文档库 最新最全的文档下载
当前位置:文档库 › DIN 53438-3英文版本

DIN 53438-3英文版本

DIN 53438-3英文版本
DIN 53438-3英文版本

DIN 53438 Part 3

Testing of combustible materials

Response to ignition by a small flame

Surface ignition

Dimensions in mm

1.Field of application

This standard specifies the method of test for determining the response of material to surface ignition, refered to in brief as method F. See DIN 53438 Part 1.DIN 50050 and DIN 50051 for general information, explanatory notes, concepts and apparatus. See DIN 53438 Part 2 for edge igniting(method K).

2 Test pieces

2.1Take or prepare 10 test pieces (see subclause 4.1) from the product to be tested. In the case of anisotropic products, take note of the direction of sampling and include this information in the test report.

2.2 The test pieces shall be 230mm in length by 90mm in width. Their thickness shall depend on the specifications for the product concerned or shall be agreed upon. Use only test pieces the thickness of which does not deviate from the thickness of all other test pieces by more than 10% at any point. If the given permissible deviation is exceeded, the test report shall contain a note to that effect.

2.3 Make gauge marks on each of the test pieces at the following distances from what will be lower edge when the test pieces is in the test position :40mm(lower guage mark) and 190mm (upper gauge mark)

3 Conditioning of test pieces

Prior to testing, the test pieces shall be stored in a DIN 50014-23/50-2 standard atmosphere. The duration of the conditioning period shall depend on the specification for the product under test, or shall be agreed upon. If no other specification obtains, then conditioning shall last for not less than 24h.

4 Procedure

4.1 The test shall be carried out on five test pieces. If no clear classification in accordance with sub clause

5.2 is possible, the test shall be repeated on five further test pieces

4.2 In the test area (laboratory) and exhaust hood, the ambient temperature shall, at least at the start of each test, lie between 18 and 28℃as specified in DIN 50014.

4.3 Measure the thickness of the test pieces on the central longitudinal axis at distances of 40,100and 160mm from their edges to ±0.1mm, or to ±0.01mm in the case of test pieces less than 1mm thick. Lay the test piece in the two-part frame(see DIN 53438 Part 1, June 1984 edition, subclause 4.1.3) so that the lower edge of the test piece coincides with the lower edge of the frame(see figure). Join the two parts of the frame using threaded or spring clips and suspend the frame vertically from the suspension device positioned in the test chamber. With the burner (see DIN 53438 Part 1, June 1984 edition ,subclause 4.1.1) set in the vertical position , anjust the flame to a height of 20 mm. With the flame at this height, leave the burner to burn for at least one minute prior to commencing the test, readjusting the height, if necessary, at the end of this period. Then incline the burner through 45°and close the test chamber.

4.4 Slide the burner towards the test piece so that the flame impinges on the test piece in the centre of the lower gauge mark..Then distance between the front edge of the stabilizer and the surface of the test piece shall be 5mm(see figure). Apply the flame to the test piece for 15 seconds and then withdraw the burner. Take particular care to ensure that no disturbing draughts are created as a result. Measure the burning time (see DIN 53438 Part 1, for concept)from the initial application of the flame until the flame on the burning test piece ceases to burn, or until the tip of the flame on the burning test piece reaches the upper gauge mark. If the test piece continues to glow after the flame is extinguished, measure the afterglow time(see DIN 53438 Part 1, for concept)from the extinction of the flame on the test piece until glowing ceases. Any particular observations during the course of the test shall ba noted in the test report; these may include formation of smoke and soot, material falling and dripping from the test piece and whether such material continues to burn on reaching the floor of the chamber, appearance of the molten edge(e.g. whether a frame work is left),burning on both sides or just on one, shrinkage of the test piece away from the flame, burning of a hole through the test piece, extent of burning .Then assess the test piece in accordance with clause 5 and assign it to a class.

4.5 The frame and the suspension device shall have cooled to an ambient temperature of 18 to 28, as specified in DIN 50014, before a subsequent test may be commenced.

5 Assessment and evaluation

5.1 Each of the test piece tested asdescribed in subclause 4.4 shall be assessed in accordance with table below:

Then mean thickness of the test piece shall be suffixed to the indication of the class, the two values being separated by an oblique stroke. Thicknesses 1mm or greater shall be rounded to within 0.1mm, and thicknesses less than 1mm shall be rounded to within 0.01mm. (For example: F1/3.5 mm signifies class F1(face ignition) for a test piece with an average thickness of 3.5mm.)

