文档库 最新最全的文档下载
当前位置:文档库 › 第一章土的物理性质与工程分类-第一章土的物理性质及工程分

第一章土的物理性质与工程分类-第一章土的物理性质及工程分

第一章土的物理性质与工程分类-第一章土的物理性质及工程分
第一章土的物理性质与工程分类-第一章土的物理性质及工程分

第一章土的物理性质及工程分类

第一节土的组成与结构

一、土的组成

天然状态下的土的组成(一般分为三相)

⑴固相:土颗粒--构成土的骨架,决定土的性质--大小、形状、成分、组成、排列

⑵液相:水和溶解于水中物质

⑶气相:空气及其他气体

(1)干土=固体+气体(二相)

(2)湿土=固体+液体+气体(三相)

(3)饱和土=固体+液体(二相)

二、土的固相——矿物颗粒

土粒粒径大小及矿物成分不同,对土的物理力学性质有着较大影响。如当土粒粒径由粗变细时,土的性质可从无粘性变化到有粘性。

(一)土的粒组划分

工程上将物理力学性质较为接近的土粒划分为一个粒组,粒组与粒组之间的分界尺寸称为界限粒径。土颗粒根据粒组范围划分不同的粒组名称:

六大粒组:块石(漂石)、碎石(卵石)、角粒(圆粒)、砂粒、粉粒、粘粒

界限粒径分别是:200mm、20mm、2mm、0.075mm、0.005mm,见下表。

表1-1 粒组划分标准(GB 50021—94)

(二)土的颗粒级配

自然界的土通常由大小不同的土粒组成,土中各个粒组重量(或质量)的相对含量百分比称为颗粒级配,土的颗粒级配曲线可通过土的颗粒分析试验测定。

1.颗粒大小分析试验

方法(1)筛分法:适用60—0.075mm的粗粒土

(2)密度计法:适用小于0.075mm的细粒土

2.颗粒级配曲线——半对数坐标系

3.级配良好与否的判别

1)定性判别(1)坡度渐变——大小连续——连续级配

(级配曲线)(2)水平段(台阶)——缺乏某些粒径——不连续级配

(1)曲线形状平缓——粒径变化范围大——不均匀——良好

(2) 曲线形状较陡——变化范围小——均匀——不良 2) 定量判别:不均匀系数 10

60

d d C u =

103060d d d 分别表示级配曲线上纵坐标为60% 30% 10%时对应粒径 不均匀系数越大,土粒越不均匀,工程上把5u C 大于的土看作是不均匀的,级配良好。

(三)土的矿物成分和土中的有机质

土中矿物成分可分为原生矿物和次生矿物两大类。

1.原生矿物——岩石经物理风化作用而成的颗粒(化学成分无变化),成分与母岩相同。原生矿物性质稳定。块石、碎石、角粒矿物成分与原生矿物相同,砂粒是原生矿物的单矿物颗粒,如:石英、长石——砾石、砂的主要矿物成分——性质稳定、强度高

云母——薄片状——强度低、压缩性大、易变形

粉粒的矿物成分是多样的主要有原生矿物的石英,次生矿物的难溶盐类

2.次生矿物——原生矿物经化学风化作用而成的新矿物(化学成分变化)。如三氧化二铝、三氧化二铁、次生二氧化硅及各种粘土矿物。粘粒几乎都是次生矿物的粘土矿物、氧化物、难溶盐及腐植质。

粘土矿物——亲水性、粘聚性、可塑性、膨胀性、收缩性。粘土矿物分为: ①高岭石(土):遇水后膨胀性与可塑性较小,颗粒相对较大——亲水性较弱,晶体结构较稳定。

②伊利石(土):性质介于高岭土与蒙脱土之间,接近蒙脱土。 ③蒙脱石(土):遇水后膨胀性与可塑性极大,透水性小,多个晶体层——结构不稳定、颗粒最小、亲水性。 水溶盐①难溶:CaCO 3

②中溶:石膏 CaSO 4.2H 2O

③易溶:NaCl kCl CaCl 2 K Na 的 SO 42- CO 32-

3.土中的有机质——亲水性强,压缩性大,强度低 三、土中水

土中水分为结合水和自由水两大类。

1.结合水:是吸附在土粒表面的结合水膜。土粒表面带负电荷,吸附电场范围内的水分子及水分子中的阳离子,越靠近土粒表面吸附作用越强,结合水从内向外可分为固定层和扩散层。

强结合水:处于固定层中,性质接近于固体,不能传递水压,具有极大的粘滞性、弹

性和抗剪强度;

弱结合水:处于扩散层中,性质呈粘滞体状态,在压力作用下可以挤压变形。弱结合水对粘性土的物理力学性质影响极大,而砂土因表面较小,可认为不含弱结合水。

2.自由水:土粒结合水膜之外的水。

重力水:只受重力作用而自由流动的水,能传递水压力和产生浮力作用,一般存在于地下水位以下的透水土层中。

毛细水:土孔隙中受到表面张力作用而存在的自由水,一般存在于地下水位以上的透水土层中,由于表面张力作用,毛细水在土粒之间形成环状弯液面,弯液面与土粒接触处的表面张力反作用于土粒,形成毛细压力,使土粒挤紧,土粒间的孔隙是连通的,形成无数不规则的毛细管,在表面张力作用下,地下水沿着毛细管上升,因此工程中要注意地基土的湿润和冻胀,同时应注意建筑物的防潮。

四、土中气体

粗粒土中气体常与大气相通,土受压时可很快逸出,对土的性质影响不大

细粒土中气体常与大气隔绝而成封闭气泡,不宜逸出,因此增大了土的弹性和压缩性,同时降低了土的透水性。

淤泥等含有有机质的土中,由于微生物的活动,在土中分解产生了一些可燃气体,如甲烷、硫化氢等,使土层在自重作用下不易压密而形成高压缩性的软土层。

五、土的结构

1.定义:土粒或土粒集合体的大小、形状、相互排列与连结等综合特征,称为土的结构。

2.分类:(1)单粒结构:由较粗大的土粒(如碎石、砂粒等)组成,土粒间分子引力远小于土粒自重,土粒之间几乎没有相互联结作用。土粒排列有疏松及密实两种状态。密实状态时土的强度大,压缩性小,是良好的天然地基;疏松状态时空隙较大,土粒不稳定,不宜直接用作地基。

(2)蜂窝结构:由粉粒串联而成,土粒间分子引力大于土粒自重,土粒下沉时停止在接触面而形成串联结构。

(3)絮状结构:粘粒集合体串联而成。

具有蜂窝结构和絮状结构(合称为海面结构)的土,其土粒间有较大的孔隙,结构不稳定,当天然结构被破坏后,土的压缩性增大而强度降低,故也称为有结构性土。

土的结构形成以后,当外界条件变化时,土的结构会发生变化。例如,土层在上覆土层作用下压密固结时,结构会趋于更紧密的排列;卸载时土体的膨胀(如钻探取土时土样的膨胀或基坑开挖时基底的隆起)会松动土的结构;当土层失水干缩或介质变化时,盐类结晶胶结能增强土粒间的联结;在外力作用下(如施工时对土的扰动或剪应力的长期作用)会弱化土的结构,破坏土粒原来的排列方式和土粒间的联结,使絮状结构变为平行的重塑结构,降低土的强度,增大压缩性。因此,在取土试验或施工过程中都必须尽量减少对土的扰动,避免破坏土的原状结构。

第二节 土的物理性质指标

土的性质:(1)土三相组成中各项性质 (2)三相之间量的比例关系

工程中常用土的物理性质指标作为评价土体工程性质优劣的基本指标。 一、 土的三相图

土的颗粒,水,气体混杂在一起,为分析问题方便常理想地将三相分别集中。

二、土的物理性质指标

(1)实测指标(基本指标):γ ρ W ds 试验得出

(2)换算指标:据实测指标经换算得出ρd γsat γ′ e n Sr (一)实测指标

1.天然土的重力密度γ和质量密度ρ

①物理意义:单位体积天然土的重力,称为重力密度,简称重度(kN/m 3

单位体积天然土的质量,称为质量密度,简称密度(kg/m 3或t/m 3

) ②表达式: v v γw v w w v w w w s w s +=+==γ ; v

m =ρ g mg ργ===

v

v w 水的重度3/8.9m kN w =γ,土的重度一般在3

/20~16m kN

2.土粒相对密度ds

(1) 物理意义:土粒在105℃~110℃温度下烘至恒重时的质量与同体积4℃时纯水的

质量之比。 (2) 表达式: w

s s w s s w s w s s v w

V m w w m m d γρ====

(3) 测定方法:用比重瓶测定,一般土粒相对密度在2.6~2.8之间。 (4) 说明:①ds 无量纲

②ds 值大小取决于土粒矿物成分和有机质含量。 ③有机质含量多时,相对密度明显减小。

3土的含水量ω

(1) 物理意义:土中水的质量与土粒质量之比。(%)

