文档库 最新最全的文档下载
当前位置:文档库 › 数与式的运算、因式分解(教师版)

数与式的运算、因式分解(教师版)

数与式的运算、因式分解(教师版)
数与式的运算、因式分解(教师版)

数与式的运算

一、乘法公式

我们在初中已经学习过了下列一些乘法公式: ⑴平方差公式

22()()a b a b a b +-=-;

⑵完全平方公式

2

2

2

()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:

⑴立方和公式 2233()()a b a ab b a b +-+=+; ⑵立方差公式 2233()()a b a ab b a b -++=-;

⑶三数和平方公式

2222()2()a b c a b c ab bc ac ++=+++++;

⑷两数和完全立方公式 3

3

2

2

3

()33a b a a b ab b +=+++; ⑸两数差完全立方公式 3

3

2

2

3

()33a b a a b ab b -=-+- 【例1】计算:

⑴)749)(7(2

x x x +-+

⑵)1)(1)(1)(1(2

2+-+++-a a a a a a

(3)+- (4)2222

[(2)][(2)]x y x y -+++

答案:(1)3343x + (2)6

1a - (3)

a c

b +--

(4)422422

28816x x y y x y ++-++

例题的设计意图

(1)(2)两个例子让学生熟悉立方和与立方差公式 (3)(4)利用整体代换思想简化运算。

二、根式

0)a ≥叫做二次根式,其性质如下:

(1) 2(0)a a =≥

(2)

(0)||0(0)(0)a a a a a a >??

===??-

(3)

0,0)a b =≥≥

(4)

0,0)a b =>≥ 三、分式

当分式

A B 的分子、分母中至少有一个是分式时,A

B

就叫做繁分式,繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质.

【例2】化简

(1

(2)

11x

x x x x

-+

-

例题的设计意图

(1)考查根式的性质

(2)繁分式的化简,我个人比较倾向解法二,运算速度快

(1)解法一:因为

2

2

2

=+

22426==+=

0>

=解法二:

=

=

=

=

==

=

=

=

=

=

=

=

解法一:利用到a =和2a =,先计算原式的平方,然后再开方.

(2)解法一:原式

=222(1)11(1)1(1)(1)11

x x x x x x

x x x x x x x x x x x x x x x x x x x

++=====--?+-+-+

++--+ 解法二:原式=22

(1)1

(1)(1)111()x x x x x x x x x x x x x x x x x x x x x x x

++====-?-+--+++--?

说明:解法一的运算方法是从最部的分式入手,采取通分的方式逐步脱掉繁分式,

解法二则是利用分式的基本性质A A m

B B m

?=?进行化简.一般根据题目特点综合使用两

种方法.

因式分解

因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能。

因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法、求根法和分组分解法等等。

一、公式法(立方和、立方差公式)

【公式1】2

222)(222c b a ca bc ab c b a ++=+++++ 【公式2】3223333()a a b ab b a b +++=+ 【公式3】3223333()a a b ab b a b -+-=- 【公式4】

3322()()a b a b a ab b +=+-+ 【公式5】

3322()()a b a b a ab b -=-++ 【例1】把下列各式分解因式: ⑴3

3

827x y --= ; ⑵331

4()()2

x y x y --

+= ; ⑶32238365427x x y xy y -+-= ;

⑷76

x xy -= ; 【答案】(1)2

2

(23)(469)x y x xy y -+-+ (2)

221

(3)(763)2

x y x xy y --+ (3)(3)3

(23)x y -

(4)2

2

2

2

()()()()x x y x xy y x y x xy y +-+-++

二、十字相乘法

一般二次三项式2

ax bx c ++型的因式分解。大家知道,

2112212122112()()()a x c a x c a a x a c a c x c c ++=+++.反过来,就得到:2121221121122()()()

a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成

12

a a ,

常数项c 分解成12c c ,把1212,,,a a c c

写成1

122a c a c

?,这里按斜线交叉相乘,再相加,就得到

1221

a c a c +,如果它正好等于2ax bx c ++的一次项系数

b ,那么

2ax bx c ++就可以分解成

1122()()

a x c a x c ++,其中

11

,a c 位于上一行,

22

,a c 位于下一行.这种借助画十字交叉线

分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.

注意:

1、十字相乘法思路:

分解二次三项式,尝试十字相乘法。 分解二次常数项,交叉相乘做加法; 叉乘和是一次项,十字相乘分解它。

2、并非所有的二次三项式都能用十字相乘法分解

分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,

【例2】把下列各式分解因式:

⑴228x x +-=_______________ ;⑵2

76x x -+=___________ ;⑶

2576x x +-=_______________ ;(4)226x xy y +- =_____________ (5)

222

()8()12x x x x +-++=______________ 【答案】⑴228(4)(2)x x x x +-=+-;⑵2

76(1)(6)x x x x -+=--;

