文档库 最新最全的文档下载
当前位置:文档库 › 桦褐孔菌甲醇提取物抗氧化及抗炎作用研究

桦褐孔菌甲醇提取物抗氧化及抗炎作用研究

桦褐孔菌甲醇提取物抗氧化及抗炎作用研究
桦褐孔菌甲醇提取物抗氧化及抗炎作用研究

甲醇 丙酮 乙醇的GC定量分析教学内容

甲醇丙酮乙醇的G C 定量分析

精品资料 摘要:目的:建立法莫替丁中甲醇、丙酮和乙醇残留量的测定方法。方法采用毛细管气相色谱法,色谱柱为H P-W a x;柱温:50℃保持3m i n,以20℃/m i n升温至120℃保持4m i n;载气为氮气;检测器为 F I D;外标法计算含量。结果:在该色谱条件下,测得各溶剂线性均良好(r=0.9996~0.9997);平均回收率分别为97.86%,98.16%和98.04%,R S D分别为1.34%, 1.21%和0.94%;甲醇、丙酮和乙醇的最低检测限分别为0.004%、0.002%和0.004%;3批样品中上述有机溶剂残留量均符合要求。结论:该毛细管气相色谱法灵敏、准确、可靠,适用于本品中有机溶剂残留量测定。 关键词:法莫替丁;毛细管气相色谱法;有机溶剂残留量 药物中的残留溶剂是指在原料药或赋型剂的生产中,以及在制剂制备过程中产生或使用的有机挥发性化合物。由于残留溶剂不仅没有疗效,还可能增加药物的毒副作用,而且影响药物的稳定性,故所有的有机溶剂应尽可能除去。为了保护患者免受药物中残留有机溶剂的伤害,需对药品在生产过程中引入的有机溶剂残留量进行测定。法莫替丁为组胺H2受体阻滞药,对胃酸分泌具有明显的抑制作用,适用于消化性溃疡(胃、十二指肠溃疡)、急性胃黏膜病变、反流性食管炎以及胃泌素瘤。由于合成本品过程中使用甲醇等有机溶剂,故有可能会残留在产品中,本文参考中国药典2000年版二部法莫替丁项下方法,建立了气相色谱法,以毛细管柱代替填充柱,同时测定法莫替丁中甲醇、丙酮和乙醇残留量,结果表明本法分离度高、灵敏、准确且简便。 1实验部分 1.1仪器与试药 美国惠普公司H P5890型气相色谱仪,甲醇、丙酮、乙醇及二甲基甲酰胺(D M F)均为分析纯试剂。法莫替丁自制样品(批号200302001、200302002、200302003),法莫替丁市售品(郑州瑞泰制药有限公司,批号20030203)。 1.2色谱条件 色谱柱:H P-W a x(键合聚乙二醇,30m×0.32m m×0.50μm);柱温:50℃保持3m i n,以20℃/m i n升温至120℃保持4m i n;检测室温度:200℃;进样温度:200℃;载气:氮气;柱头压:68.95k P a;F D I 检测器;顶空进样0.5m L。 1.3溶液配制 对照溶液:称取299.8m g甲醇、500.2m g丙酮、499.6m g乙醇于100m L容量瓶中,加D M F稀释至刻度,为对照贮备溶液,每1m L含2.998m g甲醇、5.002m g丙酮、4.996m g乙醇。依次取0.2、 0.4、0.6、0.8、1.0m L对照贮备溶液 分别至10m L容量瓶中,加D M F稀释至刻度,制得系列浓度的对照溶液,每1m L含甲醇60.0、120、180、240、300μg;丙酮100、200、300、400、500μg;乙醇100、200、300、400、 500μg。 供试品溶液:称取2g供试品于20m L容量瓶中,加D M F溶解并稀释至刻度。测定:精密量取对照溶液和供试品溶液各10m L,分别置于25m L顶空瓶中,在80℃的恒温箱中加热30m i n,取顶空气0.5m L进样。 2结果与讨论 2.1专属性试验 取甲醇、丙酮和乙醇依次进样,记录保留时间作为定性指标。色谱图中各成分峰的保留时间分别为 2.577m i n、1.913m i m和 3.048m i n,各成分峰之间峰分离度良好。 2.2线性范围 取系列浓度的对照溶液(每1m L含甲醇60.0、120、180、240、300μg;丙酮100、200、300、400、500μg;乙醇100、200、300、400、500μg)依次进样,记录峰面积。将峰面积对浓度进行回归,得回归方程。 2.3回收率试验 仅供学习与交流,如有侵权请联系网站删除谢谢2

