重量产生的应力可取该水平截面上单位面积的土柱体的重力,对于均匀土自重应力与深度成正比,对于成层土可通过各层土的自重应力求和得到。 2.2 土压力有哪几种类别?土压力的大小及分布与哪些因素有关? 根据挡土墙的移动情况和墙后土体所处应力状态,土压力可分为静止土压力、主动土压力和被动土压力三种类别。土的侧向压力的大小及分布与墙身位移、填土性质、墙体刚度、地基土质等因素有关。 2.3 试述静止土压力、主动土压力和被动土压力产生的条件?比较三者数值的大小? 当挡土墙在土压力作用下,不产生任何位移或转动,墙后土体处于弹性平衡状态,此时墙背所受的土压力称为静止土压力,可用E0表示。 当挡土墙在土压力的作用下,向离开土体方向移动或转动时,作用在墙背上的土压力从静止土压力值逐渐减少,直至墙后土体出现滑动面。滑动面以上的土体将沿这一滑动面向下向前滑动,在滑动楔体开始滑动的瞬间,墙背上的土压力减少到最小值,土体应力处于主动极限平衡状态,此时作用在墙背上的土压力称为主动土压力,可用E a表示。 当挡土墙在外力作用下向土体方向移动或转动时,墙体挤压墙后土体,作用在墙背上的土压力从静止土压力值逐渐增大,墙后土体也会出现滑动面,滑动面以上土体将沿滑动方向向上向后推出,在滑动楔体开始隆起的瞬间,墙背上的土压力增加到最大值,土体应力处于被动极限平衡状态。此时作用在墙背上的土压力称为被动土压力,可用E p表示。

建筑结构可靠度设计统一标准

众智软件https://www.wendangku.net/doc/6c15069111.html, 1 总则 1.0.1 为统一各类材料的建筑结构可靠度设计的基本原则和方法,使设计符合技术先进、经济合理、安全适用、确保质量的要求,制定本标准。 1.0.2 本标准适用于建筑结构,组成结构的构件及地基基础的设计。 1.0.3 制定建筑结构荷载规范以及钢结构、薄壁型钢结构、混凝土结构、砌体结构、木结构等设计规范应遵守本标准的规定;制定建筑地基基础和建筑抗震等设计规范宜遵守本标准规定的原则。 1.0.4 本标准所采用的设计基准期为50年。 1.0.5 结构的设计使用年限应按表1.0.5采用。 1.0.6 结构在规定的设计使用年限内应具有足够的可靠度。结构可靠度可采用以概率理论为基础的极限状态设计方法分析确定。 1.0.7 结构在规定的设计使用年限内应满足下列功能要求: 1 在正常施工和正常使用时,能承受可能出现的各种作用; 2 在正常使用时具有良好的工作性能; 3 在正常维护下具有足够的耐久性能; 4 在设计规定的偶然事件发生时及发生后,仍能保持必需的整体稳定性。 1.0.8 建筑结构设计时,应根据结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等级。建筑结构安全等级的划分应符合表1.0.8的要求。

1.0.9 建筑物中各类结构构件的安全等级,宜与整个结构的安全等级相同。对其中部分结构构件的安全等级可进行调整,但不得低于三级。 1.0.10 为保证建筑结构具有规定的可靠度,除应进行必要的设计计算外,还应对结构材料性能、施工质量、使用与维护进行相应的控制。对控制的具体要求,应符合有关勘察、设计、施工及维护等标准的专门规定。 1.0.11 当缺乏统计资料时,结构设计应根据可靠的工程经验或必要的试验研究进行。