⑶2

576(2)(53)x x x x +-=+-;(4)(3)(2)x y x y +-(5)(3)(2)(2)(1)x x x x +-+-

【变式】用十字相乘法求下列方程的根

⑴2280x x +-= ⑵2

760x x -+=

⑶2

5760x x +-= (4)2

2

2

()8()120x x x x +-++=

【答案】(1)4,2-(2)1,6(3)3

2,5

-(4)3,2,1,2-- 【拓展】双十字相乘法

对于某些二元二次六项式(2

2

Ax Bxy Cy Dx Ey F +++++),我们也可以用十字相乘法分解因式。例如,分解因式2

2

27225353x xy y x y ---+-.我们将上式按x 降幂排列,并把y 当作常数,于是上式可变形为 2

2

2(75)(22353)x y x y y -+--+可以看作是关于

x 的二次三项式. 对于常数项而言,它是关于y 的二次三项式,也可以用十字相乘法,分

解为 2

22353(23)(111)y y y y -+-=--+。再利用十字相乘法对关于x 的二次三项式分

解.所以 原式=[(23)][2(111)](23)(2111)x y x y x y x y +-+-+=+--+上述因式分解的过程,实施了两次十字相乘法(双十字相乘法)。

具体步骤:分解形如2

2

ax bxy cy dx ey f +++++的二次六项式,在草稿纸上,将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如下图所示,

如果,,mq np b pk qj e mk nj d +=+=+=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则。则2

2

ax bxy cy dx ey f +++++()()mx py j nx qy k =++++

【例】把下列各式分解因式:

222332x xy y x y +-+++=____________________________________________; ⑵22

2341x xy y x y +----=____________________________________________;

22414672x xy y x y -+-+-=____________________________________________; 【答案】⑴

22

2332(32)(1)x xy y x y x y x y +-+++=++-+ ⑵

22

2341(231)(1)x xy y x y x y x y +----=++-- ⑶

22414672(421)(32)x xy y x y x y x y -+-+-=-+-- 三、求根法

如果关于x 的一元二次方程

02

=++c bx ax 有两个实数根21,x x ,那么多项式c bx ax ++2可以分解为))((212

x x x x a c bx ax --=++。

由22121212()()()ax bx c a x x x x ax a x x x ax x ++=--=-++,比较系数得

1212()a x x b ax x c -+=??

=?故1212

b x x a

c

x x a ?

+=-

????=??

就得到韦达定理。 韦达定理:设12,x x 是关于x 的一元二次方程2

0ax bx c ++=的两根,则1212

b x x a c

x x a ?

+=-????=??

j k q p n m

【例3】把下列各式分解因式:

⑴244x x +-=_________________;(2)2

231x x +-=

【答案】⑴244(22x x x x +-=+-++;

(2)

)417

3)(4173(21322+-++--

=-+x x x x

【例4】若x 1和x 2分别是一元二次方程2x 2

+5x -3=0的两根. (1)求| x 1-x 2|的值; (2)求

2212

11x x +的值; (3)x 13+x 23

解:∵x 1和x 2分别是一元二次方程2x 2

+5x -3=0的两根,

∴1252x x +=-,123

2

x x =-.

(1)∵| x 1-x 2|2

=x 12

+ x 22

-2 x 1x 2=(x 1+x 2)2

-4 x 1x 2=2

5

3()4()2

2

--?-

=25

4

+6=494,

∴| x 1-x 2|=

7

2

. (2)

222

2

1212122222

2

2121

2125325

()2()3

()211

3722439()9()24

x x x x x x x x x x x x --?-+++-+=====?-.

(3)x 13

+x 23

=(x 1+x 2)( x 12

-x 1x 2+x 22

)=(x 1+x 2)[ ( x 1+x 2) 2

-3x 1x 2]

=(-

52)×[(-52)2-3×(32-)]=-215

8

【点评】利用韦达定理求值,要熟练掌握以下等式变形:

222121212()2x x x x x x +=+-,

121212

11x x x x x x ++=

,22

121212()()4x x x x x x -=+-,

12||x x -=2212121212()x x x x x x x x +=+,

33312121212()3()x x x x x x x x +=+-+等等

【重要结论】:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求

这一个量的问题,为了解题简便,我们可以探讨出其一般规律:

设x 1和x 2分别是一元二次方程ax 2

+bx +c =0(a ≠0),则

1

b x -

=

,2b x -=, ∴| x 1-x 2|=

||||

a a ==

. 于是有下面的结论:

若x 1和x 2分别是一元二次方程ax 2

+bx +c =0(a ≠0),则| x 1-x 2|=

||

a (其中Δ=

b 2

-4ac ).

今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.

【变式】已知关于x 的方程x 2+2(m -2)x +m 2

+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.

分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.

解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4.

∵x 12+x 22

-x 1·x 2=21,

∴(x 1+x 2)2

-3 x 1·x 2=21,

即 [-2(m -2)]2-3(m 2

+4)=21,

化简,得 m 2

-16m -17=0, 解得 m =-1,或m =17.

当m =-1时,方程为x 2

+6x +5=0,Δ>0,满足题意;

当m =17时,方程为x 2+30x +293=0,Δ=302

-4×1×293<0,不合题意,舍去. 综上,m =17. 说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可。

(2)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式

Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根。

四、分组分解

能分组分解的有四项或六项或大于四项,一般的四项分组分解有两种形式:二二分法(①按字母分组②按系数分组③符合公式的两项分组),三一分法(先完全平方公式后平方差公式)。

【例5】把下列各式分解因式:

⑴252156x xy x y +--= ; ⑵22463a b a b -+-= ; ⑶2296y x x --+= ;

⑷3

2

2

3

8365427x x y xy y -+-= ; ⑸321x px px p +++-= .