猴头菌提取物抗氧化活性研究

猴头菌提取物抗氧化活性研究 分别采用还原力测定法、Fenton法、2,2-二苯基-1-苦肼基(DPPH)分析法和改良邻苯三酚自氧化法,对猴头菌子实体水提物和醇提物的总还原力,清 除?OH、DPPH?和O - 2?自由基的能力进行测定。结果表明:醇提物还原力 较强,且还原力大小与浓度成正比;猴头菌水提物和醇提物均有清除?OH、DPPH? 和O - 2?自由基的能力,且水提物的效果比醇提物好;水提物和醇提物对?OH、DPPH?和O - 2?的清除能力依次为DPPH?、?OH和O - 2?,并且在一定浓 度范围内,清除率与浓度成正比。 猴头菌;清除自由基;抗氧化活性 人体持续暴露在活性氧与促氧化剂中时,很容易引起机体组织产生氧化应激,导致代谢性功能紊乱以及一系列的慢性疾病[1]。食用一些富含具有抗氧化活性物质的功能性食品可以减轻机体组织氧化应激或预防损伤。一些合成抗氧化剂与天然抗氧化剂相比,尽管具有很强的清除自由基活性,但同时也具有强的毒副作用,因此人们倾向于从自然界中寻求更安全的抗氧化剂。LEE等[2]从桦褐孔菌(Inonotus obliquus)中分离到一些具有较强活性的抗氧化成分(多酚类化合物)。MAU等[3]研究表明灵芝(Ganoderma lucidum)是很好的天然抗氧化剂。同为食用菌的猴头菌(Hericium erinaceus)是著名的药膳两用真菌,具有抗溃疡、抗炎症、抗肿瘤、抗衰老、抗疲劳、提高机体耐缺氧能力、增加心肌血液输出量、加速机体血液循环、降血糖、保肝护肝和降血脂、降血压等作用[4]。笔者通过对猴头菌子实体的水提物和醇提物总还原力、清除?OH、2,2-二苯基-1-苦 肼基自由基(DPPH?)及O - 2?自由基的研究,旨在为其在医药保健方面的 利用提供理论依据。 1 材料与方法 1.1材料 猴头菌(H. erinaceus)子实体由上海市农业科学院食用菌研究所提供。 1.2主要试剂与仪器 柠檬酸、Na 2HPO 4、NaH 2PO 4、六氰合铁酸钾(铁氰化钾)、醋酸、三氯化铁、维生素C、FeSO 4?7H 2O、30%H 2O 2溶液、水杨酸、无水乙醇、95%乙醇等(国药集团化学试剂有限公司),DPPH(美国Sigma公司),实验用水(娃哈哈纯净水);infinite M200 PRO酶标仪(瑞士TECAN公司);UVmini-1240分光光度计(日本SHIMADZU 公司)。 1.3提取物的制备 1.3.1水提物 干燥猴头菌子实体,用粉碎机粉碎,称取50 g粉末,加1 L蒸馏水超声20 min,过滤,滤液减压浓缩,反复3次,合并浓缩液,转至蒸发皿中,60 ℃水浴蒸干,备用。 1.3.2醇提物 同样称取50 g猴头菌子实体粉末,加1 L 95%乙醇超声20 min,过滤,其

生姜的综合利用及前景分析

生姜的综合利用及前景分析 姜又名地辛、百辣云,系姜科多年生宿根草本植物的根茎,是一种广泛应用的药食两用植物,原产于太平洋群岛,我国中部、东南部至西南部广为栽培,在河南、山东、湖北、四川等省种植较多,资源丰富,著名的品种有白姜、片姜、黄瓜姜、台姜、黄姜、白丝姜、黄丝姜、义乌生姜、贵州的生姜和四川的蜀姜等。姜是我国传统的出口创汇农副产品之一,在山东、广西、湖南、江西等地均有大量出口。国内姜产品在药用或保健产品方面还是空白。因此大力种植姜产业,综合开发利用生姜产品是一条致富之路。 1 生姜的药用价值 自古被医学家视为药食同源的保健品,具有祛寒,祛湿、暖胃、加速血液循环等多种功能。临床药用多以复方为主,姜入药分为生姜、干姜两种。食用生姜及制品具有防癌作用,生姜能减轻晕车等产生的头痛头晕、恶心、呕吐等,目前国外已研制防晕生姜胶囊,还开发有强心剂、抗肿瘤剂、防晕剂和抗过敏制剂外,还开发了姜在保健方面的应用,如制成脱毛剂、口腔卫生的制剂等。生姜油不但有独特的芳香,更有行气开窍、通血驱毒之功效。 2 生姜的食用价值 生姜是一种很有开发利用价值的经济作物,除含有姜油酮、姜酚等主要生理活性物质处,还含有蛋白质、多甙、维生素和多种微量元素,集营养、调味、保健于一身。生姜利用部分为辛辣的根茎,由于其独特的保健功能,被广泛用于烹调和食用的加香,姜精油、姜抽提物、姜油树脂等是食品工业广泛应用的香料。 生姜油中含有多种具有营养保健作用的物质,如姜辣素、姜醇、姜烯、姜酚类化合物、姜油酮、茴香萜、桉叶油精等有效物。用它可调味、腌渍、提取香精等。 生姜的综合开发利用 3.1 几种食用生姜制品与加工方法 3.1.1 糖渍冰姜 鲜姜-清洗-切片-煮沸-漂洗-沥干-加糖水-煮沸-浓稠-加糖粉-拌匀-摊晒-干燥-冰姜

甲醇水分离过程板式精馏塔的设计

化工原理课程设计计算说明书 题目:甲醇—水精馏塔设计 学院名称:化学工程学院 专业:化学工程与工艺 班级: 11-1 姓名:赵讯 学号:11402010116 指导教师:张亚静 2014年1月10日

目录 第一章设计任务书 (1) 第二章设计原则 (2) 第三章设计步骤 (3) 第四章精馏塔的工艺计算 (4) 第五章精馏塔的工艺条件及有关物性数据的计算 (9) 第六章塔板主要工艺尺寸的计算 (11) 第七章筛板的流体力学验算 (15) 第八章塔板负荷性能图 (18) 第九章辅助设备的计算和选型 (21) 设计评述 (27) 参考文献 (27)

第一章设计任务书 1.1 设计题目 设计题目:甲醇—水分离过程板式精馏塔的设计 设计要求:年产纯度为99%(质量分数,下同)的甲醇,塔底馏出液中含甲醇不得高于0.05%,原料液中含甲醇22%。 生产能力11100L/h 1.2操作条件 1) 操作压力常压 2) 进料热状态饱和进料 3) 回流比自选 4) 塔底加热蒸气压力0.3Mpa(表压) 1.3塔板类型 筛孔塔 1.4 工作日 每年工作日为330天,每天24小时连续运行。 1.5 设计说明书的内容 (1) 流程和工艺条件的确定和说明 (2) 操作条件和基础数据 (3) 精馏塔的物料衡算; (4) 塔板数的确定; (5) 精馏塔的工艺条件及有关物性数据的计算; (6) 精馏塔的塔体工艺尺寸计算; (7) 塔板主要工艺尺寸的计算; (8) 塔板的流体力学验算; (9) 塔板负荷性能图; (10)主要工艺接管尺寸的计算和选取 (11) 塔板主要结构参数表 (12) 对设计过程的评述和有关问题的讨论