(2) 表达式:

(3) 测定方法:烘干法。(现场核子密度仪) (二)换算指标:

1. 几种不同状态下的土的密度和重度。 (1) 干密度ρd 和干重度γd

① 物理意义:单位体积土中土粒的质量。

②表达式: V m s d =

ρ , V

w s d =γ ③工程应用:在填方工程中常被作为填土设计和施工质量控制的指标。

(2)密度:ρsat 饱和重度 γsat

①物理意义:土在饱和状态时,单位体积土的质量。

②表达式:V

V m V m m V w s w s sat

ρρ+=+=/

(3)浮重度(有效重度)γ/

①物理意义:土在水下,土体受水的浮力作用时,单位体积的有效重量。

②表达式: V

V W w

s s sat γγ-=

2.孔隙率 与孔隙比

(1)土的孔隙率:物理意义:土体中的孔隙体积与总体积之比。

表达式: %100?=

V

V n V

(2)孔隙比:物理意义:土体中的孔隙体积与土颗粒体积之比。

表达式:s

V

V V e =

说明:①n:恒〈100%

e:可〉1 一般 I.砂土:e=0.4---0.8 II.粘土:0.6---1.5 III.有机质

②e 和n 是反映土的密实程度的指标。

3.饱和度:Sr

物理意义:指土中水的体积与孔隙体积之比,用百分数表示。

表达式: %100?=

v

w

r V V S 工程应用:按饱和度Sr 大小砂土分为:

①Sr 50%稍湿 ②50%80%饱和

三.土的物理性质指标间的换算

e

d S s

r ω=

ω

γ

γ+=

1w ; 1)

1(1)

1(-+=

-+=

γ

ωγρ

ωρw s w s d d e

1

+=

e e n ; w d sat n γγγ+=; w sat γγγ-=/

表1-2 土的三相比例指标换算公式

名称

符号

三相比例表达式

常用换算公式

单位 常见的数值比例

土粒

相对密度

d s

粘性土

2.72~2.76

砂 土2.70~2.71

粉土

2.65~2.69 含水量w20%~60% 密度ρ g/cm3 1.6~2.0 g/cm3干密度ρd g/cm3 1.3~1.8 g/cm3饱和密度ρsat g/cm3 1.8~2.3 g/cm3有效密度ρ' g/cm3 0.8~1.3 g/cm3重度γ

kN/m

3

16~20 kN/m3干重度γd

kN/m

3

13~18 kN/m3饱和重度γsat

kN/m

3

18~23 kN/m3

有效重度γ'

kN/m

3

8~13 kN/m3

孔隙比e

粘性土和粉土:

0.40~1.20

砂土:25~45 孔隙率n砂土:0.30~0.90 饱和度S r0~100%

四、例题:见课本。

例题1-1 已知土的试验指标为γ =18 kN/m3

ρ=2.7 g/cm3 和w=12%,求e,S r 和

γ

d

【解】设土的体积等于1,则土的重力W=γV=18kN。

已知土粒的重力W s与水的重力W w之和等于土的重力W,即W=W s+W w。水的重力W w与土的重力W s之比等于含水量w,则W w=w×W s=0.12 W s,由此求得土粒的重力W s=15 kN。土粒体积V S可由土粒的密度ρs和土粒的重力W s求得,其值为0.55

m3,孔隙的体积V v则为0.45 m3,水的体积V w由水的重度 γw和水的重力W w求得,其值为0.18 m3。

根据三相指标定义可计算孔隙比e,饱和度S r和干重度 γ d的数值:

在实际工程计算中一般是先导出相应的换算公式,然后直接用换算公式计算。

思考:

1、颗粒级配曲线反映的是什么?级配良好有什么意义?如何判别级配是否良好?

2、工程中是否可以以其他指标作为实测指标?

3、各物理性质指标在工程中有何作用?

*三相指标测定

(1)土的密度试验

土的密度一般用“环刀法”测定,使用一个圆环(刀刃向下)放在削平的原状土样面上,徐徐削去环刀外围的土,边削边压,使土样压满环刀内,称得环刀内土样质量,求出它与环刀容积之比值即为其密度。详细的试验步骤请查阅土性指标试验中的环刀法密度试验内容。

(2)土的含水量试验

土的含水量一般用“烘干法”测定,先称取小块原状土样的湿土质量m,然后置于烘箱内维持100~105 ℃烘至恒重,再称出干土质量m s,湿土与干土质量之差为土块中水的质量m w,而土的含水量为

详细的试验步骤请查阅土性指标试验中的含水量试验内容。

(3)土粒相对密度试验

土粒密度试验一般是采用比重瓶法测定土粒的相对密度,通过测定干土质量和瓶、水总质量以及瓶、水、试样总质量和悬液温度,由下式计算土粒的相对密度d s 详细的试验步骤请查阅土性指标试验中的比重瓶法比重试验内容

第三节土的物理状态指标

定义:土的物理状态:天然状态下,土所表现出的干湿、软硬、松密等。

一、无粘性土的状态

无粘性土的密实状态对工程性质影响很大:密实:强度高、稳定、压缩性小

疏松:不稳定、易产生流砂

碎石土的密实度根据野外鉴别方法确定,分为密实、中密、稍密三种状态。

砂土的密实度对其工程性质具有重要的影响。密实的砂土具有较高的强度和较低的压缩性,是良好的建筑物地基;但松散的砂土,尤其是饱和的松散砂土,不仅强度低,且水稳定性很差,容易产生流砂、液化等工程事故。对砂土评价的主要问题是正确地划分其密实度。

(一)孔隙比判别

级配相同的砂孔隙比愈小,表明愈密实

孔隙比愈大,表明土愈疏松

砂土的密实程度不完全取决于孔隙比,而在很大程度上还取决于土的级配情况。粒径级配不同的砂土即使具有相同的孔隙比,但由于颗粒大小不同,颗粒排列不同,所处的密实状态也会不同。为了同时考虑孔隙比和级配的影响,引入砂土相对密实度的概念。(二)相对密实度判别

当砂土处于最密实状态时,其孔隙比称为最小孔隙比;而砂土处于最疏松状态时的孔隙比则称为最大孔隙比。有关试验标准中规定了一定的方法测定砂土的最小孔隙比和最大孔隙比,然后可按下式计算砂土的相对密实度:

结论:Dr愈大,土愈密实

Dr=0时,土处于最疏松状态

Dr=1时,土处于最紧密状态

从上式可以看出,当砂土的天然孔隙比接近于最小孔隙比时,相对密实度D r接近于1,表明砂土接近于最密实的状态;而当天然孔隙比接近于最大孔隙比时则表明砂土处于最松散的状态,其相对密实度接近于0。根据砂土的相对密实度可以按表1-3将砂土划分为密实、中密、和松散三种密实度。

表1-3 砂土密实度划分标准

工程应用:

(三)标准贯入试验判别

方法:用标准贯入试验锤击数N63..5来划分。见表1-4。

表1-4 砂土密实度划分

二、粘性土的状态

(一)粘性土的稠度状态

概念:稠度:指粘性土的某一含水率时的稀稠程度或软硬程度

随着含水量的改变,粘性土将经历不同的物理状态。当含水量很大时,土是一种粘滞流动的液体即泥浆,称为流动状态;随着含水量逐渐减少,粘滞流动的特点渐渐消失而显示出塑性(所谓塑性就是指可以塑成任何形状而不发生裂缝,并在外力解除以后能保持已有的形状而不恢复原状的性质),称为可塑状态;当含水量继续减少时,则发现土的可塑性逐渐消失,从可塑状态变为半固体状态。如果同时测定含水量减少过程中的体积变化,则可发现土的体积随着含水量的减少而减小,但当含水量很小的时候,土的体积却不再随含水量的减少而减小了,这种状态称为固体状态。

(二)界限含水量

(1)液限:流动状态过渡到可塑状态分界含水量

(2)塑限:可塑状态下的下限含水量

(3)缩限:由半固态转变为固态时的界限含水量

粘性土从一种状态变到另一种状态的含水量分界点称为界限含水量。流动状态与可塑状态间的分界含水量称为液限w L;可塑状态与半固体状态间的分界含水量称为塑限

w p;半固体状态与固体状态间的分界含水量称为缩限w s。

塑限w p是用搓条法测定的。把塑性状态的土在毛玻璃板上用手搓条,在缓慢的、单方向的搓动过程中土膏内的水分渐渐蒸发,如搓到土条的直径为3 mm左右时断裂为若干段,则此时的含水量即为塑限w p。详细的试验操作步骤请查阅滚搓法塑限试验的内容。

液限w L可采用平衡锥式液限仪测定。平衡锥重为76 g,锥角为30o。试验时使平衡锥在自重作用下沉入土中,当15 s内正好沉入深度10 mm时的含水量即为液限w L。