【答案】⑴252156(3)(52)x xy x y x x y +--=-+

⑵22463(2)(23)a b a b a b a b -+-=-++ ⑶2296(3)(3)y x x y x y x --+=+--+ ⑷3

(23)x y -

⑸2

(1)(1)x x x p +++-

课后练习

1、把下列各式分解因式

(1)6

12

64x y - (2)32

81261x x x -+-

(3)322421218n n n x x y x y -+ (4)42(20)x y x y -- (5)257(1)6(1)a a ++-+ (6)4298y y -+ (7)2

524x x +-

(8)2

1336x x -+

(9)231x x -++ (10)22x xy y --

(11)222(2)9(2)x x x +-+ (12)22(87)(815)15a a a a +++++

2、已知12,x x 是方程2520x x --=两个实数根,求:①()()

1211x x --;②12x x -;③

1221

x x x x +;④33

12x x +;

3、已知,αβ是方程2

40x mx m --=的两根,且()()2234αβαβ--=-,求m 的值.

【作业参考答案】

1、(1)2

2

2

4

2

2

2

4

(2)(42)(2)(42)x y x xy y x y x xy y -+++-+(2)3

(21)x - (3)222(3)n n x x y -(4)2(2)(2)(5)y x x x -++(5)(23)(32)a a -+- (6

)(1)(1)(y y y y +-+- (7) (3)(8)x x -+ (8)(4)(9)x x --

(9

)113()66x x ---

(10

)11()()

22

x y x y +--(11)

2(2)(3)(3)x x x ++- (12

(

()()4426a a a a ++++

2、由题意可知121252x x x x +==-,

()()1212121112516x x x x x x --=-++=--+=-()

12x x -===

()2

221212121221121222542922

x x x x x x x x x x x x x x +-+++====-- 33222121211221212123531155x x x x x x x x x x x x x x +=+-+=++-=?=()()()[()]

3、由题意可知4m m αβαβ+==-,

()()222222252923634m m αβαβαβαβαβαβ--=+-=+-=+=-()()

解得1m =-或17m =-

若方程有两个根,则2

160m m ?=+>解得0m >或16m <- 所以17m =-

人教版初中数学因式分解易错题汇编及答案

人教版初中数学因式分解易错题汇编及答案 一、选择题 1.若a b +=1ab =,则33a b ab -的值为( ) A .± B . C .± D .【答案】C 【解析】 【分析】 将原式进行变形,3322 ()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的 变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】 解:∵3322 ()()()a b ab ab a b ab a b a b -=-=+- ∴33)a b b ab a =-- 又∵22()()4a b a b ab -=+- ∴22()414a b -=-?= ∴2a b -=± ∴33(2)a b ab =±=±- 故选:C . 【点睛】 本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键. 2.下列各式从左到右的变形中,是因式分解的为( ). A .()x a b ax bx -=- B .()()222111x y x x y -+=-++ C .()()2111x x x -=+- D .()ax bx c x a b c ++=+ 【答案】C 【解析】 【分析】 根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 【详解】 解:A 、是整式的乘法运算,故选项错误; B 、右边不是积的形式,故选项错误; C 、x 2-1=(x+1)(x-1),正确; D 、等式不成立,故选项错误. 故选:C . 【点睛】 熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.

一(1)集合及其运算(教师)

1 / 6 模块: 一、集合、命题、不等式 课题: 1、集合及其运算 教学目标: 理解集合、空集的意义,会用列举法和描述法表示集合;理解子集、真子集、 集合相等等概念,能判断两个简单集合之间的包含关系或相等关系;理解交集、 并集,掌握集合的交、并运算,知道有关的基本运算性质,理解全集的意义, 能求出已知集合的补集. 重难点: 集合的概念及其运算;对集合有关概念的理解. 一、 知识要点 1、 集合的有关概念 (1) 集合、元素、有限集、无限集、空集; (2) 子集、真子集、集合相等; (3) 集合元素的特征:确定性、互异性、无序性. 2、 表示集合的方法:列举法、描述法. 3、 集合运算:交集、并集、补集(全集). 4、 有限集的子集个数公式: 对于有限集A ,若其中有n 个元素,则有2n 个子集,21n -个非空子集,21n -个真子集. 5、 两个有限集的并集的元素个数公式: ()()()()card A B card A card B card A B =+-. 二、 例题精讲 例1、已知{}221,251,1,2A a a a a A =-+++-∈且,则a = . 答案:3 2- 例2、给出下列四种说法 ①任意一个集合的表示方法都是唯一的; ②集合{}1,0,1,2-与集合{}2,1,0,1-是同一个集合 ③集合{}|21,x x k k Z =-∈与集合{}|21,y y s s Z =+∈表示的是同一个集合; ④集合{}|01x x <<是一个无限集. 其中正确说法的序号是 .(填上所有正确说法的序号) 答案:②③④ 例3、下列五个关系式:(1){}?=0;(2)0=?;(3)?∈0;(4){}??0;(5){}0≠?; 其中正确的个数是( ) A 、2 B 、3 C 、4 D 、5 答案:A 例4、设P 是一个数集,且至少含两个数,若对任意,a b P ∈,都有