《工程荷载与可靠度设计原理》习题解答

《工程荷载与可靠度设计原理》习题解答 1 荷载与作用 1、1 什么就是施加于工程结构上的作用?荷载与作用有什么区别? 结构上的作用就是指能使结构产生效应的各种原因的总称,包括直接作用与间接作用。引起结构产生作用效应的原因有两种,一种就是施加于结构上的集中力与分布力,例如结构自重,楼面的人群、家具、设备,作用于桥面的车辆、人群,施加于结构物上的风压力、水压力、土压力等,它们都就是直接施加于结构,称为直接作用。另一种就是施加于结构上的外加变形与约束变形,例如基础沉降导致结构外加变形引起的内力效应,温度变化引起结构约束变形产生的内力效应,由于地震造成地面运动致使结构产生惯性力引起的作用效应等。它们都就是间接作用于结构,称为间接作用。 “荷载”仅指施加于结构上的直接作用;而“作用”泛指使结构产生内力、变形的所有原因。 1、2 结构上的作用如何按时间变异、空间位置变异、结构反应性质分类? 结构上的作用按随时间变化可分永久作用、可变作用与偶然作用;按空间位置变异可分为固定作用与自由作用;按结构反应性质可分为静态作用与动态作用。 1、3 什么就是荷载的代表值?它们就是如何确定的? 荷载代表值就是考虑荷载变异特征所赋予的规定量值,工程建设相关的国家标准给出了荷载四种代表值:标准值,组合值,频遇值与准永久值。荷载可根据不同设计要求规定不同的代表值,其中荷载标准值就是荷载的基本代表值,其它代表值都可在标准值的基础上考虑相应的系数得到。 2 重 力 作 用 2、1 成层土的自重应力如何确定? 地面以下深度z 处的土体因自身重量产生的应力可取该水平截面上单位面积的土柱体的重力,对于均匀土自重应力与深度成正比,对于成层土可通过各层土的自重应力求与得到。 2、2 土压力有哪几种类别?土压力的大小及分布与哪些因素有关? 根据挡土墙的移动情况与墙后土体所处应力状态,土压力可分为静止土压力、主动土压力与被动土压力三种类别。土的侧向压力的大小及分布与墙身位移、填土性质、墙体刚度、地基土质等因素有关。 2、3 试述静止土压力、主动土压力与被动土压力产生的条件?比较三者数值的大小? 当挡土墙在土压力作用下,不产生任何位移或转动,墙后土体处于弹性平衡状态,此时墙背所受的土压力称为静止土压力,可用E 0表示。 当挡土墙在土压力的作用下,向离开土体方向移动或转动时,作用在墙背上的土压力从静止土压力值逐渐减少,直至墙后土体出现滑动面。滑动面以上的土体将沿这一滑动面向下向前滑动,在滑动楔体开始滑动的瞬间,墙背上的土压力减少到最小值,土体内应力处于主动极限平衡状态,此时作用在墙背上的土压力称为主动土压力,可用E a 表示。 当挡土墙在外力作用下向土体方向移动或转动时,墙体挤压墙后土体,作用在墙背上的土压力从静止土压力值逐渐增大,墙后土体也会出现滑动面,滑动面以上土体将沿滑动方向向上向后推出,在滑动楔体开始隆起的瞬间,墙背上的土压力增加到最大值,土体内应力处于被动极限平衡状态。此时作用在墙背上的土压力称为被动土压力,可用E p 表示。 在相同的墙高与填土条件下,主动土压力小于静止土压力,而静止土压力又小于被动土压力,即: p 0a E E E << 2、4 如何由朗金土压力理论导出土的侧压力计算方法? 郎金土压力理论假定土体为半空间弹性体,挡土墙墙背竖直光滑,填土面水平且无附加荷载,根据半空间内土体的应力状态与极限平衡条件导出了土压力计算方法。当填土表面受有连续均布荷载或局部均