目前在液限与塑限的测定中还有根据平衡圆锥沉入深度与液限、塑限的对应关系而采取的液限塑限联合测定法,其试验操作步骤请查阅液限塑限联合测定法的内容

(三)塑性指数和液性指数

(1)塑性指数

可塑性是粘性土区别于砂土的重要特征。可塑性的大小用土处在塑性状态的含水量变化范围来衡量,从液限到塑限含水量的变化范围愈大,土的可塑性愈好。这个范围称为塑性指数I P:, 17≥I P>10为粉质粘土,I P>17为粘土塑性指数习惯上用不带%的数值表示。塑性指数是粘土的最基本、最重要的物理指标之一,它综合地反映了粘土的物质组成,广泛应用于土的分类和评价。

(2)液性指数

液性指数I L是表示天然含水量与界限含水量相对关系的指标,其表达式为:

可塑状态的土的液性指数在0到l之间,液性指数越大,表示土越软;液性指数大于1的土处于流动状态;小于0的土则处于固体状态或半固体状态。

粘性土的状态可根据液性指数I L分为坚硬、硬塑、可塑、软塑和流塑,见表1-5示。

表1-5 按塑性指数值确定粘性土状态

I L值I L≤00

状态坚硬硬塑可塑软塑流塑

【例题1-2】已知粘性土的密度ρ=27.5g/cm3,液限为40%,塑限为22%,饱和度为0.98,孔隙比为1.15,试计算塑性指数、液性指数及确定粘性土的状态。

【解】根据液限和塑限可以求得塑性指数为18,土的含水量及液性指数可由下式求得

I L>l,故此粘性土为流塑状态。

三、粉土的特征

塑性指数I P≤10,且粒径大于0.075mm的颗粒含量不超过全重的50%的土称为粉土,介于粘性土和砂土之间,明显不同于粘土和砂土。粉土的毛细现象活跃,可呈现假塑性;力学性能指标不同于粘性土;土易被振动液化,且难以压实,也不宜用石灰加固,沉桩较困难。

四、土的工程分类

1. 土的工程分类原则

土的工程分类是把不同的土分别安排到各个具有相近性质的组合中去,其目的是为了人们有可能根据同类土已知的性质去评价其工程特性,或为工程师提供一个可供采用的描述与评价土的方法。通常对建筑地基可分成岩石、碎石土、砂土、粉土、粘性土五大类。

2. 土的工程分类方法

(1)岩石的分类

岩石(基岩)是指颗粒间牢固联结,形成整体或具有节理、裂隙的岩体。它作为建筑场地和建筑地基可按下列原则分类:

1)按成因分为岩浆岩、沉积岩和变质岩。

2)根据坚固性即未风化岩石的饱和单轴极限抗压强度q分为硬质岩石(q≥30 MPa)和软质岩石(q<30 MPa)。

3)根据风化程度分为微风化、中等风化和强风化。

4)按软化系数K R分为软化岩石和不软化岩石。K R为饱和状态与风干状态的岩石单轴极限抗压强度之比,K R<0.75为软化岩石,K R>0.75为不软化岩石。

(2)碎石土

碎石土是指粒径大于2 mm的颗粒含量超过总质量的50%的土,按粒径和颗粒形状可进一步划分为漂石、块石、卵石、碎石、圆砾和角砾,具体划分见表1-5。

表1-5 碎石土的分类(GBJ 7-89)

碎石土的密实度一般用定性的方法由野外描述确定,卵石的密实度可按超重型动力触探的锤击数划分。

(3)砂土

砂土是指粒径大于2 mm的颗粒含量不超过总质量的50%且粒径大于0.075 mm的颗粒含量超过总质量的50%的土。砂土可再划分为5个亚类,即砾砂、粗砂、中砂、细砂和粉砂,具体划分见表1-6。

表1-6 砂土的分类(GBJ 7-89)

土的名称粒组含量

砾砂粒径大于2 mm的颗粒超过全重25%~50%

粗砂粒径大于0.5 mm的颗粒超过全重50%

中砂粒径大于0.25 mm的颗粒超过全重50%

细砂粒径大于0.075 mm的颗粒超过全重85%

粉砂粒径大于0.075 mm的颗粒超过全重50%

(4)粉土

粉土是指粒径大于0.075 mm的颗粒含量不超过总质量的50%,且塑性指数I p 小于或等于10的土。粉土是介于砂土和粘性土之间的过渡性土类,它具有砂土和粘性土的某些特征,根据粘粒含量可以将粉土再划分为砂质粉土和粘质粉土。

(5)粘性土

粘性土是指塑性指数大于10的土。根据塑性指数大小,粘性土可再划分为粉质粘土和粘土两个亚类,当1017 时为粘土。

【例题1-3】完全饱和的土样含水量为30%,液限为29%,塑限为17%,试按塑性指数分类法定名,并确定其状态。

【解】求塑性指数I P:

求液性指数I L:

根据定名标准该土样应为粉质粘土,其状态为流塑状态。

01第一章 土的物理性质及工程分类

兰州交通大学博文学院教案 课题: 第一章土的物理性质及工程分类 一、教学目的:1.了解土的生成和工程力学性质及其变化规律; 2.掌握土的物理性质指标的测定方法和指标间的相互转换; 3.熟悉土的抗渗性与工程分类。 二、教学重点:土的组成、土的物理性质指标、物理状态指标。 三、教学难点:指标间的相互转换及应用。 四、教学时数: 6 学时。 五、习题:

第一章土的物理性质及工程分类 一、土的生成与特性 1.土的生成 工程领域土的概念:土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物,土与岩石的区分仅在于颗粒胶结的强弱,土和石没有明显区分。 土的生成:岩石在各种风化作用下形成的固体矿物、流体水、气体混合物。 不同风化形成不同性质的土,有下列三种: (1)物理风化:只改变颗粒大小,不改变矿物成分。由物理风化生成土为粗粒土(如块碎石、砾石、砂土),为无粘性土。 (2)化学风化:矿物发生改变,生成新成分—次生矿物。由化学风化生成土为细粒土,具有粘结力(粘土和粘质粉土),为粘性土。 (3)生物风化:动植物与人类活动对岩体的破坏。矿物成分没有变化。 2.土的结构和构造 (1)土的结构 定义:土颗粒间的相互排列和联结形式称为土的结构。 1)种类: ●单粒结构:每一个颗粒在自重作用下单独下沉并达到稳态。 ●蜂窝结构:单个下沉,碰到已下沉的土颗粒,因土粒间分子引力大于重力不再下沉,形成大孔隙蜂窝状结构。 ●絮状结构:微粒极细的粘土颗粒在水中长期悬浮,相互碰撞吸引形成小链环状土集粒。小链之间相互吸引,形成大链环,称絮状结构。 图1.1 土的结构 3)工程性质: 密实的单粒结构工程性质最好,蜂窝结构与絮状结构如被扰动破坏天然结构,则强度低、压缩性高,不可用做天然地基。

常见土的种类及性质

四、无黏性土的物理性质 无黏性土主要是指砂土和碎石土,其工程性质与其密实度密切相关。密实度越大,土的强度越大。因此,密实度是反映无黏性土工程性质的主要指标。 评判无黏性土的密实度有以下方法:1、根据相对密实度 Dr (大小位于0~1 之间)判别: 密实( 1 ≥Dr≥0 . 67 );中密( 0 . 67≥Dr≥0 . 33 );松散( 0 . 33 ≥ Dr ≥0 )。该法适用于透水性好的无黏性土,如纯砂、纯砾。 2、根据天然孔隙比e判别: e越小,土越密实。一般,e< 0 . 6 时属密实,e> 1 . 0 时属疏松。该法适用于砂土,但不能考虑矿物成分、级配等对密实度的影响。 3、根据原位标准贯入试验判别: 密( N > 30 )、中密( 15 ≤N≤ 30 )、稍密( 10≤N≤15 )、松散( N≤10 ) 原位标准贯入试验:在土层钻孔中,利用重63.5kg的锤击贯入器,根据每贯入30cm所

需锤击数来判断土的性质,估算土层强度的一种动力触探试验。 4、根据野外方法鉴别(针对碎石类土) 肉眼观察、挖、钻等。 五、黏性土的物理性质 黏性土的特性主要是由于黏粒与水之间的相互作用产生,因此含水量是决定因素。黏性土的含水量对其物理状态和工程性质有重要影响。 液限(ωL, Liqud Limit ):土由可塑状态变到流动状态的界限含水量;土处于可塑状态的最大含水量,稍大即流态; 塑限(ωP, Plastic Limit ):土由半固态变为可塑状态的界限含水量;土处于可塑状态的最小含水量,稍小即半固态; 缩限(ωS , Shrinkage Limit ):土由固态变为半固态的界限含水量;土处于半固态的最小含水量,稍小即为固态。 塑性指数IP ―表示土处于可塑状态的含水量变化范围。 IP 越大,土处于可塑状态的含水量范围也越大。