《因式分解》计算题专项练习

《因式分解》计算题专项练习 1、提取公因式 1、cx- cy+ cz 2、px-qx-rx 3、15a3-10a2 4、12abc-3bc2 5、4x2y-xy2 6、63pq+14pq2 ) 7、24a3m-18a2m2 8、x6y-x4z 9、15x3y2+5x2y-20x2y3 10、-4a3b2+6a2b-2ab 11、-16x4-32x3+56x2 12、6m2n-15mn2+30m2n2 13、x(a+b)-y(a+b) 14、5x(x-y)+2y(x-y)

15、6q(p+q)-4p(p+q) 16、(m+n)(p+q)-(m+n)(p-q) 17、a(a-b)+(a-b)2 18、x(x-y)2-y(x+y)2 19、(2a+b)(2a-3b)-3a(2a+b) 20、x(x+y)(x-y)-x(x+y)2 21、p(x-y)-q(y-x) 22、m(a-3)+2(3-a) ! 24、(a+b)(a-b)-(b+a) 25、a(x-a)+b(a-x)-c(x-a) 26、10a(x-y)2-5b(y-x) 27、3(x-1)3y-(1-x)3z 28、x(a-x)(a-y0-y(x-a)(y-a) 29、-ab(a-b)2+a(b-a)2

30、2x(x+y)2-(x+y)3 31、21×+62×+17× 32、×、运用公式法因式分解: 1、a2-49 2、64-x2 3、1-36b2 4、m2-81n2 5、 6、121x2-4y2 。 7、a2p2-b2q2 8、25 4 a2-x2y2 9、(m+n)2-n2 10、169(a-b)2-196(a+b)2 11、(2x+y)2-(x+2y)2 12、(a+b+c)2-(a+b-c)2 13、4(2p+3q)2-(3p-q)2

因式分解公式法、十字相乘法教师版

2、运用公式法进行因式分解 【知识精读】 把乘法公式反过来,就可以得到因式分解的公式。 主要有:平方差公式 a b a b a b 22-=+-()() 完全平方公式 a ab b a b 2222±+=±() 立方和、立方差公式 a b a b a ab b 3322±=±?+()()μ 补充:欧拉公式: 特别地:(1)当a b c ++=0时,有a b c abc 3333++= (2)当c =0时,欧拉公式变为两数立方和公式。 运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。 用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。 下面我们就来学习用公式法进行因式分解 【分类解析】 1. 把a a b b 2222+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2 D. ()()a b b a 2222-- 分析:a a b b a a b b a b 22222222212111+--=++---=+-+()()。 再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。 说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分解一定要彻底。 2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式232x x m -+有一个因式是21x +,求m 的值。 分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出m 的值。 解:根据已知条件,设221322x x m x x ax b -+=+++()() 则222123232x x m x a x a b x b -+=+++++()() 由此可得211120 23a a b m b +=-+==???????()()()

1.2.2集合的运算1教案教师版

1.2.2 集合的运算 第1课时交集与并集 【学习要求】 1.理解两个集合的交集与并集的含义,会求两个简单集合的交集和并集. 2.能使用Venn图表示集合的交集和并集运算结果,体会直观图对理解抽象概念的作用. 3.掌握有关的术语和符号,并会用它们正确进行集合的交集与并集运算. 【学法指导】 通过观察和类比,借助Venn图理解集合的交集及并集运算,培养数形结合的思想;体会类比的作用;感受集合作为一种语言在表示数学内容时的简洁性和准确性. 填一填:知识要点、记下疑难点 1.交集的定义:一般地,对于两个给定的集合A,B,由属于A又属于B的所有元素构成的集合,叫 做A与B的交集,记作A∩B,读作“A交B”.即A∩B= {x|x∈A且x∈B} . 2.交集的性质:(1)A∩B= B∩A ;(2)A∩A=A ; (3)A∩?=?∩A=?;(4)如果A?B,则A∩B=A . 3.并集的定义:一般地,对于两个给定的集合A,B,由两个集合的所有元素构成的集合,叫做A 与B的并集,记作A∪B,读作“A并B”.即A∪B= {x|x∈A或x∈B} . 4.并集的性质:(1)A∪B= B∪A ;(2)A∪A=A ;(3)A∪?=?∪A=A ;(4)如果A?B,则A∪B =B . 研一研:问题探究、课堂更高效 [问题情境] 两个实数除了可以比较大小外,还可以进行加减法运算,如果把集合与实数相类比,我们会想两个集合是否也可以进行“加减”运算呢?本节就来研究这个问题. 探究点一交集 问题1你能说出集合C与集合A、B之间的关系吗? (1)A={1,2,3,4,5},B={3,4,5,6,8},C={3,4,5}; (2)A={x|x≤3},B={x|x>0},C={x|0