5.2 Evaluation in accordance with subclause 5.1shall be subject to the following specifications:

1 If all test pieces of a material can be assigned to the same class, the material shall be said to belong to that class.

2 If two of the five test pieces of a material are to be assigned to an inferior class, the material shall be said to belong to the inferior class.

3 If one of the five test pieces is to be assigned to an inferior class, the test shall be repeated on five new test pieces of the same material. If retesting results in one or more test pieces being assigned to an inferior class, the material shall be said to belong to the inferior class.

5.3 Average the burning times of the test pieces tested in accordance with subclause 4.4, and state the mean value, in seconds, rounded to the nearest second, in the test report as the mean burning time of the material. Average the afterglow times of the test pieces tested in accordance with subclause 4.4 and state the mean value, in seconds, rounded to the nearest seconds, in the test report as the mean afterglow time of the material.

6.Test report

The test report shall refer to this standard and include the following particulars:

a)type and designation of the product(material) tested;

b)method and date of production of the test pieces, indicating the direction of sampling, if

relevant;

c)conditioning of the test pieces;

d)statement of which surface was tested, or whether both were tested;

e)mean thickness obtained from measuring all test pieces in accordance with subclause 4.3;

minimum and maximum thicknesses measured;

f)mean burning time;

g)mean afterglow time;

h)class, indicating the mean measured thickness, as specified in subclause 5.1

i)point of flame impingence in the case of test pieces thicker than 3 mm;

j)particular observations made during the test as described in subclause 4.4。

k)date of test.

关于高镍奥氏体球墨铸铁充满度的验证1C

铸造技术2009年第9期 高镍奥氏体球墨铸铁饱和度和碳当量的验证 程武超赵新武党波涛靳宝 (西峡县内燃机进排气管有限责任公司河南西峡474500) 摘要用不同的饱和度和碳当量的铁液浇注不同厚度的高镍奥氏体球墨铸铁试块,从金相组织、力学性能上对高镍奥氏体球墨铸铁的饱和度和碳当量进行了验证。事实证明,饱和度A 超过4.9时,在不同的厚度上仍能得到球化率和力学性能合格的铸件。当碳当量取较高值时,降低了铁液的液相线温度,熔炼温度随之下降,反过来又减少了高温熔炼带来的不利影响。在不产生冷隔的前提下,为降低浇注温度创造了条件。较高的碳当量有利于凝固过程的石墨化膨胀所产生的自补缩效果,可以减少缩松和缩孔缺陷。 关键词饱和度球化率力学性能缩松和缩孔 中图分类号:TG143.5 文献标识码:A 文章编号:100-8365(2009)19-1097-05 V erification of Austenite nodular cast iron Saturation and Carbon Equivalent CHENG Wu –chao, ZHAO Xin-wu, DANG Bo-tao, JIN Bao (Xixia Intake & Exhaust Manifold Co., Ltd, Xixia 474500 China) Abstract: Austenite nodular cast iron test block with different thickness were cast from different saturation and CE,and the saturation and CE were verified by microstructure and mechanical properties. It proves that qualified castings with different thickness in nodularity and mechanical properties are still obtained when the saturation (A) value exceeds 4.9. Adopting high value of CE can low the liquidus temperature of molten iron, which makes the melting temperature decrease, and it conversely reduces detrimental affect for high temperature melting. Under the precondition that no cold shut occurs, it creates conditions to decrease pouring temperature. Higher CE is helpful to improve the self-feeding ability of graphitizing expansion during solidification process, and to reduces casting defects, such as shrinkage and blowhole. Keywords: Saturation; Nodularity; Mechanical properties; shrinkage and blowhole 高镍奥氏体球墨铸铁是耐高温、耐腐蚀、抗氧化性能较好的铸铁材料。目前已成为排气歧管的首选材料,但是受充满度的影响,不少生产厂家不敢越雷池一步。特别是初次生产这种材质的厂家,试制中一旦出现碎块状石墨,就误认为是充满度过高造成的。为了获得较好的基体组织,总是在充满度上做文章,结果适得其反。当把A压的过低的时候,CE随之下降,铁液的流动性下降,缩松、缩孔缺陷更加严重;产生了恶性循环。使这种材料的正确应用受到了影响。据资料介绍,高镍奥氏体球铁中的碳、硅、镍含量必须满足饱和度公式: A≥TC%+0.2Si%+0.06Ni% 式中A称为饱和度,当铁液中的碳、硅、镍大于某一极限值(饱和度A)时则石墨形态就呈碎块状分布;奥氏体枝晶发达,铁液流动性差,补缩困难,极易产生缩松、缩孔缺陷。有资料介绍A不能大于4.4⑴⑵。本文通过试验证明饱和度A≥4.4,甚至超过4.9时,在不同厚度的试块上仍能得到球化率和力学性能合格的铸件。在较高的碳当量下由于石墨化膨胀所产生的自补缩效果,减少了缩松和缩孔缺陷。现以高镍奥氏体球墨铸铁D5S的铸造工艺为例对上述观点进行阐述。 作者简介:程武超(河南西峡人),高级工程师,铸造工艺研究。