土的物理性质指标

第一章 土的物理性质及工程分类 第一节 土的组成与结构 一、 土的组成 天然状态下的土的组成(一般分为三相) ⑴ 固相:土颗粒—构成土的骨架决定 土的性质—大小 、形状、 成分、组成、排列 ⑵ 液相:水和溶解于水中物质 ⑶ 气相:空气及其他气体 (1)干土=固体+气体(二相) (2)湿土=固体+液体+气体(三相) (3)饱和土=固体+液体(二相) 二、土的固相 (一)、土的矿物成分和土中的有机质。 土粒的矿物成分不同、粗细不同、形状不同、土的性质也不同 矿物成分取决于(1)成土母岩的成分 (2)所经受的风化作用①物理风化——原生矿物(化学成分无变化) ②化学风化——次生胯矿物(化学成分变化) 次生矿物(1)三大黏土矿物①高岭石(土) ②伊利石(土) ③蒙脱石(土) (2)水溶盐①难溶:CaCO 3 ②中溶:石膏 CaSO4.2H2O ③易溶:NaCl kcl CaCl2 K Na 的 SoO42- CO 3 2- 2.各粒组中所含的主要矿物成分 土颗粒据粒组范围划分不同的粒组名称 石英、长石——砾石、砂的主要矿物成分——性质稳定、强度高 云母——薄片状——强度低、压缩性大、易变形 粘土矿物——亲水性、粘聚性、可塑性、膨胀性、收缩性 (1) 蒙脱石——透水性小多个晶体层——结构不稳定、颗粒最小、亲水性 (2) 伊利石——介于两者之间,较接近蒙脱石 (3) 高岭石——颗粒相对较大——亲水性较弱晶体结构较稳定 ρd 粘土中的水溶盐 3.土中的有机质——亲水性强,压缩性大,强度低 (二)土的粒组划分 (三)土的颗粒级配 1. 颗粒大小分析试验——颗分试验 方法(1)筛分法:适用60—0.075mm 的粗粒土 (2)密度计法:适用小于0.075mm 的细粒土 2. 颗粒级配曲线——半对数坐标系 3. 级配良好与否的判别 (一) 定性判别(1)坡度渐变——大小连续——连续级配 (级配曲线)(2)水平段(台阶)——缺乏某些粒径——不连续级配 (4) 曲线形状平缓——粒径变化范围大——不均匀——良好 (5) 曲线形状较陡——变化范围小——均匀——不良 (二) 定量判别 (1)不均匀系数 10 60d d C u

01第一章土的物理性质与工程分类

课题: 第一章土的物理性质及工程分类 一、教学目的:1.了解土的生成和工程力学性质及其变化规律; 2.掌握土的物理性质指标的测定方法和指标间的相互转换; 3.熟悉土的抗渗性与工程分类。 二、教学重点:土的组成、土的物理性质指标、物理状态指标。 三、教学难点:指标间的相互转换及应用。 四、教学时数: 6 学时。 五、习题:

第一章土的物理性质及工程分类 一、土的生成与特性 1.土的生成 工程领域土的概念:土是指覆盖在地表的没有胶结和弱胶结的颗粒堆积物,土与岩石的区分仅在于颗粒胶结的强弱,土和石没有明显区分。 土的生成:岩石在各种风化作用下形成的固体矿物、流体水、气体混合物。 不同风化形成不同性质的土,有下列三种: (1)物理风化:只改变颗粒大小,不改变矿物成分。由物理风化生成土为粗粒土(如块碎石、砾石、砂土),为无粘性土。 (2)化学风化:矿物发生改变,生成新成分—次生矿物。由化学风化生成土为细粒土,具有粘结力(粘土和粘质粉土),为粘性土。 (3)生物风化:动植物与人类活动对岩体的破坏。矿物成分没有变化。 2.土的结构和构造 (1)土的结构 定义:土颗粒间的相互排列和联结形式称为土的结构。 1)种类: ●单粒结构:每一个颗粒在自重作用下单独下沉并达到稳态。 ●蜂窝结构:单个下沉,碰到已下沉的土颗粒,因土粒间分子引力大于重力不再下沉,形成大孔隙蜂窝状结构。 ●絮状结构:微粒极细的粘土颗粒在水中长期悬浮,相互碰撞吸引形成小链环状土集粒。小链之间相互吸引,形成大链环,称絮状结构。 图1.1 土的结构 3)工程性质: 密实的单粒结构工程性质最好,蜂窝结构与絮状结构如被扰动破坏天然结构,则强度低、压缩性高,不可用做天然地基。

第一章土的物理性质及工程分类及答案

第一章土的物理性质及工程分类 一、思考题 1、土是由哪几部分组成的? 2、建筑地基土分哪几类?各类土的工程性质如何? 3、土的颗粒级配是通过土的颗粒分析试验测定的,常用的方法有哪些?如何判断土的级配情况? 4、土的试验指标有几个?它们是如何测定的?其他指标如何换算? 5、粘性土的含水率对土的工程性质影响很大,为什么?如何确定粘性土的状态? 6、无粘性土的密实度对其工程性质有重要影响,反映无粘性土密实度的指标有哪些? 二、选择题 1、土的三项基本物理性质指标是() A、孔隙比、天然含水率和饱和度 B、孔隙比、相对密度和密度 C、天然重度、天然含水率和相对密度 D、相对密度、饱和度和密度 2、砂土和碎石土的主要结构形式是() A、单粒结构 B、蜂窝结构 C、絮状结构 D、层状结构 3、对粘性土性质影响最大的是土中的( ) A、强结合水 B、弱结合水 C、自由水 D、毛细水 4、无粘性土的相对密实度愈小,土愈() A、密实 B、松散 C、居中 D、难确定 5、土的不均匀系数C u 越大,表示土的级配() A、土粒大小不均匀,级配不良 B、土粒大小均匀,级配良好 C、土粒大小不均匀,级配良好 6、若某砂土的天然孔隙比与其能达到的最大孔隙比相等,则该土() A、处于最疏松状态 B、处于中等密实状态 C、处于最密实状态 D、无法确定其状态 7、无粘性土的分类是按() A、颗粒级配 B、矿物成分 C、液性指数 D、塑性指数 8、下列哪个物理性质指标可直接通过土工试验测定() A、孔隙比 e B、孔隙率 n C、饱和度S r D、土粒比重 d s 9、在击实试验中,下面说法正确的是() A、土的干密度随着含水率的增加而增加 B、土的干密度随着含水率的增加而减少 C、土的干密度在某一含水率下达到最大值,其它含水率对应干密度都较小 10、土粒级配曲线越平缓,说明()

第一章 土的物理性质及工程分类

第一章土的物理性质及工程分类 ?选择题 1、土颗粒的大小及其级配,通常是用粒径级配曲线来表示的。级配曲线越陡表示。 (A)土粒大小较均匀,级配不好 (B)土粒大小不均匀,级配不良 (C)土粒大小不均匀,级配良好 2、土的九个三相比例指标中为实测指标。 (A)含水量、孔隙比、饱和度(B)密度、含水量、孔隙比 (C)土粒比重、含水量、密度 3、计算自重应力时,对地下水位以下的土层一般采用。 (A)天然重度(B)饱和重度(C)有效重度 4、矩形基础,短边b=2m,长边l=4m ,在长边方向作用一偏心荷载F+G=1000kN 。试问当pmin=0时,最大压应力为。 (A)120 kN/m2 (B)150 kN/m2 (C)200 kN/m2 5、地下水位突然从基础底面处上升1m时,土中的应力有何变化? (A) 没有影响(B) 应力减小(C) 应力增加 6、土的强度是特指土的。 (A)抗剪强度(B)抗压强度(C)抗拉强度 7、某土的抗剪强度指标为c、?,该土受剪时将首先沿与小主应力作用面成的面被剪破。 (A)450(B)450 +?/2 (C)450-?/2 (D)450 +? ?问答题: 1、塑性指数的定义和物理意义是什么?Ip大小与土颗粒粗细有何关系? 2、土的压实性与哪些因素有关?何谓土的最大干密度和最优含水率? 3、土的抗剪强度是怎么产生的?简述土的密度和含水量对土的内摩擦角有何影 响? 4、简述极限平衡状态的概念,并说明什么是土的极限平衡条件?