植物提取物抗氧化成分及研究进展

植物提取物抗氧化原理及成分研究 抗氧化是抗氧化自由基的简称。因为人体常与外界接触,平时的呼吸、外界污染、放射线照射等因素会导致人体内产生自由基,过量的自由基会导致人体癌症、衰老和其它疾病,而抗氧化自由基(以下简称“抗氧化”)可以有效克服这些危害。因此,抗氧化已成为保健品和化妆品市场的主要研究课题之一。 本文从多种类植物提取物抗氧化成分及其原理出发,阐述了各界近年来利用植物对抗自由基的研究进展。 一、植物提取物抗氧化原理 不同的植物提取的有效成分不尽相同,同样,抗氧化作用的植物提取物也有很多不同成分,其作用机理也有所区别,西安源森生物从以下几方面进行了总结阐述: (一)作用于与自由基有关的酶 与自由基有关的酶类分为氧化酶与抗氧化酶两类,植物提取物的抗氧化作用体现在抑制相关氧化酶的活性和增强抗氧化酶活性两方面。 1. 抑制氧化酶的活性 生物体内许多氧化酶,如P-450 酶、黄嘌呤氧化酶(XOD)、脂氧化酶、髓过氧化酶(MPO)和环氧酶等,与自由基的生成有关,能诱发大量的自由基。 另外,诱导型一氧化氮合成酶(iNOS)在缺血再灌注时活性增加,产生大量NO而导致氧化损伤。 研究表明,许多植物提取物对上述各种氧化酶有抑制作用,从源头抑制自由基生成。黄酮类化合物中的槲皮素、姜黄素在缺血再灌注损伤时可抑制iNOS 的活性,从而起到抗氧化作用;绞股蓝皂苷可以降低异常增高的XOD 和MPO 的活性,改善糖尿病大鼠肾脏的氧化应激,延缓肾脏损害的进展。 2. 增强抗氧化酶活性 机体存在具有防护、清除和修复过量自由基伤害的抗氧化酶类,如过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)和过氧化物酶等。SOD 是体内超氧阴离子的主要清除者,将其催化分解为H2O2,但H2O2也具有氧化损伤作用,CAT 将其转化为O2和H2O。同时H2O2也可通过GSH-Px 的催化和还原型谷胱甘肽(GSH)反应生成H2O,同时生成氧化型谷胱甘肽。 许多研究表明,植物提取抗氧化成分不仅能防护体内抗氧化酶,还能增强机体内抗氧化酶活性,如黄酮类中的槲皮素能减少胰岛β细胞的氧化损伤,同时还能恢复Fe2+致肾细胞损伤动物的SOD、GSH-Px 和CAT 的活力;皂苷类物质对氧自由基本身影响较少,但大多能提高体内SOD、CAT 等抗氧化酶的活性,从而增强机体抗氧化系统功能。 此外,一些天然物质可在基因与转录水平上诱导体内抗氧化酶如SOD 的表达,发挥其抗氧化作用。 (二)抗氧化成分之间互补和协同作用 植物提取物抗氧化成分之间存在相互补充、相互协调的关系,在体内通过电子和/ 或质子转移、作用于氧化酶和抗氧化酶、螯合钝化过渡金属离子、影响基因表达等途径联合发挥抗氧化作用。 研究发现不同浓度的茶多酚和西洋参之间均存在明显的协同增效作用,并且随着浓度上升,协同增效作用也相应增强。VE 和VC对鹰嘴豆抗氧化多肽的还原能力有显著的增效作用,且VC与鹰嘴豆抗氧化多肽的协同作用较VE更强,所有的协同作用随添加量和作用时间的增加而增强。 (三)直接清除或抑制自由基 植物提取物能够作为氢质子或电子的供给体,直接猝灭或抑制自由基,终止自由基的连

生物活性肽的研究及其进展汇总

生物活性肽的研究及其进展 摘要:生物活性肽作为一种来源广泛、种类繁多、功能性良好的生命因子,目前已成为全球范围内的研究热点。研究表明这些肽除具有常规的生物活性,如增加矿物质吸收、调节血压、抗菌、抗氧化、降胆固醇、免疫调节之外还对人类营养有调节作用,因而受到广泛关注。本文综述了生物活性肽的种类、生理功能、吸收、制备研究进展,以期为生物活性肽的进一步研究和应用提供参考。 关键词:生物活性肽,生理活性,吸收 Research and progress of biological active peptide Abstract:Bioactive peptides as one rich sources, wide variety, good functional life factors have been a global research hot spot. Studies have shown that these peptides have some conventional biological activities, such as increase mineral absorption, adjust blood pressure, antibacterial, antioxidant, decrease cholesterol, regulate immune. What’s more, they also have a regulating effect on human nutrition, so they have attracted widely attention. The kinds of bioactive peptides was reviewed in this paper, preparation research progress of physiological function, absorption and biological active peptide in order to provide reference for further research and application. Key words:Biological active peptide, Physiological activity, Absorb 1.功能肽的简介 肽(peptides)是分子结构介于氨基酸和蛋白质之间的一类化合物,是蛋白质的结构与功能片段,并使蛋白质具有数以千万计的生理功能。肽本身也具有很强的生物活性。是由蛋白质中20种天然氨基酸以不同的组合和排列的方式构成的,从二肽到复杂的线性或者环状的多肽的总成。一般说来,肽链上氨基酸数目在10个以内的叫寡肽,10~50个的叫多肽,50个以上的叫蛋白质。人们习惯上也把寡肽中的二、三肽称为小肽。由于构成肽的氨基酸种类、数目与排列顺序的不同,决定了肽纷繁复杂的结构与功能。 生物活性肽( biologically active peptide/ bioactive peptide/ biopeptide) 是指对生物机体的生命活动有益或具有生理作用的肽类化合物,又称功能肽(functional peptide)[1]。肽由氨基酸组成,人体存在20 种氨基酸,由不同的氨基酸的种类排列,加上数量排列形成,再加上还可能有的二级、三级结构,其种类是十分庞大的[2,3]。每一种活性肽都具有独特的组成结构,不同活性肽的组成结构决定了其功能。此外活性肽在生物体内的含量是很微量的,但却具有显著的生理活性。据研究,有些多肽在10 - 7mol/ L 的浓度时仍具有生理活性,就是说1 mL 的多肽用60 倍水稀释后,仍然具有生理功能。功能肽是源于蛋白质的多功能化合物,是多样化且来源充足的食品原料,具有多种人体代谢和生理调节功能,如易消化吸收、促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等[4] 现代营养学研究发现,人体摄入蛋白质经消化道中的酶作用后,大部分是以寡肽的形式