建筑结构可靠度设计统一标准学习要点及理解

《建筑结构可靠度设计统一标准》 (GB50068-2001)学习要点及理解 一、前言中关于修订内容的说明(相对原《建筑结构统一标准》(GBJ68-84)) 1、标准的适用范围:鉴于《建筑地基基础设计规范》、《建筑抗震设计规范》在结构可靠度设计方法上有一定特殊性,从原标准要求的“应遵守”本标准,改为“宜遵守”本标准; [条] 2、根据《工程结构可靠度设计统一标准》(GB50153-92)的规定,增加了有关设计工作状况的规定,并明确了设计状况与极限状态的关系; [条、条] 3、借鉴最新国际标准JSO2394:1998《结构可靠度总原则》,给出了不同类型建筑结构的设计使用年限; [条] 4、在承载能力极限状态的设计表达式中,对于荷载效应的基本组合,增加了永久荷载效应为主时起控制作用的组合式; [条()式] 5、对楼面活荷载、风荷载、雪荷载标准值的取值原则和结构构件的可靠指标以及结构重要性系数等作了调整; [条、条、条] 6、首次对结构构件正常使用的可靠度做出了规定,这将促进房屋使用性能的改善和可靠度设计方法的发展; [条] 7、取消了原标准的附件。 [原标准有五个附件:附件一荷载的统计特性、代表值及其效应组合;附件二结构抗力的统计特性;附件三结构可靠度的计算方法;附件四极限状态设计表达式及其分项系数的确定;附件五结构材料的质量要求及质量控制。此五个附件对正确理解本标准仍具有重要作用,有精力的专业技术骨干,特别是技术把关人应该一读。] 二、标准的主线

可靠度设计原则(建筑结构在规定的设计使用年限内应具有足够的可靠度)采用以概率理论为基础的极限状态设计方 来度量。以极限状态为目标的设计方法为公认的合理的设计方法)变通为多系数表达式(这是为广大设计人员所熟悉和乐 ) 三、条文理解 1、总则 (原文略) [明确规定《建筑结构荷载规范》、《钢结构设计规范》、《薄壁型钢结构设计规范》、《混凝土结构设计规范》、《砌体设计规范》、《木结构设计规范》等六本规范应遵守本标准的规定。但对《地基基础设计规范》和《建筑抗震设计规范》改用“宜遵守本标准规定的原则”。这是由地基基础和建筑抗震设计土性指标与地震反应等方面的特殊性所决定的。例如:地基基础和抗震设计的建筑结构在安全等级上均无法接受本标准规定的安全等级。地基基础采用了设计等级的提法,并主要从场地地基对建筑结构的影响程度及建筑结构对场地和地基的特别要求两个方面将地基基础分为甲级、乙级、丙级三个等级,而不是仅仅根据建筑结构破坏后果的严重程度区分安全等级,同时取消了对不同级别乘不同重要性系数的作法。抗震规范则根据自身的特殊性,从使用功能的重要性出发将建筑分为甲、乙、丙、丁四个类别,并对各类别的抗震计算和抗震措施作了相应规定,也未采用对不同级别乘不同的重要性系数的办法。此外,地基基础规定对地基承载力采用特征值而不是标准值,对按地基承载力确定基础底面积、埋深及按单桩承载力确定桩数时采用标准组合而不是基本组合等等,都是根据其自身的特殊性而确定的。当然,地基基础设计规范和抗震设计规范在总体上还是执行了本标准的原则的。] 本标准所采用的设计基准期为50年。 [本条为《建筑结构荷载规范》确定为强条而被录入2002版强条。设计基准期是为确定可变作用及与时间有关的材料性能取值而选用的时间参数。它不同于建筑结构的设计使用年限。如设计需要采用其它设计基准期,则必须另行确定在设计基准期内最大荷载的概率分布及相应的统计参数。]