计算题: 1.一个饱和原状土样,体积为140cm3,质量为238g,土粒比重为 2.70, 求解土样的孔隙比、含水率和干密度。 2.某饱和土的天然重度为18.44kN/m3,天然含水量为36.5%,液限34%, 塑限16%。确定该土的名称。 3、某基础底面尺寸为20m×10m,其上作用有24000kN竖向荷载,计算:(1) 若为轴心荷载,求基底压力;(2)若合力偏心距ey=0,ex=0.5m,求基底压力;(3)若偏心距ex≥1.8m 时,基底压力又为多少。 4、某方形基础受中心垂直荷载作用,b=1.5m,d=2.0m,地基为坚硬粘土, γ=18.2kN/m3,c=30kPa,φ=22°,试分别按p1/4,太沙基公式确定地基的承载力(安全系数取3)。

土层的工程分类及性质

土层的工程分类及性质 一、土的工程分类 在建筑施工中,按照开挖的难易程度,土可分为八类:一类土(松软土)、二类土(普通土)、三类土(坚土)、四类土(砂砾坚土)、五类土(软石)、六类土(次坚石)、七类土(坚石)、八类土(特坚石)。一至四类为土,五至八类为岩石。 二、土的工程性质 1、土的密度 (1)土的天然密度土在天然状态下单位体积的质量,称为土的天然密度。 (2)土的干密度单位体积中土的固体颗粒的质量称为土的干密度。注:土的干密度越大,表示土越密实。工程上把土的干密度作为评定土体密实程度的标准,以控制基坑底压实及填土工程的压实质量。 2、土的含水量 土的含水量是土中水的质量与固体颗粒质量之比,以百分数表示。注:土的干湿程度用含水量表示。5%以下称干土、5%—30%称潮湿土、30%以上称湿土。含水量越大,土就越湿,对施工越不利。 3、土的可松性 自然状态下的土经开挖后,其体积因松散而增大,以后虽经回填压实,其体积仍不能恢复原状,这种性质称为土的可松性。土的可松性程度用可松性系数表示。

4、土的渗透性 土的渗透性指水流通过土中孔隙的难易程度,水在单位时间内穿透土层的能力称为渗透系数,用表示,单位为。注:土的渗透性大小取决于不同的土质。地下水的流动以及在土中的渗透速度都与土的渗透性有关。 下面来介绍一下,岩石风化。一般情况下,岩体的风化程度呈现出由表及里逐渐减弱的规律。但由于岩体中岩性并不均一,且有断裂存在,所以岩体风化的情况并不一定完全符合一般规律。岩体风化厚度一般为数米至数十米,沿断裂破碎带和易风化岩层,可形成风化较剧的岩层。断层交会处还可形成风化囊。在这两种情况下深度可超过百米。岩体风化分为:①物理风化,如气温变化使岩石胀缩导致破裂等;②化学风化,如低价铁的黄铁矿在水参与下变为高价铁的褐铁矿;③生物风化,如植物根系可使岩石的裂隙扩张等。岩体风化的速度和程度取决于岩石的性质和结构、地质构造、气候条件、地形条件、人类活动的影响等。 另外,按照岩石分化程度不同可以分为:1、未风化:岩质新鲜偶见风化痕迹。2、微风化:结构基本未变,仅节理面有渲染或略有变色,有少量风化裂隙。3、中风化:结构部分破坏,沿节理面有次生矿物,有风化裂隙发育,岩体被切割成岩块。用镐难挖,干钻不易钻进。4、强风化:结构大部分破坏,矿物成分显著变化,风化裂隙发育,岩体破碎,用镐可挖,干钻不易钻进。5、全风化:结构基本破坏,但尚可辨认,有残余结构强度,可用镐挖,干钻可钻进。6、残积土:组织结构全部破坏,已成土状,锹镐易开挖,干钻易钻进,具可塑。

第一章 土的物理性质及分类

第一章土的物理性质及分类 1—1 概述 土的定义: 土是连续,坚固的岩石在风化作用下形成的大小悬殊的颗粒,经过不同的搬运方式,在各种自然环境中生成的沉积物。 土的三相组成: 土的物质成分包括有作为土骨架的固态矿物颗粒、孔隙中的水及其溶解物质以及气体。因此,土是由颗粒(固相)、水(液相)和气(气相)所组成的三相体系。 第二节土的生成 一、地质作用的概念 地质作用--导致地壳成分变化和构造变化的作用。 根据地质作用的能量来源的不同,可分为内力地质作用和外力地质作用 内力地质作用: 由于地球自转产生的旋转能和放射性元素蜕变产生的热能等,引起地壳物质成分、内部构造以及地表形态发生变化的地质作用。如岩浆作用、地壳运动(构造运动)和变质作用。 外力地质作用: 由于太阳辐射能和地球重力位能所引起的地质作用。它包括气温变化、雨雪、山洪、河流、湖泊、海洋、冰川、风、生物等的作用。 风化作用--外力(包括大气、水、生物)对原岩发生机械破碎和化学变化的作用。 沉积岩和土的生成--原岩风化产物(碎屑物质),在雨雪水流、山洪急流、河流、湖浪、海浪、冰川或风等 外力作用下,被剥蚀,搬运到大陆低洼处或海洋底部沉积下来,在漫长的地质年代里,沉积的物质逐渐加厚,在覆盖压力和含有碳酸钙、二氧化硅、氧化铁等胶结物的作用下,使起初沉积的松软碎屑物质逐渐压密、脱水、胶结、硬化生成新的岩石,称为沉积岩。未经成岩作用所生成的所谓沉积物,也就是通常所说的“土”。 风化、剥蚀、搬运及沉积--外力地质作用过程中的风化、剥蚀、搬运及沉积,是彼此密切联系的。 二、矿物与岩石的概念 岩石--一种或多种矿物的集合体。

矿物--地壳中天然生成的自然元素或化合物,它具有一定的物理性质、化学成份和形态. (一) 造岩矿物 组成岩石的矿物称为造岩矿物。 矿物按生成条件可分为原生矿物和次生矿物两大类。 区分矿物可以矿物的形状、颜色、光泽、硬度、解理、比重等特征为依据。 (二)岩石 岩石的主要特征包括矿物成分、结构和构造三方面。 岩石的结构—岩石中矿物颗粒的结晶程度、大小和形状、及其彼此之间的组合方式。 岩石的构造--岩石中矿物的排列方式及填充方式。 岩浆岩、沉积岩、变质岩是按成因划分的三大岩类 三地质年代的概念 地质年代--地壳发展历史与地壳运动,沉积环境及生物演化相对应的时代段落。 相对地质年代--根据古生物的演化和岩层形成的顺序,所划分的地质年代。 四第四纪沉积物(层) 不同成因类型的第四纪沉积物,各具有一定的分布规律和工程地质特征,以下分别介绍其中主要的几种成因类型。 (一)残积物、坡积物和洪积物 1.残积物 残积物是残留在原地未被搬运的那 一部分原岩风化剥蚀后的产物,而 另一部分则被风和降水所带走。 2.坡积物 坡积物是雨雪水流的地质作用将高处岩石风化产物缓慢地洗刷剥蚀、顺着斜坡向下逐渐移动、沉积在较平缓的山坡上而形成的沉积物。 3.洪积物(Q”) · 由暴雨或大量融雪骤然集聚而成的暂时性山洪急流,具有很大的剥蚀和搬运能力。

土的物理性质

第一章土的物理性质 第一节土的成因和工程特性 第二节土的组成及结构构造 一、名词解释 1粒径:土粒的直径大小。 2粒组:实际工程中常按粒径大小将土粒分组,粒径在某一范围之内的分为一组。 3粒径级配:各粒组的质量占土粒总质量的百分数。 4筛分法:适用粒径大于0.075mm的土。利用一套孔径大小不同的标准筛子,将称过质量的干土过筛,充分筛选,将留在各级筛上的土粒分别称重,然后计算小于某粒径的土粒含量。 5土的结构:指土中颗粒之间的联系和相互排列形式。 6土的构造:指同一土层中成分和大小都相近的颗粒或颗粒集合体相互关系的特征。 7土的有效粒径(d10):小于某粒径的土粒质量累计百分数为10%时,相应的粒径。 二、填空题 1.平缓大好良好 2.压缩性高承载力低渗透性强 3.单粒结构蜂窝结构絮状结构4.Cu≥5且Cc=1~3 5.固液 6固,液,气 7.缺乏某些粒径——不连续级配 8.不均匀系数Cu。 9. 小 10. B,A 11.二相土三相土二相土 三、选择题 1.C 2.C 3.B 4.B 5.A 6.C 7.A 第三节土的物理性质指标 一、名词解释 1.土的含水量ω:是指土中水的质量和土粒质量之比或重力之比。 2.土的密度ρ:指单位体积土的质量。 ρ:土中孔隙完全被水充满时单位体积土的质量。 3.饱和密度 sat 4.干密度ρd:单位体积土中土粒的质量。 5.土粒相对密度 Gs: 是土粒的质量与同体积纯蒸馏水在4℃时的质量之比。 6.孔隙比e:是指土中孔隙的体积与土粒体积之比。 7.孔隙率n:是指土中孔隙的体积与土的总体积之比。 8.土的饱和度Sr:是指土中水的体积与孔隙体积之比。