高中数学 1.2.1 集合之间的关系学案三 新人教B版必修1

1.2.1集合之间的关系 教学目的:1、使学生掌握子集、真子集、空集、两个集合相等等概念,会写出一个集合的所有子集。 2、能过与不等式类比学习集合间的基本关系,掌握类比思想的应用。 教学重难点:重点是掌握集合间的关系,难点是子集与真子集的区别。 教学过程: 一、复习提问 1、元素与集合之间有什么关系?a与{a}有什么区别? 2、集合的表示方法有几种?分别是什么? 二、新课 5<7 例1、A={1,2,3},B={1,2,3,4,5} 或7>5 特点:A有的元素,B都有,即集合A的任何一个元素都是集合B的元素。 称为:集合A是集合B的子集。 记作:A?B,或B?A。 例2、A为高一(2)班女生的全体组成的集合,B为这个班学生的全体组成的集合。 特点:A有的元素,B都有,即集合A的任何一个元素都是集合B的元素。 定义:一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集(subset)。 记作:A?B,或B?A。用Venn图表示(右上图)。 5=5 例3、设C={x|x是两条边相等的三角形},D={x|x是等腰三角形} a≤b 特点:集合C中的任何一个元素都是集合D中的元素,集合D中的任何一

且b ≥a 个元素都是集合C 中的元素,即C ?D ,或D ?C 。 则a=b 所以,C=D 。 定义:如果集合A 是集合B 的子集(A ?B),且集合B 是集合A 的子集(B ?A),此时 集合A 与集合B 的元素是一样的,因此,集合A 与集合B 相等,记作:A=B 定义:若集合A ?B ,但在在元素x ∈B ,且x ?A ,我们称集合A 是集合B 的真子集 B ,或B A 记作:A 例1中,集合A 是集合B 的真子集。例2呢? 方程x 2+1=0没有实数根,所以方程x 2+1=0的实数根组成的集合中没有元素。 定义:我们把不含任何元素的集合叫做空集,记为?,并规定:空集是任何集合的子 集。 两个结论:(1)任何一个集合是它本身的子集,即A ?A 。 (2)对于集合A 、B 、C ,如果A ?B ,且B ?C ,那么A ?C 类比:a

因式分解专项练习题(含答案)

因式分解专题过关 1.将下列各式分解因式 (1)3p2﹣6pq (2)2x2+8x+8 2.将下列各式分解因式 (1)x3y﹣xy (2)3a3﹣6a2b+3ab2. 3.分解因式 (1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y2 4.分解因式: (1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)2 5.因式分解: (1)2am2﹣8a (2)4x3+4x2y+xy2 6.将下列各式分解因式: (1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y2 8.对下列代数式分解因式: (1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+1 9.分解因式:a2﹣4a+4﹣b2 10.分解因式:a2﹣b2﹣2a+1 11.把下列各式分解因式: (1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2 (3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1 12.把下列各式分解因式: (1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.

因式分解专题过关 1.将下列各式分解因式 (1)3p2﹣6pq;(2)2x2+8x+8 分析:(1)提取公因式3p整理即可; (2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解. 解答:解:(1)3p2﹣6pq=3p(p﹣2q), (2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2. 2.将下列各式分解因式 (1)x3y﹣xy (2)3a3﹣6a2b+3ab2. 分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可; (2)首先提取公因式3a,再利用完全平方公式进行二次分解即可. 解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1); (2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2. 3.分解因式 (1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2. 分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解; (2)先利用平方差公式,再利用完全平方公式继续分解. 解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4); (2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2. 4.分解因式: (1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2. 分析:(1)直接提取公因式x即可; (2)利用平方差公式进行因式分解; (3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解; (4)把(x﹣y)看作整体,利用完全平方公式分解因式即可. 解答:解:(1)2x2﹣x=x(2x﹣1);

(完整)初二数学人教版因式分解-讲义

八年级数学因式分解辅导学案 因式分解的常用方法 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数 学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习 这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能, 发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因 式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上, 对因式分解的方法、技巧和应用作进一步的介绍. 一、提公因式法.:ma+mb+mc=m(a+b+c) 二、运用公式法. 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式, 例如: (1 ) (a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b); (2 ) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2; 例.已知a b c ,,是ABC ?的三边,且222a b c ab bc ca ++=++,则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?== 选C 练习 (1))(3)(2x y b y x a --- (2)1222-+-b ab a (3)(x -1)(x +4)-36 (4)(m 2+n 2)2-4m 2n 2 (5)-2a 3+12a 2-18a ; (6)9a 2(x -y )+4b 2(y -x ); (7) (x +y )2+2(x +y )+1.

§1.1集合的概念及其基本运算(教师)

§1.1集合的概念及其基本运算 基础自测 1.(2008·山东,1)满足M ?{}4321,,,a a a a ,且M {}{}21321,,,a a a a a = 的集合M 的个数是 . 答案 2 2.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是 . 答案 4 3.设全集U ={1,3,5,7},集合M ={1,|a -5|},, U M ?U M ={5,7},则a 的值为 . 答案 2或8 4.(2008·四川理,1)设集合U ={},5,4,3,2,1A {},3,2,1=B {},4,3,2=则 U (A B )等于 . 答案 {}5,4,1 5.(2009·南通高三模拟)设集合A ={}R ∈≤-x x x ,2|2||,B ={}21,|2≤≤--=x x y y ,则 R (A B )= . 答案 (-∞,0) (0, +∞) 例题精讲 例1 若a ,b ∈R ,集合 {},,,0,,1? ?? ???=+b a b a b a 求b -a 的值. 解 由 {}? ?? ?? ?=+b a b a b a ,,0,,1可知a ≠0,则只能a +b =0,则有以下对应关系: ???? ???===+1 0b a a b b a ①或???????===+10a b a b b a ② 由①得,11?? ?=-=b a 符合题意;②无解.所以b -a =2. 例2 已知集合A = {}510|≤+