可锻铸铁与球墨铸铁

湘西民族职业技术学院备课用纸 课题:可锻铸铁与球墨铸铁讲授节数2节 授课班级11-5高模具1 11-5高数控1 11-5高数控2 11-5高数控3 11-5高数控4 授课日期星期日/ 月星期日/ 月星期日/ 月星期日/ 月星期日/ 月教学目的要求:掌握可锻铸铁化学成分;了解可锻铸铁的性能及用途;掌握可锻铸铁的牌号表示方法;了解球墨铸铁的性能;了解球墨铸铁常用热处理工艺种类;掌握球墨铸铁的牌号表示方法。学会正确识别可锻铸铁与球墨铸铁;能正确选用球墨铸铁常用热处理方法。 教学重点:1、可锻铸铁化学成分; 2、可锻铸铁的性能及用途; 3、球墨铸铁的性能。 教学难点:1、可锻铸铁的牌号表示方法; 2、球墨铸铁常用热处理; 3、球墨铸铁的牌号。 作业布置:配套习题册一、5.6.7.8. 二、6.7.8.9.10. 三、4.5.6。 教具:三角板一只。 教学过程转下页课后小结:本次课重点在于学习可锻铸铁及球墨铸铁的组织、性能及牌号,难点在于可锻铸铁及球墨铸铁的热处理工艺。通过学习本节内容,再联系前面第六章学习过的钢的热处理工艺加于比较,看看铸铁的热处理于钢的热处理工艺有何异同。注意一点可锻铸铁是不可以锻造的哦,而球墨铸铁的性能是所有几种铸铁中力学性能最好的。

可锻铸铁,由一定化学成分的铁液浇注成白口坯件,再经退火而成的铸铁,有较高的强度、塑性和冲击韧度,可以部分代替碳钢。可锻铸铁白口铸铁通过石墨化退火处理得到的一种高强韧铸铁。有较高的强度、塑性和冲击韧度,可以部分代替碳钢。它与灰口铸铁相比,可锻铸铁有较好的强度和塑性,特别是低温冲击性能较好,耐磨性和减振性优于普通碳素钢。这种铸铁因具有-定的塑性和韧性,所以俗称玛钢、马铁,又叫展性铸铁或韧性铸铁。 8.2.1 可锻铸铁化学成分 首先浇注成白口铸铁件,然后经可锻化退火(可锻化退火使渗碳体分解为团絮状石墨)而获得可锻铸铁件。可锻铸铁的化学成分是: wC=2.2%~2.8%,wSi=1.0%~1.8%,wMn=0.3%~0.8%,wS≤0.2%,wP≤0.1%。可锻铸铁的组织有二种类型: (1)铁素体(F)+团絮状石墨(G); (2)珠光体(P)+团絮状石墨(G)。 8.2.2 可锻铸铁的性能及用途 1. 可锻铸铁的性能 白口铸铁的切削加工性能极差,但是经过高温回火后,有较高的强度和可塑性,可以切削加工。由于可锻铸铁中的石墨呈团絮状,对基体的割裂作用较小,因此它的力学性能比灰铸铁高,塑性和韧性好,但可锻铸铁并不能进行锻压加工。可锻铸铁的基体组织不同,其性能也不一样,其中黑心可锻铸铁具有较高的塑性和韧性,而珠光体可锻铸铁具有较高的强度,硬度和耐磨性。 2. 可锻铸铁的用途 黑心可锻铸铁的强度、硬度低,塑性、韧性好,用于载荷不大、承受较高冲击、振动的零件。 珠光体基体可锻铸铁因具有高的强度、硬度,用于载荷较高、耐磨损并有一定韧性要求的重要零件。 8.2.3 可锻铸铁的牌号表示方法 1. 牌号表示方法 可锻铸铁的牌号是由“KTH”(“可铁黑”三字汉语拼音字首)或“KTZ”

