文档库 最新最全的文档下载
当前位置:文档库 › 排列组合专题三-带答案解析

排列组合专题三-带答案解析

排列组合专题三-带答案解析
排列组合专题三-带答案解析

排列组合专题三

学校:___________姓名:___________班级:___________考号:___________

一、单选题

1.张、王夫妇各带一个小孩儿到上海迪士尼乐园游玩,购票后依次入园,为安全起见,首尾一定要排两位爸爸,另外两个小孩要排在一起,则这6个人的入园顺序的排法种数是()

A. 12

B. 24

C. 36

D. 48

2.山城农业科学研究所将5种不同型号的种子分别试种在5块并成一排的试验田里,其中两型号的种子要求试种在相邻的两块试验田里,且均不能试种在两端的试验田

里,则不同的试种方法数为()

A. 12

B. 24

C. 36

D. 48

3.有名学生站成一排照相,其中甲、乙两人必须站在一起的排法有()

A. 种

B. 种

C. 种

D. 种

4.在某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为( ) A. 72 B. 60 C. 36 D. 30

5.从名同学(其中男女)中选出名参加环保知识竞赛,若这人中必须既有男生又

有女生,则不同选法的种数为()

A. B. C. D.

6.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有()

A. 168种

B. 156种

C. 172种

D. 180种

7.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序只能出现在第一步或最后一步,程序和实施时必须相邻,请问实验顺序的编排方法共有()

A. 24种

B. 48种

C. 96种

D. 144种

8.“中国梦”的英文翻译为“China Dream”,其中China又可以简写为CN,从“CN Dream”中取6个不同的字母排成一排,含有“ea” 字母组合(顺序不变)的不同排列共有()

A. 360种

B. 480种

C. 600种

D. 720种

9.“上医医国”出自《国语·晋语八》,比喻高贤能治理好国家,把四个字分别写在四张卡片上,某幼童把这四张卡片进行随机排列,则该幼童能将这句话排列正确的概率是()

A. 1

8

B.

1

10

C.

1

11

D.

1

12

10.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数有()

A. 288

B. 240

C. 144

D. 126

11.高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()

A. 1800

B. 3600

C. 4320

D. 5040

12.用红、黄、蓝、绿四种颜色给图中的A、B、C、D四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为(). A、24;B、36;C、72;D、84.

A B

C D

13.如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色

.........,有四种颜色可供选择.要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()

A.84 B.72 C.64 D.56

14.如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用

(A)288种(B)264种(C)240种(D)168种

15.有六种不同颜色,给如图的六个区域涂色,要求相邻区域不同色,不同的涂色方法共有( )

A. 4320

B. 2880

C. 1440

D. 720

16.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()种

A. 120

B. 260

C. 340

D. 420

17.某班级星期一上午要排5节课,语文、数学、英语、音乐、体育各1节,考虑到学生学习的效果,第一节不排数学,语文和英语相邻,且音乐和体育不相邻,则不同的排课方式有( )

A. 14种

B. 16种 C.20种 D.30种

18.5名上海世博会形象大使到香港、澳门、台湾进行世博会宣传,每个地方至少去一名形象大使,则不同的分派方法共有()种()

A.25 B.50

C.150 D.300

二、填空题

19.有7个球,其中红色球2个(同色不加区分),白色,黄色,蓝色,紫色,灰色球各1个,将它们排成一行,要求最左边不排白色,2个红色排一起,黄色和红色不相邻,则有______种不同的排法(用数字回答).

20.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数.

21.将五个字母排成一排,且均在的同侧,则不同的排法共有________种.(结果用数值作答)

22.如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则涂色方法共有___________种.

23.从4种不同的蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,则不同的种植方法的种数是_________.

24.盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有_______种不同的取法(用数字作答).

25.某商业街的同侧有4块广告牌,牌的底色可选用红、蓝两种颜色,若要求任意相邻两块

牌的底色不都为红色,则不同的配色方案有__________种.

26.某人射击8枪,命4中枪,则4枪命中恰好有3枪连在一起的情形的不同种数为______.

27.如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用种.

28.如图,用五种不同的颜色给图中的A、B、C、D、E、F六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共_ 种.

29.用4种不同的颜色给图中A、B、C、D四个区域涂色,要求相邻的区域涂色不同,则不同的涂色方法共有________

30.

区域涂不同颜色,一共有__________种不同的涂色方法.

31.如图,用4种不同的颜色对图中5个区域涂色( 4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有种.(用数字作答)

32.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,

相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同

的涂色方法共有种。

三、解答题

33.将三种作物种植在如图1-2-2所示的试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法有多少种?