第一章土的物理性质与工程分类-第一章土的物理性质及工程分

第一章土的物理性质及工程分类 第一节土的组成与结构 一、土的组成 天然状态下的土的组成(一般分为三相) ⑴固相:土颗粒--构成土的骨架,决定土的性质--大小、形状、成分、组成、排列 ⑵液相:水和溶解于水中物质 ⑶气相:空气及其他气体 (1)干土=固体+气体(二相) (2)湿土=固体+液体+气体(三相) (3)饱和土=固体+液体(二相) 二、土的固相——矿物颗粒 土粒粒径大小及矿物成分不同,对土的物理力学性质有着较大影响。如当土粒粒径由粗变细时,土的性质可从无粘性变化到有粘性。 (一)土的粒组划分 工程上将物理力学性质较为接近的土粒划分为一个粒组,粒组与粒组之间的分界尺寸称为界限粒径。土颗粒根据粒组范围划分不同的粒组名称: 六大粒组:块石(漂石)、碎石(卵石)、角粒(圆粒)、砂粒、粉粒、粘粒 界限粒径分别是:200mm、20mm、2mm、0.075mm、0.005mm,见下表。 表1-1 粒组划分标准(GB 50021—94) (二)土的颗粒级配 自然界的土通常由大小不同的土粒组成,土中各个粒组重量(或质量)的相对含量百分比称为颗粒级配,土的颗粒级配曲线可通过土的颗粒分析试验测定。 1.颗粒大小分析试验 方法(1)筛分法:适用60—0.075mm的粗粒土 (2)密度计法:适用小于0.075mm的细粒土 2.颗粒级配曲线——半对数坐标系 3.级配良好与否的判别 1)定性判别(1)坡度渐变——大小连续——连续级配 (级配曲线)(2)水平段(台阶)——缺乏某些粒径——不连续级配 (1)曲线形状平缓——粒径变化范围大——不均匀——良好

(2) 曲线形状较陡——变化范围小——均匀——不良 2) 定量判别:不均匀系数 10 60 d d C u = 103060d d d 分别表示级配曲线上纵坐标为60% 30% 10%时对应粒径 不均匀系数越大,土粒越不均匀,工程上把5u C 大于的土看作是不均匀的,级配良好。 (三)土的矿物成分和土中的有机质 土中矿物成分可分为原生矿物和次生矿物两大类。 1.原生矿物——岩石经物理风化作用而成的颗粒(化学成分无变化),成分与母岩相同。原生矿物性质稳定。块石、碎石、角粒矿物成分与原生矿物相同,砂粒是原生矿物的单矿物颗粒,如:石英、长石——砾石、砂的主要矿物成分——性质稳定、强度高 云母——薄片状——强度低、压缩性大、易变形 粉粒的矿物成分是多样的主要有原生矿物的石英,次生矿物的难溶盐类 2.次生矿物——原生矿物经化学风化作用而成的新矿物(化学成分变化)。如三氧化二铝、三氧化二铁、次生二氧化硅及各种粘土矿物。粘粒几乎都是次生矿物的粘土矿物、氧化物、难溶盐及腐植质。 粘土矿物——亲水性、粘聚性、可塑性、膨胀性、收缩性。粘土矿物分为: ①高岭石(土):遇水后膨胀性与可塑性较小,颗粒相对较大——亲水性较弱,晶体结构较稳定。 ②伊利石(土):性质介于高岭土与蒙脱土之间,接近蒙脱土。 ③蒙脱石(土):遇水后膨胀性与可塑性极大,透水性小,多个晶体层——结构不稳定、颗粒最小、亲水性。 水溶盐①难溶:CaCO 3 ②中溶:石膏 CaSO 4.2H 2O ③易溶:NaCl kCl CaCl 2 K Na 的 SO 42- CO 32- 3.土中的有机质——亲水性强,压缩性大,强度低 三、土中水 土中水分为结合水和自由水两大类。 1.结合水:是吸附在土粒表面的结合水膜。土粒表面带负电荷,吸附电场范围内的水分子及水分子中的阳离子,越靠近土粒表面吸附作用越强,结合水从内向外可分为固定层和扩散层。 强结合水:处于固定层中,性质接近于固体,不能传递水压,具有极大的粘滞性、弹

最新土的物理性质及地基土的工程分类

土的物理性质及地基土的工程分类

第二章 土的物理性质及地基土的工程分类 1. 土力学的研究对象:土 土——土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,经过不 同的搬运方式,在各种自然环境中生成的沉积物。 §2-1 土的组成 一、土的组成?? ? ??孔隙中的水液气体 气冰土颗粒 固::: 土中颗粒的大小、成分及三相之间的比例关系反映出土的不同性质,如干湿、轻重、松紧、软硬等。这就是土的物理性质。 二、土的固体颗粒 (一)土的颗粒级配 1.土颗粒的大小直接决定土的性质 2.粒径——颗粒直径大小 3.粒组——为了研究方便,将粒径大小接近、矿物成分和性质相似的土粒 归并为若干组别即称为粒组。 粒组的划分: 漂石 4.颗粒级配——土粒的大小及组成情况,通常以土中各个粒组的相对含量 来表示,称为土的颗粒级配。 颗粒级配的测室方法:——筛析法 比重计法 试验成果分析: ①颗粒级配累积曲线(半对数坐标) 见P17 图1-10 分析?? ?级配良好不均匀 粒径大小接近 曲线陡 级配良好不均匀粒径大小悬殊曲线平缓 ②不均匀系数(C u ) 1060u d /d C = ?? ?<>级配不良级配良好5 C 0C u u 式中:d 60——当小于某粒径的土粒质量累计百分数为60%时,该粒径称为 限定粒径d 60。 d 10——当小于某粒径的土粒质量累计百分数为10%时,相应的粒径称为 有效粒径d 10。

③曲率系数(C c ) 60102 30 c d d d C ?= 式中:d 30——当小于某粒径的土粒质量累计百分数为30%时的粒径用d 30 表示。 C c ——曲率系数,它描写的是累积曲线的分布范围,反映曲线的整体形 状。 C c =1~3时 级配良好 (二)土粒的矿物成分 漂石、卵石、砾石等粗大土粒的矿物成分以原生矿物为主。(与每岩相同) 砂粒的矿物成分大多为母岩中的单矿物颗粒。如石英等。 粉粒的矿物成分以粘土矿物为主。 粘土矿物由两种原子层构成,主要类型??? ??高岭石 伊利石蒙脱石 粘土矿物的特点:细小、亲水性强,吸水膨胀,脱水收缩。 二、土中的水和气 (一)土中水? ? ? ??? ???????毛细水重力水自由水弱结合水强结合水 结合水 1. 结合水 ——指受电分子吸引力吸附于土粒表面的土中水。 几万大气压 吸收力达几千极性分子水负电 土粒~? ?? -- 见P19 图1-13 (1)强结合水 ——指紧靠土粒表面的结合水。 特征:没有溶解盐类的能力,不传递静水压力,只有吸热变成蒸汽时才能移动。 物理指标:容度1.2~2.4g/cm 3 固体状态 冰点-78℃ 砂土吸 度占土粒质量1%、粘土17%。

第1章土的物理性质及工程分类

第1章土的物理性质及工程分类 1.1 土的形成 岩土体是地壳的物质组成。岩体是地壳表层圈层,经建造和改造而形成的具一定组分和结构的地质体。它赋存于一定的地质环境之中,并随着地质环境的演化和地质作用的持续,仍在不断的变化着。土体是岩石风化的产物,是一种松散的颗粒堆积物。由于岩土材料组成的复杂性,其性质在许多方面不同于其它材料,具有其特有的多变性及复杂性。以下就岩土的特性分别简述之。 1.2 土的组成 1.1.1 土的结构与特性 土是一种松散的颗粒堆积物。它是由固体颗粒、液体和气体三部份组成。土的固体颗粒一般由矿物质组成,有时含有胶结物和有机物,这一部分构成土的骨架。土的液体部分是指水和溶解于水中的矿物质。空气和其它气体构成土的气体部分。土骨架间的孔隙相互连通,被液体和气体充满。土的三相组成决定了土的物理力学性质。 1)土的固体颗粒 土骨架对土的物理力学性质起决定性的作用。分析研究土的状态,就要研究固体颗粒的状态指标,即粒径的大小及其级配、固体颗粒的矿物成分、固体颗粒的形状。 (1)固体颗粒的大小与粒径级配 土中固体颗粒的大小及其含量,决定了土的物理力学性质。颗粒的大小通常用粒径表示。实际工程中常按粒径大小分组,粒径在某一范围之内的分为一组,称为粒组。粒组不同其性质也不同。常用的粒组有:砾石粒、砂粒、粉粒、粘粒、胶粒。以砾石和砂粒为主要组成成分的土称为粗粒土。以粉粒、粘粒和胶粒为主的土,称为细粒土。土的工程分类见本章第三节。各粒组的具体划分和粒径范围见表1-1。 土中各粒组的相对含量称土的粒径级配。土粒含量的具体含义是指一个粒组中的土粒质量与干土总质量之比,一般用百分比表示。土的粒径级配直接影响土的性质,如土的密实度、土的透水性、土的强度、土的压缩性等。要确定各粒组的相对含量,需要将各粒组分离开,再分别称重。这就是工程中常用的颗粒分析方法,实验室常用的有筛分法和密度计法。 筛分法适用粒径大于0.075mm的土。利用一套孔径大小不同的标准筛子,将称过质量的干土过筛,充分筛选,将留在各级筛上的土粒分别称重,然后计算小于某粒径的土粒含量。 密度计法适用于粒径小于0.075mm的土。基本原理是颗粒在水中下沉速度与粒径的平