《1.2 集合间的基本关系》获奖说课教案教学设计

《集合间的基本关系》教案 教材分析 类比实数的大小关系引入集合的包含与相等关系,了解空集的含义. 本节内容是在学习了集合的概念、元素与集合的从属关系以及集合的表示方法的基础上,进一步学习集合与集合之间的关系,同时也为下一节学习集合的基本运算打好基础.因此本节内容起着承上启下的重要作用. 教学目标 【知识与能力目标】 1.了解集合之间包含与相等的含义,能识别给定集合的子集; 2.理解子集、真子集的概念; 3.能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用. 【过程与方法目标】 让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义. 【情感态度价值观目标】 感受集合语言在描述客观现实和数学问题中的意义. 教学重难点 【教学重点】 集合间的包含与相等关系,子集与真子集的概念. 【教学难点】 属于关系与包含关系的区别. 课前准备 学生通过预习,观察、类比、思考、交流、讨论,发现集合间的基本关系. 教学过程 (一)创设情景,揭示课题 复习回顾: 1.集合有哪两种表示方法? 2.元素与集合有哪几种关系? 问题提出:集合与集合之间又存在哪些关系? (二)研探新知 问题1:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?

让学生自由发言,教师不要急于做出判断.而是继续引导学生;欲知谁正确,让我们一起来观察、研探. 投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗? (1){1,2,3},{1,2,3,4,5}A B ==; (2)设A 为国兴中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合; (3)设{|},{|};C x x D x x ==是两条边相等的三角形是等腰三角形 (4){2,4,6},{6,4,2}E F ==. 组织学生充分讨论、交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系: ①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集. 记作:()A B B A ??或 读作:A 含于B (或B 包含A ). ②如果两个集合所含的元素完全相同,那么我们称这两个集合相等. 教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解.并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn 图.如图1和图2分别是表示问题2中实例1和实例3的Venn 图. 图1 图2 投影问题3:与实数中的结论“若,,a b b a a b ≥≥=且则”相类比,在集合中,你能得出什么结论? 教师引导学生通过类比,思考得出结论: 若,,A B B A A B ??=且则. 问题4:请同学们举出几个具有包含关系、相等关系的集合实例,并用Venn 图表示. 学生主动发言,教师给予评价.

因式分解练习题(超经典)

因式分解习题 一、填空: 1、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。 2、22)(n x m x x -=++则m =____n =____ 3、232y x 与y x 612的公因式是__________. 4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。 5、在多项式4224222294,4,,t s y x b a n m +-+--+中,可以用平方差公式分解因式的 有___________________________ ,其结果是 _______________________________________。 6、若16)3(22+-+x m x 是完全平方式,则m=_______。 7、_____))(2(2(_____)2++=++x x x x 8、已知,01200520042=+++++x x x x Λ则.________2006=x 9、若25)(162++-M b a 是完全平方式M=________。 10、()22)3(__6+=++x x x , ()22)3(9___-=++x x 11、若229y k x ++是完全平方式,则k=_______。 12、若442-+x x 的值为0,则51232-+x x 的值是________。 13、若)15)(1(152-+=--x x ax x 则a =_________。 14、若6,422=+=+y x y x 则=xy ________。 15、方程042=+x x ,的解是________。 二、选择题:(8分) 1、多项式))(())((x b x a ab b x x a a --+---的公因式是( ) A 、-a B 、))((b x x a a --- C 、)(x a a - D 、)(a x a -- 2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( ) A 、m=—2,k=6 B 、m=2,k=12 C 、m=—4,k=—12 D m=4,k=12 3、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式分解因式的有( ) A 、1个 B 、2个 C 、3个 D 、4个 三、分解因式: 1、234352x x x -- 2、2633x x - 3、22)2(4)2(25x y y x --- 4、x x -5 5、24369y x - 6、811824+-x x 四、代数式求值

2021年中考数学·考点梳理 专题05 因式分解(教师版)

2021年中考数学·考点梳理专题05 因式分解 1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 2.分解因式的一般方法: (1)提公共因式法. (2)运用公式法. ①平方差公式:()() 22 a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±(3)十字相乘法。利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. ①对于二次三项式2x bx c ++,若存在pq c p q b =?? +=?,则()()2x bx c x p x q ++=++②首项系数不为1的十字相乘法 在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即12a a a =,常数项c 可以分解成两个因数之积,即12c c c =,把1212a a c c ,,, 排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2 ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++. (4)分组分解法 对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式. 3.分解因式的步骤: (1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法; (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; 专题知识回顾

第1讲 必修1第一章集合的基本含、集合间的基本关系以及基本运算-教师版

教学课题人教版必修1第一章集合的基本含、集合间的基本关系以及基本运算 教学目标知识目标: (1)掌握集合的表示方法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题(2)运用类比的方法,对照实数的相等与不等的关系,探究集合之间的包含与相等关系 (3)能利用Venn图表达集合间的关系;探索直观图示(Venn图)对理解抽象概念的作用 (4)通过探讨集合与集合间的关系,对照数或式的算术运算和代数运算,探究集合之间的运算. 能力目标: (1)发展运用数学语言的能力,感受集合语言的意义和作用,学习从数学的角度认识世界 (2)初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力 (3)使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力 . 教学重点与难点重点:集合间的基本关系以及基本运算 难点:子集、真子集的判断、空集与非空集合的分类谈论 教学过程 课堂导学 1.集合与元素 (1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于两种,用符号∈或?表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 集合自然数集正整数集整数集有理数集实数集 符号N N*(或N+)Z Q R 2.集合间的基本关系 关系自然语言符号语言Venn图 子集集合A中所有元素都在集合B中(即若 x∈A,则x∈B) A?B(或B ?A) 真子集集合A是集合B的子集,且集合B中至 少有一个元素不在集合A中 A B(或 B A)