丙酮甲醇混合物萃取精馏分离过程

龙源期刊网 https://www.wendangku.net/doc/6214951853.html, 丙酮甲醇混合物萃取精馏分离过程 作者:员建飞白宇杰楚莎莎 来源:《名城绘》2019年第01期 摘要:丙酮和甲醇也是制药工业中常用的有机溶剂。而制药过程中也经常涉及丙酮与甲醇的混合溶液的分离回收再利用的问题。由于甲醇(沸点64.7℃)与丙酮(沸点56.5℃)的沸点相近,容易形成共沸物,因此采用一般精馏的方法很难将其分离。萃取精馏作为常用的分离共沸物的方法而被广泛使用,因此萃取剂的选择便成为了萃取精馏的重中之重。 关键词:丙酮;甲醇;精馏分离 一、引言 化工生产中所使用的原料、产生的中间产物以及粗产品几乎都是由各种不同组分组成的混合物,并且他们当中大部分都是均相物系。在生产过程中经常需要将这些混合物分离,从而获得较纯净或者几乎纯态的物质或者组分。要想达到分离效果,只有通过改变均相物系,创造一个两相物系的环境,才能将均相混合物进行分离,并根据物系中不同组分间的某种物性的差异,使其中某些组分或某个组分从一相向另外一相转移,以达到分离。通常把这种物质在相间的转移过程称分离操作或传质过程。常见的传质过程分为蒸镏、吸收、萃取及干燥等单元操作。就像制药生产工艺中所产生的甲醇和丙酮混合液一样,两种物质为均相混合共沸物,若想将两种物质分离,得到纯度较高的丙酮和甲醇,需经过萃取精馏这一分离操作。 1.精馏原理 精馏是进行多次部分气化和部分冷凝的过程,可使混合液几乎完全的分离。多次进行部分汽化或部分冷凝以后,最终可以在汽相中得到较纯的易挥发组分,而在液相中得到较纯的难挥发组分。 2. 精馏过程简介 精馏一般分为连续精馏和间歇精馏。连续精馏过程中料液从塔中部适当位置连续地加入精馏塔内,塔顶设有冷凝器将塔顶蒸汽冷凝为液体。冷凝液的一部分回到塔顶,称为回流液,其余作为塔顶产品即馏出液连续排出。在加料位置以上的塔内上半部上升蒸汽和回流液体之间进行着逆流接触和物质传递。塔底装有再沸器(蒸馏釜)用来加热液体产生蒸汽,蒸汽沿塔上升,与下降的液体逆流接触并进行物质传递,塔底连续排出部分液体作为塔底产品。在塔的加料位置以上,上升蒸汽中所含的重组分向液相传递,而回流液中的轻组分向气相传递。 二、萃取精馏简介 1.萃取精馏技术介绍

菊花提取物的抗氧化活性研究

!::::::==:=:2::!垒曼型兰!蚤茎熊匹塞 菊花提取物的抗氧化活性研究 张尔贤方黎张捷俞丽君肖湘汕头大学理学院生物学系汕头515063摘要通过菊花提取物对Fe2+诱发卵黄脂蛋白PuFA过氧化体系、TBAs生成体系和邻苯三酚一L吼in。l发光体 系的抑制作用,研究了菊花的不同提取物的抗氧化活性。结果表明.菊花黄酮类化合物有清除?oH、0?:的能力, 且有着较强的抗氧化活性,并且发现菊花抗氧化活性与黄酮类化合物含量相关。 关键词菊花黄酮类化合物抗氧化活性脂质过氧化硫代巴比妥酸反应物 AbstractAstIld”vascarriedonanti-oxidativoactivityofFloschrysantllemumextractChrysanthemumextractwas允】I ot、naVonesS0mepreccsscstoextracIaavOnes打Omchl)%anthemumforscavengingactivcoxygenradicalwerereporced1兀 【hlsp印crTheresultsshowedthatchrysanthemumnavonescouldscavenge?OH、O=2andaf诧ctthcanti.oxjdative actn7Ity KeywordsFlosChrysanthemumAn“O一0xidativeFJavonesOxy鼬nradical 菊花是菊科植物菊(chry8anchemummorif01iumRamat)的头状花序.为多年生草本,在我国大部分地区有栽培。传统医学认为菊花的功效包括清热、明目、解毒,治疗头疼、眩晕、心胸烦热、疗疮等作用,民间更以饮用菊花水来解暑热。菊花含黄酮类化合物,本研究通过对菊花的抗氧化作用的初步研究.为进一步开发菊花的保健效用提供理论依据。 1材料与方法 二.二材料、试剂与仪器 千杭自菊:购于市场.绞碎备用。 卵黄悬液:新鲜鸡蛋去卵清,卵黄用等体积的pH7.45,o二_。一,L磷酸钠缓冲液(PBs)配成1:i的悬液,磁力搅拌10m址再用pBs稀释成1:25的悬液(置于冰箱中备用)。 次黄嘌呤【Fluka公司)、黄嘌呤氧化酶(酶活力5u,ml,广卅1军事医学研究所)、2一脱氧一D核糖(feinbiochemica二e二。÷一。erg,newyork)、硫代巴比妥酸(生化试剂,上海试剂二厂。 75i—Gw型分光光度计(上海分析仪器厂)、GHG—c型生物化学发光测量仪(上海市检测技术所检测仪器厂)、DGJo.5一I|冷冻干燥机(军事医学科学院实验仪器厂)、旋转蒸发器(Ro=jryEvaporatorRE一47,YAMAT0SCIENTIFICc。,二二dToky。,Japan)、BeckmanJ2—21M高速冷冻离心机3e:息an,USA)。 ::方法 二.:二提取工艺。1。’ 干菊花绞碎,加入15倍体积7o%乙醇热浸提12h.抽滤,滤渣用热水冲洗,滤液减压浓缩.蒸去乙醇,3ooor/min离心:o-二j上清液保存待用(样品I)。取一定量样品I,用2倍 体积100%的正丁醇萃取2次,萃取液蒸干溶剂,再用水定容,得样品II。取一定量样品I,用2倍体积100%的乙酸乙酯。萃取2次.萃取液蒸干溶剂,再用水定容,得样品III。取一定量样品I,用2倍体积100≈的氯仿,萃取2次.萃取液薰干溶剂,再用水定容,得样品Ⅳ。 干菊花绞碎,15倍体积水直接浸提12h,低温浓缩获得样品V(作为对照)。 1.2.2Fen诱发卵黄脂蛋白PUFA过氧化体系…。 选用1:25的卵黄悬液吸取o.2ml,加入一定量的样品.加入o,2mlFeso.25衄ol/L,用pH7.4,o1mol/L的PBs补充至2m!,37℃振荡15min,取出后加人o.5ml三氧乙酸(简写TcA),3500r/min离心10min,吸取2ml上清液加入lml硫代巴比妥酸(简写TBA).加塞,放人沸水浴中15min,冷却后,于532nm处比色测出吸光度(A)值:以不加样品管的吸光度为(A.)。样品抗氧化活性(AoA)用对卵黄脂蛋白LPo的抑制率表示: AOA(%)=(A0一A)/A。×100% 1.2.3Fe“次黄嘌呤一黄嘌呤氧化酶一TBAs生成体系n4加样顺序为:Feso.(2mm。1,L)o.04ml、黄嘌呤氧化酶(简写:xo)(5u/m1)3.5ul、脱氧核糖(30mm01,L)o2ml、EDTA(5吼ol,L)O.04m1、H202(17.6黝ol,L)o01ml、加入o.1ml样品、pH7.4PBs(O.15mol/L)1.48ml、次黄嘌呤(简写:x)(2mol/L)o.2ml总体积为2ml(除PBs、Fe∞.用重蒸水配制外.其它试剂均用pH7.4PBso.15mol/L配制)。然后,35℃温浴15mim.取lml反应液加1%w/vTBA(NaoHo05mol/L配制)及冰醋酸lml,混匀后放人沸水浴30min,冷却。在532nm处测其吸光度A,以不加样品管的吸光度为k:清除活性以抑制TBAs生成量As32n。值的抑制百分率表示即(A。一A)/A。×loo%。1.2.4超氧阴离子的邻苯三酚“uInin。l发光体系  万方数据