第三章 土的物理性质及工程分类

第三章土的物理性质及工程分类

第三章土的物理性质及工程分类 一、单项选择题 1. 土的三相比例指标包括:土粒比重、含水量、密度、 孔隙比、孔隙率和饱和度,其中为实测指标。 (A) 含水量、孔隙比、饱和度(B) 密度、含水量、孔隙比(C) 土粒比重、含水量、密度 2. 砂性土的分类依据主要是。 (A) 颗粒粒径及其级配(B) 孔隙比及其液性指数(C) 土的液限及塑限 3. 已知a和b两种土的有关数据如下: 指标 w L w p w γs S r 土样 (a) 30% 12% 15% 27 kN/m3100% (b) 9% 6% 6% 26.8 kN/m3100% Ⅰ、a土含的粘粒比b土多Ⅱ、a土的重度比b土大 Ⅲ、a土的干重度比b土大Ⅳ、a土的孔隙比比b土大 下述哪种组合说法是对的: (A) I、Ⅲ(B) Ⅱ、Ⅲ (C) Ⅰ、Ⅳ 4. 有下列三个土样,试判断哪一个是粘土:

(A) 含水量w=35%,塑限w p=22%,液性指数I L=0.9 (B) 含水量w=35%,塑限w p=22%,液性指数I L=0.85 (C) 含水量w=35%,塑限w p=22%,液性指数 I L=0.75 5. 有一个非饱和土样,在荷载作用下饱和度由80%增加至95%。试问土的重度γ和含水量w变化如何? (A) 重度γ增加,w减小(B) 重度γ不变,w不变(C) 重度γ增加,w不变 6. 有三个土样,它们的重度相同,含水量相同。则下述三种情况哪种是正确的? (A) 三个土样的孔隙比也必相同(B) 三个土样的饱和度也必相同 (C) 三个土样的干重度也必相同 7. 有一个土样,孔隙率n=50%,土粒比重G s=2.7,含水量w=37%,则该土样处于: (A) 可塑状态(B) 饱和状态 (C) 不饱和状态 8. 在下述地层中,哪一种地层容易发生流砂现象? (A) 粘土地层(B) 粉细砂地层

土的物理性质与工程分类习题解答全

二 土的物理性质与工程分类 一、填空题 1. 土是由固体颗粒、_________和_______组成的三相体。 2. 土颗粒粒径之间大小悬殊越大,颗粒级配曲线越_______,不均匀系数越______,颗粒级配越______。为了获得较大的密实度,应选择级配________的土料作为填方或砂垫层的土料。 3. 塑性指标P I =________,它表明粘性土处于_______状态时的含水量变化范围。 4. 根据___________可将粘性土划分为_________、_________、_________、________、和___________五种不同的软硬状态。 5. 反映无粘性土工程性质的主要指标是土的________,工程上常用指标________结合指标________来衡量。 6. 在土的三相指标中,可以通过试验直接测定的指标有_________、_________和________,分别可用_________法、_________法和________法测定。 7. 土的物理状态,对于无粘性土,一般指其________;而对于粘性土,则是指它的_________。 8. 土的结构是指由土粒单元的大小、形状、相互排列及其连接关系等因素形成的综合特征,一般分为_________、__________和__________三种基本类型。 9. 土的灵敏度越高,结构性越强,其受扰动后土的强度降低就越________。 10. 工程上常用不均匀系数u C 表示土的颗粒级配,一般认为,u C ______的土属级配不良,u C ______的土属级配良好。有时还需要参考__________值。 11. 土的含水量为土中_______的质量与_________的质量之比。 12. 某砂层天然饱和重度sat γ20=KN/m 3,土粒比重的68.2=s d ,并测得该砂土的最 大干密度33max 1.7110kg /m d ρ=?,最小干密度33 min 1.5410kg /m d ρ=?,则天然孔隙比e 为 ______,最大孔隙比m ax e 为______,最小孔隙比m in e 为______。 13. 岩石按风化程度划分为__________,__________,________;按其成因可分为_________,_________,_________;按坚固程度可划分为_________,_________。 14.砂土是指粒径大于______mm 的颗粒累计含量不超过总质量的______,而粒径大于______mm 的颗粒累计含量超过总质量的______的土。 15. 土由可塑状态转到流动状态的界限含水量叫做_________,可用_________测定;土由半固态转到可塑状态的界限含水量叫做________,可用___________测定。 16. 在击实试验中,压实功能越大,得到的最优含水量越______,相应得到的最大干密度越______。 17. 土按颗粒级配和塑性指数可分为________、________、________、_______四种土。 18. 土中液态水按其存在状态可分为________、__________。 19. 工程上常按塑性指数的大小把粘性土分为__________、__________两种;其相应的塑性指数范围分别为__________、__________。

第一章 土的物理性质及工程分类

第一章土的物理性质及工程分类 1.对工程会产生不利影响的土的构造为(): (A)层理构造 (B)结核构造 (C)层面构造 (D)裂隙构造 2.下列土中,最容易发生冻胀融陷现象的季节性冻土是(): (A)碎石土(B)砂土(C)粉土(D)粘土 3.吸水膨胀、失水收缩性最弱的粘土矿物是(): (A)蒙脱石 (B)伊利石 (C)高岭石 (D)方解石 4.土的三相比例指标中需通过实验直接测定的指标为(): (A)含水量、孔隙比、饱和度 (B)密度、含水量、孔隙率 (C)土粒比重、含水量、密度 (D)密度、含水量、孔隙比 5. 不能传递静水压力的土中水是(): (A)毛细水 (B)自由水 (C)重力水 (D)结合水 6. 若土的粒径级配曲线很陡,则表示()。 (A)粒径分布较均匀(B)不均匀系数较大 (C)级配良好(D)填土易于夯实 7. 不均匀系数的表达式为() (A) C u=d60/ d10(B) C u=d50/ d15 (C) C u=d60/ d15(D) C u=d50/ d10 8.当粘性土含水量减小,土体积不再减小,土样所处的状态是(): (A)固体状态 (B)可塑状态 (C)流动状态 (D)半固体状态 9. 同一土样的饱和重度γsat、干重度γd、天然重度γ、有效重度γ′大小存在的关系是():(A)γsat > γd > γ> γ′ (B)γsat > γ> γd > γ′ (C)γsat > γ> γ′> γd (D)γsat > γ′>γ> γd

10.判别粘性土软硬状态的指标是(): (A)液限 (B)塑限 (C)塑性指数 (D)液性指数 11.土的含水量w 是指(): (A)土中水的质量与土的质量之比 (B)土中水的质量与土粒质量之比 (C)土中水的体积与土粒体积之比 (D)土中水的体积与土的体积之比 12.土的饱和度Sr是指:土中水的体积与孔隙体积之比( ) (A)土中水的体积与土粒体积之比 (B)土中水的体积与土的体积之比 (C)土中水的体积与气体体积之比 (D)土中水的体积与孔隙体积之比 13.粘性土由半固态转入可塑状态的界限含水量被称为(): (A)缩限(B)塑限(C)液限(D)塑性指数