高镍奥氏体球墨铸铁汽车排气歧管及铸造方法

高镍奥氏体球墨铸铁汽车排气歧管及铸造方法 技术领域 本发明属于汽车排气歧管技术领域,具体涉及高镍奥氏体球墨铸铁汽车排气歧管及铸造方法。 背景技术 随着社会经济条件的发展,市场上不断涌现中、高档轿车,其马力和排放量对汽车零部件的工作条件要求越来越高,如传统排气歧管的工作温度超过900℃,特别在热、冷交变的工作条件下,排气歧管的强度和塑性差,容易造成变形和开裂,致使发动机工作压力不够,而影响轿车的速度,严重时造成发动机工作失灵,不能满足汽车工业的发展,因此对材料选择要求量体裁衣。 高镍奥氏体球墨铸铁因为有其良好的耐腐蚀、耐高温抗氧化性,生产操作中无辐射,无毒害等多种优点,在美国,德国,英国等西方发达国家已部分运用到汽车关键零部件生产。由于高镍奥氏体球墨铸铁铁液表面张力大,收缩倾向大,降温快,流动性差的特点,将其用于汽车排气歧管存在由于排气歧管壁薄,结构复杂,热节部位多,铸件最易出现缩孔,缩松,浇不足和冷隔缺陷。因此高镍奥氏体球墨铸铁在汽车排气歧管的铸造技术在国内外还 发明内容 为解决上述铸造技术中存在的问题,本发明的目的是提供一种高镍奥氏体球墨铸铁汽车排气歧管及其铸造方法,用高镍奥氏体球墨铸铁铸造的汽车排气歧管具有良好的耐腐蚀性,耐热性,耐热冲击性和

热延展性的。 为实现上述发明目的,本发明采用的技术方案是:利用高镍奥氏体球墨铸铁代替现有的铸铁铸造成的汽车排气歧管。 其铸造工艺步骤为制芯、造型、合型、熔炼铁液、浇注、开箱落砂和清理入库,其中: l、制芯:采用低氮高强度覆膜砂,覆膜砂的强度≥3.4Mpa,低发气≤14m/g:排气歧管的内砂芯为内流通砂芯,外腔砂芯在两管卡档处位置镶冷铁: 2、造型:覆膜砂芯组合成型后,采用大孔流量浇注系统工艺,利用侧冒口补缩,由潮模砂提供浇注时的静压头: 3、熔炼铁液:熔炼温度1600~1700℃;采用镁硅合金为球化剂进行球化处理,镁硅合金球化剂的加入量为O.9-1.29/6;用硅铁孕育剂在包内孕育一次,硅铁孕育剂的加入量为0.3-0.5%,用硅锶孕育剂在浇注瞬时再次孕育,硅锶孕育剂的加入量为0.13-0.16%:出炉温度为1650℃~1690℃。 4、浇注工艺 采用大流量、高温快浇的工艺,浇注首箱温度≤1560℃,浇注末箱温度≥1470℃。 采用上述技术方案的有益效果是:高镍奥氏体球墨铸铁具有良好的耐腐蚀性、耐高温性、抗氧化性、延展性、无辐射等特性,运用于制造汽车排气歧管上,可使排气歧管具有良好的耐腐蚀性,耐热性,耐热冲击性和热延展性,可以满足中、高档轿车其马力和排