甲醇-水分离过程板式精馏塔设计

滨州学院 课程设计任务书 一、课题名称 甲醇——水分离过程板式精馏塔设计 二、课题条件(原始数据) 原料:甲醇、水溶液 处理量:3200Kg/h 原料组成:33%(甲醇的质量分率) 料液初温:20℃ 操作压力、回流比、单板压降:自选 进料状态:冷液体进料 塔顶产品浓度:98%(质量分率) 塔底釜液含甲醇含量不高于1%(质量分率) 塔顶:全凝器 塔釜:饱和蒸汽间接加热 塔板形式:筛板 生产时间:300天/年,每天24h运行 冷却水温度:20℃ 设备形式:筛板塔 厂址:滨州市 三、设计内容 1、设计方案的选定 2、精馏塔的物料衡算 3、塔板数的确定 4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数) 5、精馏塔塔体工艺尺寸的计算 6、塔板主要工艺尺寸的计算 7、塔板的流体力学验算

8、塔板负荷性能图(精馏段) 9、换热器设计 10、馏塔接管尺寸计算 11、制生产工艺流程图(带控制点、机绘,A2图纸) 12、绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸) 13、撰写课程设计说明书一份 设计说明书的基本内容 ⑴课程设计任务书 ⑵课程设计成绩评定表 ⑶中英文摘要 ⑷目录 ⑸设计计算与说明 ⑹设计结果汇总 ⑺小结 ⑻参考文献 14、有关物性数据可查相关手册 15、注意事项 ⑴写出详细计算步骤,并注明选用数据的来源 ⑵每项设计结束后列出计算结果明细表 ⑶设计最终需装订成册上交 四、进度计划(列出完成项目设计内容、绘图等具体起始日期) 1、设计动员,下达设计任务书0.5天 2、收集资料,阅读教材,拟定设计进度1-2天 3、初步确定设计方案及设计计算内容5-6天 4、绘制总装置图2-3天 5、整理设计资料,撰写设计说明书2天 6、设计小结及答辩1天

活性肽的神奇功效

小分子活性肽的神奇功效 经研究表明,小分子活性肽辅以多种维生素和复合微量元素可诱导和促进T淋巴细胞分化、成熟;调节T淋巴细胞群比例,使CD4/CD8趋于正常。同时,增强巨噬细胞的吞噬能力和红细胞免疫功能。可显着增加淋巴细胞功能,并能有效地防止辐射和放化疗及其他污染中毒后白细胞数量的减少,有效地抑制肿瘤细胞生长,起到改善免疫功能的作用。从间接作用而言,小分子活性肽可促使粪便排泄,降低血清胆固醇浓度,使甾醇排泄增加和肝脏高胆固醇浓度下降,对治疗原发性高血压有一定的功效。能抑制脂肪的积蓄,抑制有害菌,排除毒素,促进其对食物营养的消化吸收,以提高人体对药物有效成分的吸收,具有很高的生理活性,人们经常食用小分子活性肽,在强身保健方面有如下功效: 1、主动吸收,迅速恢复体能 肽是蛋白质与氨基酸的中间物质,由数个氨基酸结合而成。分子大小介于蛋白质与氨基酸之间。但是,比氨基酸分子大的肽在人体内被吸收的速度反而比氨基酸更快,原因就在于:小分子活性肽是数个氨基酸分子集中起来被整体吸收,而氨基酸需要一个一个地