34. 用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一色,相邻部分涂不同色,则涂色的方法共有几种?

35.某城市有甲、乙、丙、丁四个城区,分布如图1-1-3所示,现用五种不同的颜色涂在该城市地图上,要求相邻区域的颜色不相同,不同的涂色方案共有多少种

?

36.有3名男生,4名女生,在下列不同要求下,求不同的排列方法种数:

(1)选其中5人排成一排

(2)全体排成一排,甲不站在排头也不站在排尾

(3)全体排成一排,男生互不相邻

(4)全体排成一排,甲、乙两人中间恰好有3人

图1-2-2

参考答案

1.B

【解析】分析:先安排首尾的两位家长,再将两个小孩捆绑作为一个整体,与剩下的两位家长作为三个元素安排在中间即可得到结论.

详解:先安排首尾两个位置的男家长,共有种方法;将两个小孩作为一个整体,与剩下的另两位家长安排在两位男家长的中间,共有种方法.由分步乘法计数原理可得所有的排

法为种.

故选B.

点睛:求解排列、组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.”

2.B

【解析】分析:先确定两型号的种子种法,再对剩下3型号全排列,即得结果.

详解:因为两型号的种子试种方法数为种,

所以一共有,选B.

点睛:求解排列、组合问题常用的解题方法:

(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.

3.D

【解析】分析:根据题意,分两分析:①将甲乙人看成一个整体,考虑人之间的顺序;②将这个整体与其余人全排列,由分步计数原理计算即可得答案.

详解:根据题意,分不分析:

①由于甲、乙两人必须站在一起,将甲、乙两人看成一个整体,考虑人之间的顺序,

有种情况;

②将这个整体与其余人全排列,有种情况,

则甲、乙两人必须站在一起的排法共有种排法,故选D.

点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.

【解析】分析:先按第一个分类讨论,再根据条件确定后续排法,不相邻问题一般采用插空法.

详解:如第一个为男生,则第二个必为女生,后面任意,此时排法种数为

如第一个为女生,则先排剩下女生,再在产生的三个空中安排男生,此时排法种数为

因此出场顺序的排法种数为选B.

点睛:求解排列、组合问题常用的解题方法:

(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.

5.A

【解析】从名同学选出名同学共有种情况,

其中,选出的人都是男生时,有种情况,

因女生有人,故不会全是女生,

所以人中,即有男生又有女生的选法种数为.

故选.

6.B

【解析】分类:(1)小李和小王去甲、乙,共种(2)小王,小李一人去甲、乙,

共种,(3)小王,小李均没有去甲、乙,共种,总共

N种,选B.

【点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,小王与小李是特殊元素,甲、乙是特殊位置,用“优先法”,先根据特殊元素,再根据特殊位置的限制条件来进行分类.

7.C

【解析】由题意知程序只能出现在第一步或最后一步,从第一个位置和最后一个位置选一个位置把排列,有种结果,程序和实施时必须相邻,把和看做一个元素,同除外的个元素排列,注意和之间还有一个排列,共有,根据分步计数原理知共有种结果,故选C.

8.C

【解析】从其他5个字母中任取4个,然后与“ea”进行全排列,共有45

55600

C A ,故选B.

【解析】依题意,概率为2244212412

A A ==. 10.B

【解析】根据题意,分个位是0和个位不是0两类情形讨论;

①个位是0时,比20000大的五位偶数有341496A ??=个;

②个位不是0时,比20000大的五位偶数有3423144A ??=个;

故共有96144240+=个;

故选B .

11.B

【解析】试题分析:先排除了舞蹈节目以外的5个节目,共5

5A 种,把2个舞蹈节目插在6

个空位中,有26A 种,所以共有52563600A A =种. 考点:排列组合.

12.D

【解析】选两色有24C 种,一色选择对角有2种选法,共计24212C =种;

选三色有34C 种,其中一色重复有13C 种选法,该色选择对角有2种选法,另两色选位有2种,

共计432248???=种;四色全用有4!24=种(因,,,A B C D 为固定位置),合计84种.

13.A

【解析】 试题分析:分成两类:A 和C 同色时有4×3×3=36(种);A 和C 不同色时4×3×2×2=48(种),∴一共有36+48=84(种).