球墨铸铁

球墨铸铁 球墨铸铁是指铁液经球化处理后,使石墨大部或全部呈球状形态的铸铁。 与灰铸铁比较,球墨铸铁的力学性能有显著提高。因为它的石石墨呈球状,对基体的切割作用最小,可有效地利用基体强度的70%~80%灰铸铁—般只能利用基体强度的30%。球墨铸铁还可以通过合金化和热处理,进一步提高强韧性、耐磨性、耐热性和耐蚀性等各项性能。球墨铸铁自1947年问世以来,就获得铸造工作者的青睐,很快地投入了工业性生产。而且,各个时期都有代表性的产品或技术。20世纪50年代的代表产品是发动机的球墨铸铁曲轴,20世纪60年代是球墨铸铁铸管和铸态球墨铸铁,20世纪70年代是奥氏体-贝氏体球墨铸铁,20世纪80年代以来是厚大断面球墨铸铁和薄小断面轻量化、近终型球墨铸铁。 如今,球墨铸铁已在汽车、铸管、机床、矿山和核工业等领域获得广泛的应用。据统计,2000年世界的球墨铸铁产量已超过1500万吨o 球墨铸铁的牌号是按力学性能指标划分的,国标GB/T 1348-1988《球墨铸铁件》中单铸试块球墨铸铁牌号,见表1。 表1xx试块球墨铸铁牌号 牌号 QT400-18 QT400-15 QT450-10 QT500-7 QT600-3 QT700-2 QT800-2抗拉强度Rm

MPa 400 400 450 500 600 700 800断后伸长率A%18 15 107322布氏硬度 HBW 130~180 130~180 160~210 170~230 190~270 225~305 245~335主要金相组织 铁素体铁素体+珠光体+铁素体珠光体或回火组织贝氏体或回火组织QT900-~360

6高镍奥氏体球墨铸铁综述

高镍奥氏体球墨铸铁综述 赵新武张居卿 (西峡县内燃机进排气管有限责任公司河南西峡474500)摘要:本文对高镍奥氏体球墨铸铁的化学成分、金相组织、力学性能、热处理、使用要求及其工艺控制要点进行了综述。打破了传统的“充满度”理论,利用较高的“碳当量”,获得了理想的效果。 关键词:充满度碳当量热处理 高镍奥氏体球墨铸铁因其具备优异的抗热冲击性、抗热蠕变性、耐蚀性、高温抗氧化性以及低的热膨胀性和低温冲击韧性,在国内外被广泛用于制造海水泵、阀、增压器壳体、排气管、气门座等耐热、耐蚀的零部件产品。奥氏体球墨铸铁具有原子紧密堆积的面心立方晶格结构,在常温下具有稳定的奥氏体组织,具有比普通球墨铸铁和硅钼球墨铸铁都高的热化学稳定性。应用前景十分广阔。 此处所说的高镍奥氏体球墨铸铁是指含镍量大于12%,在铸态下获得奥氏体基体,石墨呈球状的铸铁。是球墨铸铁的特殊品种。 在“铸造技术标准手册”(2004年5月版)中把高镍奥氏体球墨铸铁列为耐蚀铸铁。 高镍奥氏体球墨铸铁在750℃左右仍有良好的抗氧化能力和令人满意的力学性能,特别重要的是,由于其基体组织为奥氏体,在临界温度附近没有相变,因而不易因骤冷骤热而产生变形或裂纹。 某些牌号的高镍奥氏体球墨铸铁在很低的温度下仍具有良好的伸长率和抗拉强度。例如QTANi23Mn4在-196℃抗拉强度≥620MPa,伸长率≥27%。 高镍奥氏体球墨铸铁有各种不同的牌号,本文侧重于QTANi35Si5Cr2的某些特点综述一些共性的东西,读者可依据不同的牌号、铸件和不同的工况条件作为参考。 1 化学成分 奥氏体铸铁牌号符合GB/T 5612的规定,依据GB/T56648分为12个牌号,分别见表1、表2。 表1 奥氏体铸铁化学成分(一般工程用牌号) 表2 奥氏体铸铁化学成分(特殊用途牌号)