【点评】含字母的两个集合相等,并不意味着按序对应相等,要分类讨论,同时也要考虑集合中的 元素的互异性和无序性。 ★★★变式2:集合{|2,}A x x k k Z ==∈,{|21,}B x x k k Z ==+∈,{|41,}C x x k k Z ==+∈,又,a A b B ∈∈,则有( ) A .a b A +∈ B .a b B +∈ C .a b C +∈ D .a b +不属于,,A B C 中的任一个 答案:B 解:设Z k k a ∈=11,2,2221,b k k Z =+∈, ∴12122212()1a b k k k k B +=++=++∈。 新知三: 子集、真子集、空集 ①如果集合A B ?,并且存在元素x B ∈且x A ?,我们称集合A 是集合B 的真子集,记作:A B 。 ②不含任何元素的集合叫做空集,记作?,并规定:空集是任何集合的子集。 ★例3:写出集合{1,0,1}-的所有子集,并指出哪些是它的真子集. 解:子集为:?,{1}-,{0},{1},{1,0}-,{1,1}-,{0,1},{1,0,1}-。 真子集为:?,{1}-,{0},{1},{1,0}-,{1,1}-,{0,1}。 【点评】若有限集A 有n 个元素,则A 的子集有2n 个,真子集有21n -,非空子集有21n -个,非 空真子集有22n -个。 ★★变式3:已知集合{}{}1,21,2,3,4,5P ??,那么满足条件的集合P 的个数是( ) A .5 B .6 C .7 D .8 答案:D 解:满足条件的集合P 可为:{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5, {}1,2,4,5,{}1,2,3,4,5,共8个。 ★★例4:已知集合{13}A x x =-≤≤,2{,}B y y x x A ==∈,{2,}C y y x a x A ==+∈,若满足C B ?,求 实数a 的取值范围。 解:2{,}{09}B y y x x A y y ==∈=≤≤, {2,}{26}C y y x a x A y a y a ==+∈=-+≤≤, ∵C B ?,∴20 2369a a a -??? +? ≥≤≤≤。 ★变式4:集合{}1,2,3,4A =,2{0}B x N x a =∈-=,若满足B A ?,求实数a 的值组成的集合。 答案:{}1,4,9,16 ★★例5:已知集合A ={|25}x x -<≤,{|121}B x m x m =+-≤≤且B A ?,求实数m 的取值范围。 解:∵B A ? (1)当B =?时,则121m m +>-,解得2m <。 (2)当B ≠?时,则12121512m m m m +-?? - ??+>-? ≤≤,解得23m ≤≤。 综上所述,实数m 的取值范围是m ≤3。 【点评】当出现“A B ?”这一关系时,首先是讨论A 有没有可能为空集,因为A =? 时满足 A B ?。

人教A版数学必修一11-2集合间的基本关系

高中数学学习材料 金戈铁骑整理制作 1.1.2集合间的基本关系 一、选择题 1.对于集合A ,B ,“A ?B ”不成立的含义是( ) A . B 是A 的子集 B .A 中的元素都不是B 的元素 C .A 中至少有一个元素不属于B D .B 中至少有一个元素不属于A [答案] C [解析] “A ?B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C. 2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( ) A .P M B .M P C .M =P D .M P [答案] C [解析] 由xy >0知x 与y 同号,又x +y <0 ∴x 与y 同为负数 ∴????? x +y <0xy >0等价于??? x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ?C ,B ?C ,则集合C 中元素最少有( ) A .2个 B .4个 C .5个 D .6个 [答案] C [解析] A ={-1,1},B ={0,1,2,3}, ∵A ?C ,B ?C ,

∴集合C 中必含有A 与B 的所有元素-1,0,1,2,3,故C 中至少有5个元素. 4.若集合A ={1,3,x },B ={x 2,1}且B ?A ,则满足条件的实数x 的个数是( ) A .1 B .2 C .3 D .4 [答案] C [解析] ∵B ?A ,∴x 2∈A ,又x 2≠1 ∴x 2=3或x 2=x ,∴x =±3或x =0.故选C. 5.已知集合M ={x |y 2=2x ,y ∈R }和集合P ={(x ,y )|y 2=2x ,y ∈R },则两个集合间的关系是( ) A .M P B .P M C .M =P D .M 、P 互不包含 [答案] D [解析] 由于两集合代表元素不同,因此M 与P 互不包含,故选D. 6.集合B ={a ,b ,c },C ={a ,b ,d };集合A 满足A ?B ,A ?C .则满足条件的集合A 的个数是( ) A .8 B .2 C .4 D .1 [答案] C [解析] ∵A ?B ,A ?C ,∴集合A 中的元素只能由a 或b 构成.∴这样的集合共有22=4个. 即:A =?,或A ={a },或A ={b }或A ={a ,b }. 7.设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12 ,k ∈Z },则( ) A .M =N B .M N C .M N D .M 与N 的关系不确定 [答案] B [解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得 M ={…-34,-14,14,34,54 …}, N ={…0,14,12,34 ,1…}, ∴M N ,故选B. 解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24 (k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B. [点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整