考点:计数原理

14.B

【解析】

15.A

【解析】试题分析:第一个区域有6种不同的涂色方法,第二个区域有5种不同的涂色方法,第三个区域有4种不同的涂色方法,第四个区域有3种不同的涂色方法,第六个区域有4种不同

的涂色方法,第五个区域有3种不同的涂色方法,根据乘法原理

,故选:A .

考点:乘法原理.

16.D

【解析】由题意可知上下两块区域可以相同,也可以不同,

则共有5431354322180240420????+????=+=

故选D

17.C

【解析】把语文和英语看作一个复合元素和数学全排,形成了三个空,把音乐和体育插入到

其中2个空中,故有222

22324

A A A=种,若第一节排数学,34,节只能排语文和英语,25,

节只能排音乐和体育,故有22

224

A A=种,故第一节不排数学,语文和英语相邻,且音乐和体育不相邻,则不同的排课方式有24420

-=种,故选:C .

18.C

【解析】首先5名形象大使,每个地方至少1名那么只有两种分法:1、1、3 和1、2、2,再分配到香港、澳门、台湾,按照排列组合原理,

第一种分法C53A33=60种,第二种分法C52C32A33=90种,合计60+90=150种.

故选C.

19.408

【解析】分析:把红色球看做一个处理,利用分类计数原理结合分步计数原理,由左至右逐一排放,然后求和即可.

详解:

红色球个(同色不加区分),个红色排一起,把红色球看做一个,

本题相当于个球的排列,将它们排成一行,

最左边不排白色,个红色排一起,黄色和红色不相邻,

左侧号位置,放红色球,有:,

号位置放红色球,则放球方法有:,

号位置放红色球,则放球方法有:,

号位置放红色球,则放球方法有:,

排列方法有:,故答案为.

点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.

20.156

【解析】分析:可分当末位为和末位不为两种情况分类讨论,再根据分类计数原理求得结果.

详解:可分为两类:

(1)当末位为时,可以组成个;

(2)当末位是或时,则首位有四种选法,中间可以从剩余的个数字选取两个,

共可以组成种,

由分类计数原理可得,共可以组成个没有重复数字的四位偶数.

点睛:本题主要考查了排列、组合及简单的计数原理的应用,着重考查了分类的数学思想方法,对于数字问题是排列中常见到的问题,条件变换多样,把排列问题包含数字问题时,解

答的关键是看清题目的实质,注意数列字的双重限制,即可在最后一位构成偶数,由不能

放在首位.

21.80.

【解析】分析:按的位置分类,因为左右对称,所以只看左的情况最后乘以即可.

详解:按的位置分类,当在第三个位置时,共有种排法;

当在第四个位置时,共有种不同的排法;

当在第五高为位置时,共有种不同的排法,

所以当都在的左侧时,共有种不同的排法,

所以都在的同侧时,共有种不同的排法.

点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.

22.480

【解析】(1)从A开始涂色,A有6种涂色方法,B有5种涂色方法,C有4种涂色方法;若D与A同色,则D只有1种涂色方法;若D与A不同色,则D有3种涂色方法.故共有

种涂色方法.

23.24

A种

【解析】分析:相当于从4块不同的土地中选出3块,进行全排列,方法共有3

4

A=4×3×2=24种,详解:这相当于从4块不同的土地中选出3块,进行全排列,方法共有3

4

故答案为:24.

点睛:本题考查了排列的实际问题,合理转化题意是关键.

24.32

【解析】由题意,一次可以取球的个数为1,2,3,4,5,6个,则若一次取完可由1个6组成,有1种;二次取完可由1与5,2与4,3与3组成共5种;三次取完由1,1,4或1,2,3或2,2,2组成共10种;四次取完有1,1,1,3或1,1,2,2组成共10种;五次取完,由1,1,1,1,2个组成共5种;六次取完由6个1组成共有1种,综上得,共有32种.

点睛:此题主要考查数学中计数原理在实际问题中的应用,属于中档题型,也是常考考点.计数原理是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解计数问题最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具.

25.6 , 7 , 8 答对一个即可给满分

【解析】如4块广告牌一排排列,则全选蓝色,有一种方案;选三块蓝色,有三种方案;选两种蓝色,有三种方案,此时共有7种方案

点睛:求解排列、组合问题常用的解题方法:

(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.

26.20

【解析】先把连在一起命中的三枪“捆绑”在一起,然后从4枪不命中之间的三个空位及两

端两个空位共5个空位中选出2个进行排列,有2520A =种.故填20.

27.168.