球墨铸铁知识汇总介绍

球墨铸铁知识汇总介绍 1947年英国H. Morrogh发现,在过共晶灰口铸铁中附加铈,使其含量在 0.02wt%以上时,石墨呈球状。 1948年xx A. P. Ganganebin等人研究指出,在铸铁中添加镁,随后用硅铁孕育,当残余镁量大于 0.04wt%时,得到球状石墨。从此以后,球墨铸铁管开始了大规模工业生产。 球墨铸铁管http: 53.5万吨,1970年增长到500万吨,1980年为760万吨,1990年达到915万吨。 2000年达到1500万吨。球墨铸铁的生产发展速度在工业发达国家特别快。世界球墨铸铁产量的75%是由美国、日本、德国、意大利、英国、法国六国生产的。 我国球墨铸铁生产起步很早,1950年就研制成功并投入生产,至今我国球墨铸铁年产量达230万吨,位于美国、日本之后,居世界第三位。适合我国国情的稀土镁球化剂的研制成功,铸态球墨铸铁以及奥氏体-贝氏体球墨铸铁等各个领域的生产技术和研究工作均达到了很高的技术水平。 (1)铸态珠光体球墨铸铁曲轴和铸态铁素体球墨铸铁汽车底盘零件分别在我国第二汽车厂、南京汽车厂和第一汽车厂相继投产。这标志着我国铸态球墨铸铁生产达到了较高水平。与之相适应的包外脱硫、双联法熔炼、瞬时孕育、孕育块技术以及音频检测和热分析快速分析等技术的采用,则标志着我国大量流水生产汽车铸件的技术水平与国际先进水平的差距正在缩小。 (2)试验研究了大断面(壁厚大于120mm)球墨铸铁的冶金因素以及相应的生产工艺措施。采用适量的钇基重稀土复合球化剂、强制冷却、顺序凝固、延后

孕育,必要时添加微量锑、铋等可防止球墨铸铁件中心部位的石墨畸变和组织疏松等,现已成功地制作了38吨重的大型复杂结构件, 17.5吨重的柴油机体、截面为805mm的球墨铸铁轧辊等。 (3)奥氏体-贝氏体球墨铸铁的研究与应用。20世纪70年代初,几乎同时中国、美国、芬兰3个国家宣布研究成功了具有高强度、高韧性的奥氏体-贝氏体球墨铸铁(国际上统称ADI),这种材质的抗拉强度达1000MPa,因此它广泛应用于齿轮以及各种结构件,与合金钢相比,奥-贝球墨铸铁具有显著的经济效益和社会效益。 (4)球墨铸铁管和水平连续铸造球墨铸铁型材。我国已相继建成几个球墨铸铁管厂,且近几年还将有几个球墨铸铁管厂建成。2000年,我国年产离心铸造球墨铸铁管达90万吨。此外,我国自行研制的水平连续铸造球墨铸铁型材生产线已通过国家鉴定,并已有多家企业投产。再加上我国引进的一条生产线,至2002年,我国年产球墨铸铁型材的能力达数万吨。 (5)系统地测定了稀土镁球墨铸铁的力学性能及其他性能,为设计人员提供了有关数据。测定了稀土镁球墨铸铁的比重、导热性、电磁性等物理性能,结合金相标准研究了石墨和基体组织对球墨铸铁性能的影响规律。系统地测定了铁素体球墨铸铁在常温、低温、静态和动态条件下的各种性能。此外,还研究了稀土镁球墨铸铁的应力应变性能、小能量多冲抗力和断裂韧性,并开始用于指导生产。结合球墨铸铁齿轮的应用,还系统地研究了球墨铸铁的弯曲疲劳强度和接触疲劳强度,以及球墨铸铁齿轮的点蚀、剥落机理等。 (6)稀土镁球墨铸铁。在高强度低合金球墨铸铁方面,除了对铜、钼研究较多外,还对镍、铌等进行了研究。在利用天然钒钛生铁制作钒钛合金球墨铸铁方面,国内一些单位进行了大量、系统的工作。中锰球墨铸铁虽然在性能上不够稳定,但多年来的系统研究与生产应用,取得了显著的经济效益。 在耐热球墨铸铁方面,除了中硅球墨铸铁以外,系统研究了Si+Al总量对稀土镁球墨铸铁抗生长能力的影响。我国研制的RQTAL5Si5耐热铸铁用作耐热炉条的使用寿命是灰铸铁的3倍,是普通耐热铸铁的2倍,并与日本Cr25Ni13Si2耐热钢的使用寿命相当。

相关文档