人教版八年级因式分解经典例题详解

初中因式分解的(例题详解) 一、提公因式法. 如多项式),(c b a m cm bm am ++=++ 其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式. 二、运用公式法. 运用公式法,即用 ))((, )(2), )((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-μ 写出结果. 三、分组分解法. (一)分组后能直接提公因式 例1、分解因式:bn bm an am +++ 例2、分解因式:bx by ay ax -+-5102 练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy (二)分组后能直接运用公式 例3、分解因式:ay ax y x ++-2 2 例4、分解因式:2222c b ab a -+-

练习:分解因式3、y y x x 3922--- 4、yz z y x 2222--- 综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22 (3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++- (5)92234-+-a a a (6)y b x b y a x a 222244+-- (7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a (9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+ (11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++ 四、十字相乘法. (一)二次项系数为1的二次三项式 直接利用公式——))(()(2 q x p x pq x q p x ++=+++进行分解。 特点:(1)二次项系数是1; (2)常数项是两个数的乘积; (3)一次项系数是常数项的两因数的和。

人教版高数必修一第2讲:集合的关系与运算(教师版)

高中数学·· 教师版 page 1 of 8 集合的关系与运算 __________________________________________________________________________________ __________________________________________________________________________________ 1、 掌握两个集合之间的包含关系和相等关系,能识别给定集合的子集。 2、 了解空集的含义与性质。 3、 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。 4、 理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 一、子集: 一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合B 。 记作:A B B A ??或 , 读作:A 包含于B 或B 包含A 。 特别提醒:1、“A 是B 的子集”的含义是:集合A 的任何.. 一个元素都是集合B 的元素,即由x A ∈,能推出x B ∈。如:{}{}1,11,0,1,2-?-;{}{}?深圳人中国人。2、当“A 不是B 的子集”时,我们记作:“() A B B A ??//或”,读作:“A 不包含于B ,(或B 不包含A )”。如:{}{}1,2,31,3,4,5?/。 3、任何集合都是它本身的子集。即对于任何一集合A ,它的任何一个元素都属于集合A 本身,记作A A ?。 4、我们规定:空集是任何集合的子集,即对于任一集合A ,有A ??。 5、在子集的定义中,不能理解为子集A 是集合B 中部分元素组成的集合。因为若A =?,则A 中不含有任何元素;若A =B ,则A 中含有B 中的所有元素,但此时都说集合A 是集合B 的子集。 二、集合相等: 一般地,对于两个集合A 与B ,如果集合A 的任何.. 一个元素都是集合B 的元素,同时集合B 的任何.. 一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。 特别提醒:集合相等的定义实际上给出了我们判断或证明两个集合相等的办法,即欲证A B =,只需证A B ?与B A ?都成立即可。 三、真子集:

2019-2020学年新教材高中数学第一章集合与常用逻辑用语1.2集合间的基本关系教师用书新人教A版必修第一册

1.2 集合间的基本关系 问题导学 预习教材P7-P8,并思考以下问题: 1.集合与集合之间的关系有哪几种?如何用符号表示这些关系? 2.集合的子集是什么?真子集又是什么?如何用符号表示? 3.空集是什么样的集合?空集和其他集合间具有什么关系? 1.Venn 图 (1)定义:在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图,这种表示集合的方法叫做图示法. (2)适用范围:元素个数较少的集合. (3)使用方法:把元素写在封闭曲线的内部. ■名师点拨 表示集合的Venn 图的边界是封闭曲线,它可以是圆、矩形、椭圆,也可以是其他封闭曲线. 2.子集的概念 “集合A 是集合B 的子集”可以表述为:若x ∈A ,则x ∈B . 3.集合相等的概念

一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A =B ,也就是说,若A ?B ,且B ?A ,则A =B . 4.真子集的概念 A B (或B A ) (1)若A ?B ,又B ?A ,则A =B ;反之,如果A =B ,则A ?B ,且B ?A . (2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关. (3)在真子集的定义中,A B 首先要满足A ?B ,其次至少有一个x ∈B ,但x ?A . 5.空集 (1)定义:不含任何元素的集合叫做空集. (2)用符号表示为:?. (3)规定:空集是任何集合的子集. ■名师点拨 ?,0,{0}与{?}之间的关系 ?{0} ? {?}或?∈{?} (1)任何一个集合是它本身的子集,即A ?A . (2)对于集合A ,B ,C ,如果A ?B ,且B ?C ,那么A ?C . 判断正误(正确的打“√”,错误的打“×”) (1)“∈”“?”的意义是一样的.( ) (2)集合{0}是空集.( ) (3)空集是任何集合的真子集.( ) (4)若集合A 是集合B 的真子集,则集合B 中必定存在元素不在集合A 中.( ) (5)若a ∈A ,集合A 是集合B 的子集,则必定有a ∈B .( ) 答案:(1)× (2)× (3)× (4)√ (5)√

相关文档
相关文档 最新文档