第四章 土的工程性质与分类

第四章土的工程性质与分类 名词解释 湿陷性:黄土在一定压力作用下受水浸湿,土结构迅速破坏而发生显著附加下沉,具有这种特性的黄土,称湿陷性黄土。 膨胀土:膨胀土是一种粘性土,含有较多的亲水性粘土矿物,吸水膨胀,遇水崩解或软化,失水收缩,抗冲刷性能差,这种具有较明显的胀缩性的土称为膨胀土。 冻土:温度小于等于0℃,并含有冰的土层,称为冻土。 土的结构:土颗粒本身的特点:土颗粒大小、形状和磨圆度及表面性质(粗糙度)等。土颗粒之间的相互关系特点:粒间排列及其连结性质。 构造:在一定土体中,土层单元体的形态和组合特征,整个土层(土体)构成上的不均匀性特征的总和。包括:层理、夹层、透镜体、结核、组成颗粒大小悬殊及裂隙发育程度与特征等。 思考题 土的结构类型是什么,特征是什么? 1.单粒结构(散粒结构):是碎石(卵石)、砾石类土和砂土等无黏性土的基本结构形式。 2.集合体结构:也称团聚结构或絮凝结构。这类结构为粘性土所特有。对集合体结构,根据其颗粒组成、连结特点及性状的差异性,可分为蜂窝状结构和絮状结构两种类型。 单粒结构(散粒结构)特点 1) 孔隙大,透水性强,一般没有内聚力,但内摩擦力大,并且受压力时土体积变化较小。 2) 在荷载作用下压密过程很快。 3)一般情况(静荷载作用)下可不担心强度和变形问题。 集合体结构特点: 1)孔隙度和压缩性大(可达50%~98 %). 2)含水量大(往往超过50%),渗透性差,压缩过程缓慢. 3)具有大的易变性—不稳定性。 特殊土的特征和工程地质特性是什么及如何判别? ?黄土的湿陷性是如何判别? 湿陷黄土的工程特征:1)塑性较弱;2)含水较少;3)压实程度很差,孔隙较大;4)抗水性弱,遇水强烈崩解,膨胀量较小,但失水收缩量较明显;5)透水性较强;6)压缩中等,抗剪强度较高。 根据湿陷系数的大小,可以大致判断湿陷性黄土湿陷的强弱。 ?非自重湿陷性和自重湿陷性的差别? 自重湿陷性黄土: 在上覆土自重压力下受水浸湿发生湿陷的湿陷性黄土地基; 非自重湿陷性黄土: 只有在大于上覆土自重压力下受水浸湿后才会发生湿陷的湿陷性黄土地基。 当自重湿陷量<7cm时应定为非自重湿陷性黄土。 当自重湿陷量>7cm时应定为自重湿陷性黄土 ?湿陷起始压力和湿陷起始含水量是什么? 黄土的湿陷量与所受压力有关,存在一个压力界限,压力低于这个数值,黄土浸水也不会湿陷,这个压力为湿陷起始压力。

第一章 土的物理性质指标和工程分类

第一章 土的物理性质指标和工程分类 1-1 有A 、B 两个土样,通过室内试验测得其粒径与小于该粒径的土粒质量如下表所示,试绘制出它 们的级配曲线并求出C u 和C c 值。 A 土样试验资料(总质量500g ) 粒径d (mm ) 5 2 1 0.5 0.25 0.1 0.075 小于该粒径的质量(g ) 500 460 310 185 125 75 30 B 土样试验资料(总质量30g ) 粒径d (mm ) 0.075 0.05 0.02 0.01 0.005 0.002 0.001 小于该粒径的质量(g ) 30 28.8 26.7 23.1 15.9 5.7 2.1 1-2 从地下水位以下某粘土层取出一土样做试验,测得其质量为15.3 g ,烘干后质量为10.6 g ,土粒 比重为2.70。求试样的含水率、孔隙比、孔隙率、饱和密度、浮密度、干密度及其相应的重度。 1-3 某土样的含水率为6.0%,密度为1.60 g/cm 3,土粒比重为2.70,若设孔隙比不变,为使土样完全 饱和,问100 cm 3土样中应加多少水? 1-4 有一砂土层,测得其天然密度为1.77 g/cm 3,天然含水率为9.8%,土的比重为2.70,烘干后测 得最小孔隙比为0.46,最大孔隙比为0.94,试求天然孔隙比e 、饱和含水率和相对密实度D r ,并判别该砂土层处于何种密实状态。 1-5 今有两种土,其性质指标如下表所示。试通过计算判断下列说法是否正确? 1. 土样A 的密度比土样B 的大; 2. 土样A 的干密度比土样B 的大; 3. 土样A 的孔隙比比土样B 的大; 1-6 试从基本定义证明: 1. 干密度 (1)1s w d s w G G n E ρρρ= =?+ 2. 湿密度 1s r w G S e e ρρ+=+

土的物理性质指标

土的物理性质指标 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章土的物理性质及工程分类 第一节土的组成与结构 一、土的组成 天然状态下的土的组成(一般分为三相) ⑴固相:土颗粒—构成土的骨架决定土的性质—大小、形状、成分、组成、排列 ⑵液相:水和溶解于水中物质 ⑶气相:空气及其他气体 (1)干土=固体+气体(二相) (2)湿土=固体+液体+气体(三相) (3)饱和土=固体+液体(二相) 二、土的固相 (一)、土的矿物成分和土中的有机质。 土粒的矿物成分不同、粗细不同、形状不同、土的性质也不同 矿物成分取决于(1)成土母岩的成分 (2)所经受的风化作用①物理风化——原生矿物(化学成分无变化) ②化学风化——次生胯矿物(化学成分变化)次生矿物(1)三大黏土矿物①高岭石(土) ②伊利石(土) ③蒙脱石(土) (2)水溶盐①难溶:CaCO 3 ②中溶:石膏 CaSO4.2H2O 2- ③易溶:NaCl kcl CaCl2 K Na的 SoO42- CO 3 2.各粒组中所含的主要矿物成分 土颗粒据粒组范围划分不同的粒组名称

石英、长石——砾石、砂的主要矿物成分——性质稳定、强度高 云母——薄片状——强度低、压缩性大、易变形 粘土矿物——亲水性、粘聚性、可塑性、膨胀性、收缩性 (1) 蒙脱石——透水性小多个晶体层——结构不稳定、颗粒最小、亲水性 (2) 伊利石——介于两者之间,较接近蒙脱石 (3) 高岭石——颗粒相对较大——亲水性较弱晶体结构较稳定 ρd 粘土中的水溶盐 3.土中的有机质——亲水性强,压缩性大,强度低 (二)土的粒组划分 (三)土的颗粒级配 1.颗粒大小分析试验——颗分试验 方法(1)筛分法:适用60—0.075mm 的粗粒土 (2)密度计法:适用小于0.075mm 的细粒土 2.颗粒级配曲线——半对数坐标系 3. 级配良好与否的判别 (一)定性判别(1)坡度渐变——大小连续——连续级配 (级配曲线)(2)水平段(台阶)——缺乏某些粒径——不连续级配 (4) 曲线形状平缓——粒径变化范围大——不均匀——良好 (5) 曲线形状较陡——变化范围小——均匀——不良 (二)定量判别 (1)不均匀系数 10 60d d C u = (2)曲率系数10 60230d d d C c = +图 103060d d d 分别表示级配曲线上纵坐标为60% 30% 10%时对应粒径

土的物理力学性质

第一章 土的物理性质、水理性质和力学性质 第一节 土的物理性质 土是土粒(固体相),水(液体相)和空气(气体相)三者所组成的;土的物理性质就是研究三相的质量与体积间的相互比例关系以及固、液两相相互作用表现出来的性质。 土的物理性质指标,可分为两类:一类是必须通过试验测定的,如含水量,密度和土粒比重;另一类是可以根据试验测定的指标换算的;如孔隙比,孔隙率和饱和度等。 一、土的基本物理性质 (一)土粒密度(particle density) 土粒密度是指固体颗粒的质量m s 与其体积Vs 之比;即土粒的单位体积质量: s s s V m =ρ g/cm 3 土粒密度仅与组成土粒的矿物密度有关,而与土的孔隙大小和含水多少无关。实际上是土中各种矿物密度的加权平均值。 砂土的土粒密度一般为:2.65 g/cm 3左右 粉质砂土的土粒密度一般为:2.68g/cm 3 粉质粘土的土粒密度一般为:2.68~2.72g/cm 3 粘土的土粒密度一般为:2.7-~2.75g/cm 3 土粒密度是实测指标。 (二)土的密度(soil density)

土的密度是指土的总质量m 与总体积V 之比,也即为土的单位体积 的质量。其中:V=Vs+Vv; m=m s +m w 按孔隙中充水程度不同,有天然密度,干密度,饱和密度之分。 1.天然密度(湿密度)(density) 天然状态下土的密度称天然密度,以下式表示: v s w s V V m m V m ++==ρ g/cm 3 土的密度取决于土粒的密度,孔隙体积的大小和孔隙中水的质量多少,它综合反映了土的物质组成和结构特征。 砂土一般是1.4 g/cm3 粉质砂土及粉质粘土1.4 g/cm3 粘土为1.4 g/cm3 泥炭沼泽土:1.4 g/cm3 土的密度可在室内及野外现场直接测定。室内一般采用“环刀法”测定,称得环刀内土样质量,求得环刀容积;两者之比值。 2.干密度(dry density ) 土的孔隙中完全没有水时的密度,称干密度;是指土单位体积中土粒的重量,即:固体颗粒的质量与土的总体积之比值。 V m s d =ρ g/cm 3 干密度反映了土的孔隙生,因而可用以计算土的孔隙率,它往往通过土的密度及含水率计算得来,但也可以实测。 土的干密度一般常在1.4~1.7 g/cm3

相关文档 最新文档