【解析】按照用三种颜色还是四种颜色分两类

若用三种颜色,则是AF,BD,EC 各用一种颜色,共3424A = 种;

若用四种颜色,先用三种颜色涂A,B,D 三点,E,C 颜色可同可不同,当E,C 颜色相同时,共

314248A C ?=种;当E,C 颜色不同时,共3114

2296A C C ??=种.所以不同的涂色方法共有24+48+96=168种.

28.1920

【解析】

试题分析:由于A 和E 或F 可以同色、B 和D 或F 可以同色、C 和D 或E 可以同色,

所以当五种颜色都选择时,选法有115325720C C A = 种;

当五种颜色选择4种时,选法有14435431080C C A ??= 种;

当五种颜色选择3种时,只能B 和D 同色,A 和F 同色, C 和E 同色;或者B 和F 同色,

A 和E 同色, C 和D 同色,所以选法有335

32120C A = 种, 所以不同的涂色方法共72010801201920++=种.

考点:排列组合.

29.72

【解析】D 有4种可能,C 有3种可能,A 有3种可能,B 有2种可能,所以共有4×3×3×2=72(种)可能.

30.732

【解析】如图,记六个区域的涂色数为6a ,若,A F 涂色相同,则相当于5个区域涂色,记

5个区域涂色数为5a ,同理只有4个区域时涂色数记为4a ,易知41324424484a A C A A =++=,

()

55454654434343434384732a a a =?-=?-?-=?-?+=.

31.96

【解析】

试题分析:

由题意知本题是一个分步计数问题,第一步:涂区域1,有4种方法;第二步:涂区域2,有3种方法;第三步:涂区域4,有2种方法(此前三步已经用去三种颜色);第四步:涂区域3,分两类:第一类,3与1同色,则区域5涂第四种颜色;第二类,区域3与1不同色,则涂第四种颜色,此时区域5就可以涂区域1或区域2或区域3中的任意一种颜色,有3种方法.所以,不同的涂色种数有4×3×2×(1×1+1×3)=96.

考点:排列组合的应用.

32.180

【解析】略

33.42

【解析】有乘法原理有3×2×2×2×2=48种不同的种法,但这样可能只种了2种作物不符合

题意,若只种两种作物,则有611111223=????C C 种不同的种法,所以满足题意的种法有

48-6=42种不同的种植方法.

34.240种

【解析】 按排列中相邻问题处理.(1)(4)或(2)(4). 可以涂相同的颜色.分类:若(1)(4)同色,有

A 3

5种,若(2)(4)同色,有A 35种,若(1)(2)(3)(4)均不同色,有A 45种. 由加法原理,共有

N =2A 3

5+A 45=240种.

35.180

【解析】线图甲有5种不同的涂法,再涂乙,从剩下的4种颜色中选一种,有4种不同的涂法,同理再涂丙有3种不同的涂法,最后涂丁,只要与乙和丙颜色不同即可,有3种不同的涂法,根据乘法原理,共有5×4×3×3=180种不同的涂法.

36.(1)2520;(2)3600;(3)1440;(4)720.

【解析】试题分析:

(1)属于从7个不同元素中任选5个的排列;

(2)第一步先安排特殊元素甲,第二步其他6人全排列即可;

(3)第一步排所有女生,第二步在5个空位(含两端)排3个男生;

(4)第一步选3人排在甲乙中间(注意这3人全排列),第二步甲乙两也全排列,第三步甲乙和他们中间的3人作为一个整体与剩下的2人变成3个元素再全排列.

试题解析:

(1)=2520(种).

(2)先排甲,有5种方法,其余6人有种方法,故共有5×=3600(种).

(3)男生不相邻,而女生不作要求,∴应先排女生,有种方法,

再在女生之间及首尾空出的5个空位中任选3个空位排男生,有种方法,故共有

·=1440(种).

(4)把甲、乙及中间3人看作一个整体,

第一步先排甲、乙两人有种方法,

再从剩下的5人中选3人排到中间,有种方法,

最后把甲、乙及中间3人看作一个整体,与剩余2人排列,有种方法,

故共有··=720(种).

点睛:求解排列应用题的主要方法:

直接法:把符合条件的排列数直接列式计算.

捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列

优先法:优先安排特殊元素或特殊位置

插空法:对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空档中

先整体后局部:“小集团”排列问题中先整体后局部

定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列

间接法:正难则反,等价转化的方法

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合问题经典题型#精选.