被吸收,小分子活性肽能比氨基酸更迅速地被人体吸收。 在恢复体力方面,小分子活性肽也发挥着优异的功效。人体在进行激烈运动时,为了补给能量就需要消耗肌肉中的氨基酸。就是说,身体需要能量的时候就会从肌肉中获取。肌肉中的氨基酸被消耗掉后,肌肉组织就会受到损伤、肌肉产生疲劳感、难以发挥原有的力量。服用小分子活性肽3分钟进入血液,5分 钟转换为体能,在运动前、运动中补给活性肽可以给身体提供充足的能量,能够抑制肌肉力量的下降、长时间维持充沛的体力。 2、消除疲劳 疲劳是由大脑感知的。当人体感到疲劳的时候,疲劳的机体部位向大脑发出疲劳信息,于是人就感到疲劳。从这个意义上说,感知疲劳的中心就在大脑里。如果没有疲劳这种生理反应,我们就会无休止的劳动下去,直至死亡。 大脑疲劳是由氧化血红蛋白浓度的上升引起的,服用小分子活性肽可以抑制氧化血红蛋白浓度的上升,因而能够缓和大脑的精神压力,使人在学习时保持沉着冷静、清醒的记忆,能够减轻工作造成的大脑疲劳。

生姜的主要成分和药理作用

生姜的主要成分和药理作用 核心提示:生姜的主要成分和药理作用生姜的主要成分生姜含挥发油0.25%?3.0%,主 要成分为姜醇(Zingiberol) 、姜烯(Zingiberene)、水芹烯(Phellandrene)、............. 生姜的主要成分 生姜含挥发油0.25%?3.0%,主要成分为姜醇(Zingiberol)、姜烯(Zingiberene)、水芹烯(Phellandrene)、莰烯(Camphene)、柠檬醛(Citral) 、芳樟醇(Linalool)、甲基庚烯酮(Methylheptenone) 、壬醛(Nonyl aldehyde) 、d- 龙脑(d-Borneol) 等. 尚含辣味成分姜辣素(Gingerol), 分解则变成油状辣味成分姜烯酮(Shogaol)和结晶性辣味成分姜酮(Zingerone) 、姜萜酮(Zingiberone) 的混合物. 又含天门冬素、哌啶酸-2(Pipecolic acid) 以及谷氨酸、天门冬氨酸、丝氨酸、甘氨酸等. 此外,尚含有树脂状物质及淀粉. 生姜的药理作用 1.对消化系统的作用生姜是治疗盐酸-乙醇性溃疡的有效药物,其有效成分为姜烯,具有保护胃黏膜细胞的作用. 在芳香健胃生药中,特别是姜科植物中多含有姜烯等萜类精油成分,是健胃生药的有效成分之一. 生姜煎剂对犬胃酸及胃液的分泌呈抑制与兴奋的双向作用,最初数小时内抑制,以后则继以较长时间的兴奋. 生姜煎剂(10%)1.2mg/ 只给大鼠灌胃,可显著抑制盐酸性和应激性胃黏膜损伤,用消炎痛阻断PG合成后,生姜的保护作用消失, 说明其保护机制可能与促进胃黏膜合成和释放内源性PG有关. 生姜能使胃蛋白酶作用减弱,脂肪分解酶的作用增强. 生姜可严重破坏胰酶中的淀粉酶使胰酶对淀粉的消化作用显著下降?还可抑制淀粉酶中的B -淀粉酶,阻碍淀粉糖化. 生姜可作用于交感神经及迷走神经系统,有抑制胃机能及直接兴奋胃平滑肌的作用. 利用大鼠小肠还流法对磺胺脒的吸收促进作用进行研究,结果表明:生姜的水提取物有显 著的吸收促进作用,增强其生物利用度,充分发挥疗效. 生姜浸膏能抑制硫酸铜引起的狗的呕吐. 从生姜中分离出来的姜油酮及姜烯酮的混合物亦有止呕效果,最小有效量为3mg, 对中枢性催吐药阿朴吗啡引起的狗呕吐及洋地黄引起的鸽呕吐均无效,故认为生姜有末梢性镇吐作用. 家兔经消化道给予姜油酮可使肠管松弛,蠕动减退. 生姜是驱风剂的一种,对消化道有轻度刺激作用,可使肠张力、节律及蠕动增加,有时继之以降低,可用于因胀气或其他原 因引起的肠绞痛. 实验表明:生姜油对大鼠四氯化碳性肝损伤有治疗作用,能使血清SGPT降低;对小鼠 四氯化碳性肝损伤有预防作用,并能降低BSP潴留量.生姜蜂蜜封存液5ml/kg给大鼠灌胃, 对四氯化碳性肝损伤亦有治疗作用,与对照组相比,血清SGPT和SGOT明显降低,肝小叶 破坏、肝细胞脂肪变性和坏死亦较轻; 对60%乙醇所致之大鼠肝损伤同样有效. 2.对循环系统和呼吸系统的作用生姜醇提取物对麻醉猫血管运动中枢及呼吸中枢有兴奋作用,对心脏也有直接兴奋作用. 正常人口嚼生姜1g( 不咽下) ,可使收缩压平均升高 1.489 kPa(11.2mmHg) ,舒张压上升 1.862kPa(14mmHg). 对脉率则无明显影响.

甲醇—水分离过程填料精馏塔塔设计

重庆大学课程设计报告 课程设计题目:甲醇—水分离过程填料 精馏塔塔设计 学院:化学化工学院 专业:制药工程01班 年级: 2008级 姓名: XXX 学号: XXXX 完成时间: 2016年7月6日 成绩: 平时成绩(20%): 图纸成绩(40%): 报告成绩(40%): 指导老师:张红晶