结构可靠度设计原理与应用

华中科技大学研究生课程考试答题本 考生姓名 考生学号 系、年级结构工程硕1401班 类别学术型 考试科目结构可靠度设计原理与应用 考试日期 2015年1月20日

评分 题号得分题号得分 总分:评卷人: 注:1、无评卷人签名试卷无效。 2、必须用钢笔或圆珠笔阅卷,使用红色。用铅笔阅卷无效。

中心点法 1.如图所示圆截面直杆,承受拉力120P kN =,已知材料的强度设计值y f 的均 值310y f a MP μ=,标准差25y f a MP σ=,杆直径d 的均值30d mm μ=,标准差3d mm σ=,在功能函数为:1)()2/4Z d r P π=-; 2) ()24/Z r P d π=-,在这两种情况下,试用中心点法求其可靠度指标和可靠度。 (5分) P d 解:(1)clear all;clc; mufy=310;sigmafy=25;mud=30;sigmad=3;P=120000; syms fy d; %定义符号变量fy 和d Z=(pi*d^2/4)*fy-P; %定义目标函数 pdfy=diff(Z,fy,1); %Z 对fy 求一阶偏导 pdd=diff(Z,d,1); %Z 对d 求一阶偏导 fy=mufy;d=mud; %将均值赋给fy 和d a=subs(pdfy); %求在均值点处的偏导数 b=subs(pdd); c=subs(Z); %求功能函数在均值点的值 muZ=c; sigmaZ=(a^2*sigmafy^2+b^2*sigmad^2)^(1/2); beta=muZ/sigmaZ %求得beta=2.0977 Pr=1-normcdf(-beta) %求得可靠概率Pr=0.9820

结构可靠性设计基础复习题

一﹑单项选择题 1.我国现行规中一般建筑物的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 2.对普通房屋和构筑物,《建筑结构可靠度设计统一标准》给出的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 3.对临时性结构,《建筑结构可靠度设计统一标准》给出的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 4.我国现行建筑规中设计基准期为 A .10年 B 。30年 C .50年 D 。100年 5. 现行《建筑结构荷载规》规定的基本风压值的重现期为 A.30年 B.50年 C.100年 D.150年 6. 称确定可变作用及与时间有关的材料性能的取值而选用的时间参数为 A. 结构设计基准期 B. 结构设计使用年限 C. 结构使用年限 D. 结构全寿命 7.下面哪一个变量不是随机变量? A .结构构件抗力 B .荷载最大值T Q C .功能函数Z D .永久荷载标准值 8.结构可靠性是指 A .安全性 B 。适用性 C .耐久性 D 。安全性﹑适用性和耐久性的总称 9.在结构可靠度分析中,描述结构的极限状态一般用 A .功能函数 B 。极限状态方程 C .可靠度 D 。失效概率 10.裂缝超标破坏属于哪个极限状态畴. A .承载力极限状态 B. 正常使用极限状态 C. 稳定极限状态 D. 强度极限状态 11.规定时间规定条件预定功能相同时,可靠指标 越大,结构的可靠程度 A.越高 B.越低 C.不变 D.视情况而定 12. 结构的失效概率与可靠度之和 A.等于1 B.大于1 C.小于1 D.不确定 13.当功能函数服从哪一个分布时,可靠指标与失效概率具有一一对应关系。 A .正态分布 B 。均匀分布 C .极值分布 D .指数分布 14. 结构的失效概率f P 与结构抗力R 和荷载效应S 的概率密度干涉面积。

结构可靠度分析与设计的编程实践

结构可靠度分析与设计的编程实践 1033002 班 1103300223 江莹 摘 要:基于《荷载与结构设计方法》中讲授的结构可靠性分析与设计的基本原理,对课 程中所给出的例题利用Matlab 软件编制了相应的计算机程序。通过此次编程实践,加深了自己对结构可靠性分析与设计的认识了理解。 1.引言 不确定性是自然界中普遍存在的一种客观现象,工程设计中的不确定性有多种不同的形式,人们认识最早、目前得到广泛应用的是随机性,人们用概率的方法研究。结构可靠度方法则是结构可靠性设计方法中的重要一项。结构的可靠度是结构在规定时间内,规定条件下结构能够完成预定功能的概率。从简单到复杂或精确程度的不同,先后提出的可靠度计算方法有MVFOSM (一次二阶矩法)、AFOSM (改进的一次二阶矩法)、RF 、MCS (蒙特卡洛数值模拟法)等方法。本文根据《荷载与结构设计方法》中讲授的结构可靠度分析与设计的基本原理,对课程中所给出的例题利用Matlab 软件编制了相应的计算机程序。 2.结构可靠度分析的基本原理 当用概率描述结构的可靠性时,就需要根据结构中基本随机变形变量或综合随机变量的概率分布进行计算。在实际工程中,结构的功能函数往往是由多个随机变量组成的非线性函数,而且这些随机变量并不都服从正态分布或对数正态分布,因此不能直接采用相应的公式计算可靠指标,而需要作出某些近似简化后进行计算。下面本文将介绍分析结构可靠度的几种常用方法: 2.1.AFOSM 法(改进的一次二阶矩法) 1974年Hasofer 和Lind 科学地对可靠指标进行了定义,引入了验算点的概念,使得一阶二次矩模式有了进一步的发展,由于分析中要迭代求解验算点,验算点是可靠分析中的一个关键点,所以人们又将这种方法称为验算点法。 随机变量服从正态分布的情形。、 2.1.1.功能函数为线性函数 01n i i i Z a a X ==+∑ 式中: 01 ,a a (i=0,1,2,…n)为常数。 为进一步在标准正太坐标系中研究可靠指标的几何意义,按下式将随机变量 (1,2,3,,) i X i n =???变换为标准正态随机变量 (1,2,3,,) i Y i n =??? (1,2,,) i i i X i X X Y i n μσ-= =??? 则结构功能函数可由 (1,2,3,,) i Y i n =???表示为:

《工程结构荷载与可靠度分析》李国强(第四版)课后习题答案

第一章荷载类型 1、荷载与作用在概念上有何不同? 荷载:是由各种环境因素产生的直接作用在结构上的各种力。 作用:能使结构产生效应的各种因素总称。 2、说明直接作用和间接作用的区别。 将作用在结构上的力的因素称为直接作用,将不是作用力但同样引起结构效应的因素称为间接作用,如温度改变,地震,不均匀沉降等。只有直接作用才可称为荷载。 3、作用有哪些类型?请举例说明哪些是直接作用?哪些是间接作用? ①随时间的变异分类:永久作用、可变作用、偶然作用 ②随空间位置变异分类:固定作用、可动作用 ③按结构的反应分类:静态作用、动态作用。 4、什么是效应?是不是只有直接作用才能产生效应? 效应:作用在结构上的荷载会使结构产生内力、变形等。不是。 第二章重力 1、结构自重如何计算? 将结构人为地划分为许多容易计算的基本构件,先计算基本构件的重量,然后叠加即得到结构总自重。 2、土的重度与有效重度有何区别?成层土的自重应力如何计算? 土的天然重度即单位体积中土颗粒所受的重力。如果土层位于地下水位以下,由于受到水的浮力作用,单位体积中,土颗粒所受的重力扣除浮力后的重度称为土的有效重度。3、何谓基本雪压?影响基本雪压的主要因素有哪些? 基本雪压是指当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。 主要因素:雪深、雪重度、海拔高度、基本雪压的统计。 4、说明影响屋面雪压的主要因素及原因。 主要因素:风的漂积作用、屋面坡度对积雪的影响(一般随坡度的增加而减小,原因是风的作用和雪滑移)、屋面温度(屋面散发的热量使部分积雪融化,同时也使雪滑移更易发生)。 5、说明车列荷载与车道荷载的区别。 车列荷载考虑车的尺寸及车的排列方式,以集中荷载的形式作用于车轴位置; 车道荷载则不考虑车的尺寸及车的排列,将车道荷载等效为均布荷载和一个可作用于任意位置的集中荷载形式。 第三章侧压力 1.什么是土的侧压力?其大小与分布规律与哪些因素有关? 土的侧向压力是指挡土墙后的填土因自重或外荷载作用对墙背产生的土压力。 受到墙体可能的移动方向、墙后填土的性质、填土面的形式、墙的截面刚度和地基的变形等一系列因素的影响。 2.土压力如何分类?分为几类?举例说明。 根据挡土墙的位移情况和墙后土体所处的应力状态,土压力可分为静止土压力、主动土压力和被动土压力。 3.朗肯土压力的基本假设:(1)对象为弹性半空间土体;(2)不考虑挡土墙及回填土的施工因素;(3)挡土墙墙背竖直、光滑,填土面水平,无超载。

相关文档
相关文档 最新文档