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

排列组合基础知识及习题分析

排列组合基础知识及习题分析 在介绍排列组合方法之前我们先来了解一下基本的运算公式! C53=(5×4×3)/(3×2×1) C62=(6×5)/(2×1)通过这2个例子看出 n C m n公式是种子数M开始与自身连续的N个自然数的降序乘积做为分子。 以取值N的阶层作 为分母 p53=5×4×3 p66=6×5×4×3×2×1 通过这2个例子 p m n=从M开始与自身连续N个自然数的降序乘积当N=M时即M的阶层排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成. 两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式:“在”与“不在”“邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法. ⑵“不邻”问题在解题时最常用的是“插空排列法”. ⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置. ⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果. 2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”. 3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法。. ***************************************************************************** 提供10道习题供大家练习

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

排列组合问题经典题型

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.D C B A ,,,五人并排站成一排,如果B A ,必须相邻且B 在A 的右边,则不同的排法有多少种? 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个 元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是多少种? 3.定序问题等机会法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(B A ,可以不相邻)那么不同的排法有多少种? 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继 续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字 均不相同的填法有多少种? 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同 的选法种数有多少种? (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有多少种? 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法有多少种? 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有多少种? (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺 序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ?=+-? 例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的 参赛方案? 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

排列组合习题_[含详细答案解析]

圆梦教育中心 排列组合专项训练 1.题1 (方法对比,二星) 题面:(1)有5个插班生要分配给3所学校,每校至少分到一个,有多少种不同的分配方法? (2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法? 解析:“名额无差别”——相同元素问题 (法1)每所学校各分一个名额后,还有2个名额待分配, 可将名额分给2所学校、1所学校,共两类: 213 3 C C +(种) (法2——挡板法) 相邻名额间共4个空隙,插入2个挡板,共: 246C =(种) 注意:“挡板法”可用于解决待分配的元素无差别,且 每个位置至少分配一个元素的问题.(位置有差别,元素无差别) 同类题一 题面: 有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 答案:6 9C 详解: 因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有6 9C 种分法。 同类题二 题面: 求方程X+Y+Z=10的正整数解的个数。 答案:36. 详解: 将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定 由隔板分成的左、中、右三部分的球数分别为x 、y 、z 之值, 故解的个数为C 92=36(个)。 2.题2 (插空法,三星) 题面:某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种. 答案:60,48 同类题一 题面: 6男4女站成一排,任何2名女生都不相邻有多少种排法? 答案:A 66·A 4 7种. 详解: 任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 4 7种不 同排法. 同类题二 题面: 有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( ) A .36种 B .48种 C .72种 D .96种 答案:C. 详解:恰有两个空座位相邻,相当于两个空位与第三个 空位不相邻,先排三个人,然后插空,从而共A 33A 2 4=72种排法,故选C. 3.题3 (插空法,三星) 题面:5个男生到一排12个座位上就座,两个之间至少隔一个空位.

排列组合专题总结复习及经典例题详解 .docx

排列组合专题复习及经典例题详解 1.学目 掌握排列、合的解策略 2.重点 (1)特殊元素先安排的策略: (2)合理分与准确分步的策略; (3)排列、合混合先后排的策略; (4)正反、等价化的策略; (5)相捆理的策略; (6)不相插空理的策略. 3.点 合运用解策略解决. 4.学程 : (1)知梳理 1.分数原理(加法原理):完成一件事,有几法,在第一法中有m1种不同的方法,在第 2 法中有m2种不同的方法??在第n 型法中有m n种不同的方法,那么完成件事共有N m1m2... m n种不同的方法. 2.分步数原理(乘法原理):完成一件事,需要分成n 个步,做第 1 步有m1种不同的方法,做第 2 步有m2种不同的方法??,做第n 步有m n种不同的方法;那么完成件事共有 N m1 m2...m n种不同的方法. 特提醒: 分数原理与“分”有关,要注意“ ”与“ ”之所具有的独立性和并列性; 分步数原理与“分步”有关,要注意“步”与“步”之具有的相依性和性,用两个原理行正确地分、分步,做到不重复、不漏. 3.排列:从 n 个不同元素中,任取m(m≤n) 个元素,按照一定的序排成一列,叫做从n 个不同元素中取出 m个元素的一个排列,m n叫做排列,m n 叫做全排列. 4.排列数:从 n 个不同元素中,取出m(m≤n) 个元素的所有排列的个数,叫做从n 个不同元素中取出 m个元素的排列数,用符号P n m表示. 5.排列数公式:P n m n(n1)( n2)...( n m1) (n n!( m n,n、 m N)m)! 排列数具有的性: P n m1P n m mP n m 1 特别提醒: 规定 0!=1

相关文档
相关文档 最新文档