1、设计简要 1.1 设计任务及概述 在抗生素类药物生产中,需要甲醇溶液洗涤晶体,洗涤过滤后产生废甲醇溶液,其组成为含甲醇50%、水50%(质量分数),另含有少量的药物固体微粒。为使废甲醇溶液重复利用,拟建一套填料精馏塔,对废甲醇进行精馏,得到含水量≦0.3%(质量分数)的甲醇溶液。设计要求废甲醇溶液处理量为日产3吨,塔底废水中甲醇含量≦0.5%(质量分数)。 操作条件: (1) 常压; (2) 拉西环,填料规格。 1.2 设计方案 填料塔简介 填料塔是提供气-液、液-液系统相接触的设备。填料塔外壳一般是圆筒形,也可采用方形。材质有木材、轻金属或强化塑料等。填料塔的基本组成单元有: ①:壳体(外壳可以是由金属(钢、合金或有色金属)、塑料、木材,或是以橡胶、塑料、砖为内层或衬里的复合材料制成。虽然通入内层的管口、支承和砖的机械安装尺寸并不是决定设备尺寸的主要因素,但仍需要足够重视; ②:填料(一节或多节,分布器和填料是填料塔性能的核心部分。为了正确选择合适的填料,要了解填料的操作性能,同时还要研究各种形式填料的形状差异对操作性能的影响); ③:填料支承(填料支承可以由留有一定空隙的栅条组成,其作用是防止填料坠落;也可以通过专门的改进设计来引导气体和液体的流动。塔的操作性能的好坏无疑会受填料支承的影响); ④:液体分布器(液体分布的好坏是影响填料塔操作效率的重要因素。液体分布不良会降低填料的有效湿润面积,并促使液体形成沟流); ⑤:中间支承和再分布器(液体通过填料或沿塔壁流下一定的高度需要重新进行分布); ⑥:气液进出口。 塔的结构和装配的各种机械形式会影响到它的设计并反映到塔的操作性能上,应该力求在最低压降的条件下,采用各种办法提高流体之间的接触效率,并设法减少雾沫夹带或壁效应带来的效率损失。与此同时,塔的设计必须符合由

植物源活性肽研究进展

植物源生物活性肽的研究进展 多肽是由天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,其中可调节生物体生理功能的多肽称为生物活性肽。与蛋白质相比,活性肽不仅有比蛋白质更好的消化吸收性能,还具有促进免疫、调节激素、抗菌、抗病毒、降血压和降血脂等生理机能。此外活性肽还有较好的酸、热稳定性,水溶性及粘度随浓度变化迟钝等优点,易于作为功能因子添加到各种食品中。我国农作物种类品种繁多,利用这些廉价的植物蛋白开发具有高附加值的生物活性肽产品,越来越受到重视。本文重点综述了降血压肽、抗氧化钛、降胆固醇肽这3类生物活性肽的研究进展,将其结构特征与生理功能的关系进行了归纳,同时归纳了活性肽的生理功能,并指出其发展应用前景。 1. 生物活性肽的生理功能 1.1 抗菌活性 抗菌活性肽通常由细菌、真菌产生,或从动植物体中分离。它们尽管在结构上千差万别,但几乎所有的抗菌肽都是阳离子型的,两亲结构是它们的共同特征[1]。国内外研究成果表明,抗菌肽对部分细菌、真菌、原虫、病毒及癌细胞等均具有强大的杀伤作用。临床试验也表明,抗菌肽能够增强机体抵抗病原微生物的能力,而且在体内还不容易产生耐药性。 1.2 免疫活性[2] 免疫活性肽能够刺激机体淋巴细胞的增殖,增强巨噬细胞的吞噬功能,提高机体抵御外界病原体感染的能力,降低机体发病率。从人乳和牛乳的酪蛋白中已检测到具有免疫刺激活性的肽片段,这些肽具有刺激巨噬细胞吞噬能力的作用。另外,乳蛋白、大豆蛋白和大米蛋白等通过适当酶解处理也可产生具有免疫 活性的肽类物质。 1.3 抗高血压活性 血压是在血管紧张素转换酶(angiotensin-convertion enzyme,ACE)的作用下进行调节的,血管紧张素Ⅰ在A C E的作用下可转化为有活性的血管紧张素Ⅱ,使血管平滑肌收缩,引起血压升高。降血压肽是具有抑制ACE活性的肽类, 来源广泛,ACE 抑制肽的主要来源是乳制品和鱼蛋白(沙丁鱼、金枪鱼、

甲醇丙酮乙醇的gc定量分析

摘要:目的:建立法莫替丁中甲醇、丙酮和乙醇残留量的测定方法。方法采用毛细管气相色谱法,色谱柱为H P-W a x;柱温: 50℃保持3m i n,以20℃/m i n升温至120℃保持4m i n;载气为氮气;检测器为F I D;外标法计算含量。结果:在该色谱条件下,测得各溶剂线性均良好(r =~;平均回收率分别为%,%和%,R S D分别为%,%和%;甲醇、丙酮和乙醇的最低检测限分别为%、%和%;3批样品中上述有机溶剂残留量均符合要求。结论:该毛细管气相色谱法灵敏、准确、可靠,适用于本品中有机溶剂残留量测定。 关键词:法莫替丁;毛细管气相色谱法;有机溶剂残留量 药物中的残留溶剂是指在原料药或赋型剂的生产中,以及在制剂制备过程中产生或使用的有机挥发性化合物。由于残留溶剂不仅没有疗效,还可能增加药物的毒副作用,而且影响药物的稳定性,故所有的有机溶剂应尽可能除去。为了保护患者免受药物中残留有机溶剂的伤害,需对药品在生产过程中引入的有机溶剂残留量进行测定。法莫替丁为组胺H2受体阻滞药,对胃酸分泌具有明显的抑制作用,适用于消化性溃疡(胃、十二指肠溃疡)、急性胃黏膜病变、反流性食管炎以及胃泌素瘤。由于合成本品过程中使用甲醇等有机溶剂,故有可能会残留在产品中,本文参考中国药典2000年版二部法莫替丁项下方法,建立了气相色谱法,以毛细管柱代替填充柱,同时测定法莫替丁中甲醇、丙酮和乙醇残留量,结果表明本法分离度高、灵敏、准确且简便。 1实验部分 1.1仪器与试药 美国惠普公司H P5890型气相色谱仪,甲醇、丙酮、乙醇及二甲基甲酰胺(D M F)均为分析纯试剂。法莫替丁自制样品(批号1、2、3),法莫替丁市售品(郑州瑞泰制药有限公司,批号)。 1.2色谱条件 色谱柱:H P-W a x (键合聚乙二醇,30m×0.32m m ×μm);柱温:50℃保持3m i n,以20℃/m i n 升温至120℃保持4m i n;检测室温度:200℃;进样温度:200℃;载气:氮气;柱头压:; F D I检测器;顶空进样m L。 1.3溶液配制 对照溶液:称取甲醇、丙酮、乙醇于100m L容量瓶中,加D M F稀释至刻度,为对照贮备溶液,每1m L含m g甲醇、丙酮、乙醇。依次取、、、、对照贮备溶液 分别至10 m L容量瓶中,加D M F稀释至刻度,制得系列浓度的对照溶液,每1m L含甲醇60. 0、120、180、240、300μg;丙酮100、200、300、400、500μg;乙醇100、200、300、400、500μg。 供试品溶液:称取2g供试品于20m L容量瓶中,加D M F溶解并稀释至刻度。测定:精密量取对照溶液和供试品溶液各10m L,分别置于25m L顶空瓶中,在80℃的恒温箱中加热30m i n,取顶空气进样。

生姜的抗氧化性和药用价值(译文) 终版

生姜的抗氧化性和药用价值 摘要:本实验对生姜的抗氧化性和药用价值进行了研究。使用溶剂、正己烷、乙酸乙酯、乙醇和水提取获得生姜提取物,提取物经化验,其具有生姜的抗氧化性和药用价值。结果表明,除水之外所有的提取物的抗菌活性、抑菌活性、是剂量依赖性。结果还表明,生姜提取物具有抗菌性能,可用于治疗细菌感染。 关键词:姜、抗菌活性、抑制细菌生长、药用价值和细菌感染。 介绍 姜(zingiber officinale),罗斯科属于家庭姜科,是一种多年生草本植物和厚块茎状的根状茎直立的绿叶空中杆能长大到约1米高,有紫色鲜花(图1)。在烹饪时生姜的根被用作香料,遍及世界。姜植物的栽培有着悠久的历史,其源于中国,然后蔓延到印度、东南亚、西非和加勒比(Weiss, 1997; McGee, 2004)。生姜含有高达3%的精油即香料的香味(O’Hara et al,1998)。主要成分是倍半萜类与姜萜为主要成分。其他成分还包括倍半水芹烯、红没药烯和金合欢烯,这些成分也是倍半萜类化合物( β-sesquiphellandrene,cineol andcitral)( Opdyke,1974 ;O’Hara et al,1998)。 图1:新鲜生姜的直立的茎 图2:生姜厚大的块根 味道辛辣的姜是由于非挥发性的类苯基丙烷及其衍生化合物、姜辣素和姜烯酚。当姜是被干或煮熟时,姜辣素会形成姜烯酚,姜油酮也是在这个过程中由姜辣素产生形成的,和它是少辛辣和有种甜蜜的香气(O’Harold,2004)。姜是一种轻微的化学刺激物,它具有催涎剂的作用和刺激唾液的分泌的作用(O’Hara et al, 1998)。成熟生姜根是纤维状的和接近干枯的,他们在许多菜肴烹饪中作为一种调味成分,他们可以在沸水中炖制制作姜茶,常常添加蜂蜜作为甜味剂;橙或柠檬切片水果也可以被添加其中。生姜根的根汁是非常强大的,常作为作香料添加到可口美味的菜肴中,比如海鲜、羊肉、零食或炖肉。干姜粉根(姜粉)通常用于添加

甲醇-水分离板式精馏塔的设计资料

河西学院 Hexi University 化工原理课程设计 题目: 甲醇-水板式分离精馏塔设计学院: 化学化工学院 专业: 化学工程与工艺 学号: 2014210036 姓名: 张小宝 指导教师: 冯敏 2016 年11 月29日

化工原理课程设计任务书一、设计题目 甲醇-水分离板式精馏塔设计 二、设计任务及操作条件 1.设计任务 生产能力(进料量)5万吨/年 操作周期每年300天,每天24小时运行 进料组成含甲醇46% (质量分率,下同) 塔顶产品组成甲醇含量不低于99.7% 塔底产品组成甲醇含量不高于0.5% 2.操作条件 操作压力常压 进料热状态自选 塔底加热蒸汽压力0.3MPa(表压) 单板压降≤0.7kPa 3.设备型式筛板或浮阀塔板 4.厂址张掖 三、设计内容 1.设计方案的选择及流程说明 2.塔的工艺计算 3.主要设备工艺尺寸设计 (1)塔径、塔高及塔板结构尺寸的确定 (2)塔板的流体力学校核 (3)塔板的负荷性能图 (4)总塔高、总压降及接管尺寸的确定 4.辅助设备选型与计算 5.设计结果汇总 6.工艺流程图及精馏工艺条件图 7.设计评述

目录 1 概述 (1) 1.1 精馏原理及其在化工生产上的应用..................................... (1) 1.2 精馏塔对塔设备的要求 (1) 1.3 常用板式塔类型及本设计的选型 (2) 1.4 流程的确定和说明 (2) 2 精馏塔的物料衡算 (2) 2.1 原料液及塔顶和塔底的摩尔分率 (2) 2.2 原料液及塔顶和塔底产品的平均摩尔质量 (3) 2.3 物料衡算 (3) 3 塔板数的确定 (3) 3.1 理论板层数 N的求取 (3) T 3.1.1 相对挥发度的求取 (3) 3.1.2 求最小回流比及操作回流比 (4) 3.1.3 求精馏塔的气、液相负荷 (5) 3.1.4 求操作线方程 (5) 3.1.5 采用图解法求理论板层数 (6) 3.2 实际板层数的求取 (6) 3.2.1 液相的平均粘度 (6) 3.2.2 精馏段和提馏段的相对挥发度 (7) 3.2.3 全塔效率E T和实际塔板数 (7) 4 精馏塔的工艺条件及有关物性数据的计算 (7) 4.1 操作压力的计算 (7) 4.2 操作温度计算 (8) 4.3 平均摩尔质量计算 (8) 4.4 平均密度计算 (9) 4.4.1 气相平均密度计算 (9) 4.4.2 液相平均密度计算 (9)

相关文档